Potassium Channels in Epilepsy

Total Page:16

File Type:pdf, Size:1020Kb

Potassium Channels in Epilepsy Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Potassium Channels in Epilepsy Ru¨diger Ko¨hling and Jakob Wolfart Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany Correspondence: [email protected] This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dy- namic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With 80 potassium channel types, of which 10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. INTRODUCTION TO POTASSIUM evolutionary appearance of voltage-gated so- CHANNELS dium (Nav)andcalcium (Cav)channels, Kchan- nels are further diversified in relation to their otassium (K) channels are related to epilepsy newer function, namely, keeping neuronal exci- Psyndromes on many different levels, ranging tation within limits (Anderson and Greenberg from direct control of neuronal excitability and 2001; Hille 2001). Structurally, K channels con- homeostasis of ion milieu to indirect effects sist of transmembrane (TM) protein elements www.perspectivesinmedicine.org via metabolism. We discuss K channels and similar to the Cav and Nav channels and the cy- their relevance to epilepsy (1), in particular, clic nucleotide-regulated channels, with which with respect to genetic alterations in humans the K channels can be grouped into a superfam- (2) and animal models (3), as well as acquired ily of “voltage-gated-like” ion channels (Yu et al. in humans (4) and animal models (5), and we 2005; Alexander et al. 2013). The K-channel highlight recent mechanisms on K channels in family is by far the largest: ,70 human genes antiepileptic drug (AED) research (6). encoding for different a subunits have been dis- Probably, all biological cells have K chan- covered since the beginning of K-channel clon- nels; they are crucial for all transmembrane ing (Fig. 1) (Coetzee et al. 1999; Goldstein et al. transport mechanisms. In addition, since the 2005; Gutman et al. 2005; Kubo et al. 2005; Wei Editors: Gregory L. Holmes and Jeffrey L. Noebels Additional Perspectives on Epilepsy: The Biology of a Spectrum Disorder available at www.perspectivesinmedicine.org Copyright # 2016 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a022871 Cite this article as Cold Spring Harb Perspect Med 2016;6:a022871 1 Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press R. Ko¨hling and J. Wolfart et al. 2005; Trimmer 2015). With the formation channels, behave similarly to Kir channels with of heteromers, modulating b subunits, and dif- high [K]o. Under physiological conditions, ferential expression, thousands of different K most of the K2P channels are open rectifiers— channels are possible. Four a subunits are nec- they conduct mainly outward K currents (Gold- essary to build a functional K channel (Fig. 1). stein et al. 2001). In addition, K2P channels in- The a subunits are differentiated according to tegrate other signals, as in the case of TWIK- whether they consist of 2, 4, or 6TM domains. related acid-sensitive (TASK) channels, which More common are functionally defined names are sensitive to external pH changes (Lesage such as “inward rectifier” K (Kir) channels for and Lazdunski 2000; Goldstein et al. 2001). 2TM channels, “leak two pore domain” K From the human genetics point of view, there (K2P) channels for 4TM, and “voltage-gated” is little association between K2P channels and K(Kv) channels for 6TM (Fig. 1). epilepsy, but there are data on K2P channels in seizure models (see below). Note that there is no simple correlation between the func- Inward Rectifier Potassium Channels tional (historical) naming and the later clas- As the name suggests, Kir channels conduct in- sification according to a sequence relationship ward current better than outward current; re- (TWIK1, K2P1.1; TWIK2, K2P6.1; TASK1, sponsible for this is a magnesium or polyamine K2P3.1; TASK2, K2P5.1). block at depolarized potentials (Kubo et al. 2005). However, under physiological condi- Voltage-Gated Potassium Channels tions, the resting membrane potential (Vrest) of neurons is unlikely to become more negative The largest ion channel group is the Kv channel than the equilibrium potential of K ions (EK); family, which consists of 12 Kv (sub-) families. the functional importance of Kir channels, such The founding group, the shaker-related Kv1 as the “classic leak Kir” channels of the Kir2 channel family was named after the mus- group, is to provide the basic K current main- cle seizure phenotype of the corresponding taining Vrest (Stanfield et al. 2002). Some of fly mutant (Pongs et al. 1988). Subsequently the Kir channels are coupled to and modulated discovered groups were classified as shab-related by G-proteins, among them, Kir3 (Girk) chan- (Kv2), shaw-related (Kv3), and shal-related (Kv4) nels. In glial cells, Vrest can become more nega- (Coetzee et al. 1999; Gutman et al. 2005). tive than EK during and because of spatial buf- From the functional point of view, all Kv chan- fering of extracellular potassium concentrations nels are activated by depolarization and deac- ([K]o), in particular via Kir4 channels (Butt and tivated by repolarization, both relatively fast. www.perspectivesinmedicine.org Kalsi 2006). Thus, Kir4.1 channels are found Inactivation occurs when the open channel is exclusively in glial cells (Higashi et al. 2001). occluded via intracellular “ball domains” dur- The Kir6(KAT P) channels are coupled to the in- ing prolonged depolarization. When inactiva- tracellular energy supply; when ATP levels are tion is fast (i.e., visible within tens of millisec- high, Kir6 channels are closed, whereas during onds), it is called “A-type current” after the prolonged action potential (AP) firing Kir6 initial description in the gastropod Anisodoris channels will eventually contribute to resetting (Connor and Stevens 1971). Such ball domains Vrest (Isomoto et al. 1997). canbepartofthechannellikeinthecaseoftheA- type subunits Kv1.4, Kv3.4, and Kv4, or they are part of an accessory unit, as in the case of the Two Pore Domain Potassium Channels Kvb1.1 (KCNMB1), which confers the A-type Also K2P channels contribute to leak cur- phenotype on the Kv1 subunits it assembles rent important for Vrest (Lesage and Lazdunski with (Rettig et al. 1992, 1994). The term “delayed 2000; Goldstein et al. 2001). Hence, functional- rectifier” outward current (IK) describes the de- ly, some of these, for example, the “tandem of P layed activation relative to the ultrafast (msec domains in weak inward rectifier (TWIK)” K range) activation of Nav currents (Hodgkin and 2 Cite this article as Cold Spring Harb Perspect Med 2016;6:a022871 Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Potassium Channels in Epilepsy Kir1.1/KCNJ1(1) 2TM, Kir, KCNJ K 2.1/KCNJ2 , K 2.2/KCNJ12 , K 2.3/KCNJ4 , K 2.4/KCNJ14 ir (3) ir (0) ir (0) ir (0) I α Kir3.1/KCNJ3(4), Kir3.2/KCNJ6(6), Kir3.3/KCNJ9(2), Kir3.4/KCNJ5(0) α α Kir4.1/KCNJ10(35), Kir4.2/KCNJ15(0) α Kir5.1/KCNJ16(3) V Kir6.1/KCNJ8(1), Kir6.2/KCNJ11(36) Kir7.1/KCNJ13(1) K2P1.1/KCNK1(1) K2P9.1/KCNK9(6) 4TM, K2P, KCNK K2P2.1/KCNK2(0) K2P10.1/KCNK10(1) I α K2P3.1/KCNK3(1) K2P12.1/KCNK12(0) α α K2P4.1/KCNK4(0) K2P13.1/KCNK13(0) α V K2P5.1/KCNK5(0) K2P15.1/KCNK15(0) K2P6.1/KCNK6(1) K2P16.1/KCNK16(1) K2P7.1/KCNK7(0) K2P17.1/KCNK17(0) K2P18.1/KCNK18(0) Kv1.1/KCNA1(18), Kv1.2/KCNA2(0), Kv1.3/KCNA3(0), Kv1.4/KCNA4(1), Kv1.5/KCNA5(0) Kv2.1/KCNB1(1), Kv2.2/KCNB2(0), Kv1.6/KCNA6(1), Kv1.7/KCNA7(0), Kv1.8/KCNA10(0) Kv3.1/KCNC1(1), Kv3.2/KCNC2(0), Kv3.3/KCNC3(3), Kv3.4/KCNC4(1) Kv4.1/KCND1(0), Kv4.2/KCND2(3), Kv4.3/KCND3(1) Kv5.1/KCNF1(1) 6TM, K , KCNX v Kv6.1/KCNG1(0), Kv6.2/KCNG2(0), Kv6.3/KCNG3(0), Kv6.4/KCNG4(0) K 7.1/KCNQ1 , K 7.2/KCNQ2 , K 7.3/KCNQ3 , K 7.4/KCNQ4 , K 7.5/KCNQ5 α v (26) v (139) v (93) v (11) v (7) Kv8.1/KCNV1(1), Kv8.2/KCNV2(2) α α K 9.1/KCNS1 , K 9.2/KCNS2 , K 9.3/KCNS3 v (0) v (0) v (0) I α Kv10.1/KCNH1(2), Kv10.2/KCNH5(2) Kv11.1/KCNH2(11), Kv11.2/KCNH6(3), Kv11.3/KCNH7(1) V Kv12.1/KCNH8(0), Kv12.2/KCNH3(1), Kv12.3/KCNH4(0) www.perspectivesinmedicine.org KCa1.1/BK/KCNMA1(3) KCa2.1/SK1/KCNN1(0), KCa2.2/SK2/KCNN2(2), KCa2.3/SK3/KCNN3(3) KCa3.1/IK/KCNN4(2) KCa4.1/slack/KCNT1(13), KCa4.2/slick/KCNT2(0) KCa5.1/KCNU1(0) Figure 1.
Recommended publications
  • Crispra Screening with Real World Evidence Identifies Potassium Channels As Neuronal Entry Factors and Druggable Targets for SARS-Cov-2
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.01.450475; this version posted July 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. CRISPRa screening with real world evidence identifies potassium channels as neuronal entry factors and druggable targets for SARS-CoV-2 Authors: Chengkun Wang1,†, Ravi K. Dinesh1,†,*, Yuanhao Qu1,2,3,†, Arjun Rustagi4,†, Henry Cousins1,5,‡, James Zengel6,‡, Yinglong Guo7,‡, Taryn Hall7,‡, Aimee Beck4, Luke Tso7, EliF Tokar ErdemiC7, Kae Tanudtanud7, Sheng Ren7, Kathy Tzy-Hwa Tzeng7, Aaron Wilk4,5, Mengdi Wang8, Jan Carette2,6, Russ Altman2,4,9,*, Catherine A. Blish4,5,10,*, Le Cong1,2,3,* Affiliations: 1Department oF Pathology, StanFord University School oF Medicine, StanFord, CA, USA 2Department oF Genetics, StanFord University School oF Medicine, StanFord, CA, USA 3Cancer Biology Program, StanFord University School oF Medicine, StanFord, CA, USA 4Department oF Medicine, StanFord University School oF Medicine, StanFord, CA, USA 5Medical Scientist Training Program, StanFord University School oF Medicine, StanFord, CA, USA 6Department oF Microbiology and Immunology, StanFord University School oF Medicine, StanFord, CA, USA 7Research and Development at UnitedHealth Group, Minneapolis, MN, USA 8Center For Statistics and Machine Learning, Department oF Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA 9Department oF Bioengineering, StanFord University, StanFord, CA, USA 10Chan Zuckerberg Biohub, San Francisco, CA, USA *Correspondence to: [email protected] (R.K.D.); [email protected] (R.A.); [email protected] (C.A.B.); [email protected] (L.C.) † These authors contributed equally to this work.
    [Show full text]
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Rescue of Motor Coordination by Purkinje Cell-Targeted Restoration of Kv3.3 Channels in Kcnc3-Null Mice Requires Kcnc1
    The Journal of Neuroscience, December 16, 2009 • 29(50):15735–15744 • 15735 Cellular/Molecular Rescue of Motor Coordination by Purkinje Cell-Targeted Restoration of Kv3.3 Channels in Kcnc3-Null Mice Requires Kcnc1 Edward C. Hurlock, Mitali Bose, Ganon Pierce, and Rolf H. Joho Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111 The role of cerebellar Kv3.1 and Kv3.3 channels in motor coordination was examined with an emphasis on the deep cerebellar nuclei (DCN). Kv3 channel subunits encoded by Kcnc genes are distinguished by rapid activation and deactivation kinetics that support high-frequency, narrow action potential firing. Previously we reported that increased lateral deviation while ambulating and slips while traversing a narrow beam of ataxic Kcnc3-null mice were corrected by restoration of Kv3.3 channels specifically to Purkinje cells, whereas Kcnc3-mutant mice additionally lacking one Kcnc1 allele were partially rescued. Here, we report mice lacking all Kcnc1 and Kcnc3 alleles exhibit no such rescue. For Purkinje cell output to reach the rest of the brain it must be conveyed by neurons of the DCN or vestibular nuclei. As Kcnc1, but not Kcnc3, alleles are lost, mutant mice exhibit increasing gait ataxia accompanied by spike broadening and deceleration in DCN neurons, suggesting the facet of coordination rescued by Purkinje-cell-restricted Kv3.3 restoration in mice lacking just Kcnc3 is hypermetria, while gait ataxia emerges when additionally Kcnc1 alleles are lost. Thus, fast repolarization in Purkinje cells appears important for normal movement velocity, whereas DCN neurons are a prime candidate locus where fast repolarization is necessary for normal gait patterning.
    [Show full text]
  • Is the Early Left-Right Axis Like a Plant, a Kidney, Or a Neuron? the Integration of Physiological Signals in Embryonic Asymmetry
    Birth Defects Research (Part C) 78:191–223 (2006) REVIEW Is the Early Left-Right Axis like a Plant, a Kidney, or a Neuron? The Integration of Physiological Signals in Embryonic Asymmetry Michael Levin* Embryonic morphogenesis occurs along three orthogonal axes. While the Developmental noise often patterning of the anterior-posterior and dorsal-ventral axes has been results in pseudorandom character- increasingly well-characterized, the left-right (LR) axis has only relatively istics and minor stochastic devia- recently begun to be understood at the molecular level. The mechanisms tions known as fluctuating asymme- that ensure invariant LR asymmetry of the heart, viscera, and brain involve try (Klingenberg and McIntyre, fundamental aspects of cell biology, biophysics, and evolutionary biology, 1998); however, the most interest- and are important not only for basic science but also for the biomedicine of a wide range of birth defects and human genetic syndromes. The LR axis ing phenomenon is invariant (i.e., links biomolecular chirality to embryonic development and ultimately to consistently biased) differences behavior and cognition, revealing feedback loops and conserved functional between the left and right sides. For modules occurring as widely as plants and mammals. This review focuses brevity, as well as because these on the unique and fascinating physiological aspects of LR patterning in a are likely to be secondary to embry- number of vertebrate and invertebrate species, discusses several profound onic asymmetries, this review mechanistic analogies between biological regulation in diverse systems largely neglects behavioral/sensory (specifically proposing a nonciliary parallel between kidney cells and the LR asymmetries (Harnad, 1977; axis based on subcellular regulation of ion transporter targeting), high- Bisazza et al., 1998).
    [Show full text]
  • The Developmental and Genetic Architecture of the Sexually
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.219840; this version posted July 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: The developmental and genetic architecture of the sexually selected male ornament of 2 swordtails 3 4 Authors: Manfred Schartl1,2, Susanne Kneitz3, Jenny Ormanns3, Cornelia Schmidt3, Jennifer L 5 Anderson4, Angel Amores5, Julian Catchen6, Catherine Wilson5, Dietmar Geiger7, Kang Du1,2, Mateo 6 Garcia-Olazábal8, Sudha Sudaram9, Christoph Winkler9, Rainer Hedrich7, Wesley C Warren10, Ronald 7 Walter2, Axel Meyer11 #, John H Postlethwait5 # 8 9 1Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, 10 Germany 11 2The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State 12 University, San Marcos, Texas, TX 78666, USA 13 3Biochemistry and Cell Biology, Biocenter, University of Wuerzburg, Am Hubland, 97074 14 Wuerzburg, Germany 15 4Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 16 36 Uppsala, Sweden 17 5Institute of Neuroscience, University of Oregon, Eugene, Oregon, OR 97401, USA 18 6Department of Animal Biology, University of Illinois, Urbana, Illlinois, IL 6812, USA 19 7Julius-von-Sachs-Institute for Biosciences, Molecular Plant Physiology and Biophysics, Biocenter, 20 University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany. 21 8Department of
    [Show full text]
  • Changes in Excitability and Ion Channel Expression in Neurons of the Major 2 Pelvic Ganglion in Female Type II Diabetic Mice
    bioRxiv preprint doi: https://doi.org/10.1101/360826; this version posted July 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Changes in excitability and ion channel expression in neurons of the major 2 pelvic ganglion in female type II diabetic mice 3 4 5 Michael Gray1*, Kawasi M. Lett1*, Virginia B. Garcia1, Cindy Kyi1, Kathleen A. Pennington2, Laura C. 6 Schulz2, David J. Schulz1 7 8 1 Division of Biological Sciences, University of Missouri, Columbia, MO USA 65211 9 2 Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, 10 65211, USA. 11 * Denotes equal contribution by these authors 12 13 14 15 Abbreviated Title 16 Changes in parasympathetic neurons in Type II diabetes 17 18 Corresponding Author 19 David J. Schulz, Ph.D. 20 Division of Biological Sciences 21 University of Missouri-Columbia 22 218 LeFevre Hall 23 Columbia, MO 65211 24 Ph 573-882-4067 25 Fax 573-884-5020 26 Email: [email protected] 27 28 29 Acknowledgments 30 This work was funded by a grant from the Missouri Spinal Cord Injuries Research Program (D.J.S.), the 31 Craig H. Neilsen Foundation (D.J.S.), American Diabetes Association Grant 1-14-BS-181 (L.C.S.) and 32 American Heart Association Postdoctoral Fellowship 13POST16910108 (K.A.P.). The authors declare no 33 competing financial interests.
    [Show full text]
  • Gene Expression Evidence for Remodeling of Lateral Hypothalamic Circuitry in Cocaine Addiction
    Gene expression evidence for remodeling of lateral hypothalamic circuitry in cocaine addiction Serge H. Ahmed*†‡, Robert Lutjens*‡§, Lena D. van der Stap*, Dusan Lekic*, Vincenzo Romano-Spica¶, Marisela Moralesʈ, George F. Koob*, Vez Repunte-Canonigo*, and Pietro Paolo Sanna*,** *Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92103; †Laboratoire de Neuropsychobiologie des Desadaptations, Universite´Victor Segalen Bordeaux 2, Centre National de la Recherche Scientifique, Unite´Mixte de Recherche 5541, 33076 Bordeaux, France; ¶Dipartmento di Scienze della Salute, Instituto Universitario di Scienze Motorie, Piazza Lauro De Bosis 15, 00194 Rome, Italy; and ʈBehavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224 Communicated by Floyd E. Bloom, The Scripps Research Institute, La Jolla, CA, May 27, 2005 (received for review December 28, 2004) By using high-density oligonucleotide arrays, we profiled gene model may provide unique clues to the molecular mechanisms expression in reward-related brain regions of rats that developed behind the reward dysfunction that drives the transition to escalated cocaine intake after extended access to cocaine (6 h per compulsive cocaine use. day). Rats allowed restricted daily access to cocaine (only 1 h) that By using high-density oligonucleotide arrays, we profiled gene displayed a stable level of cocaine intake and cocaine naive rats expression changes in several reward-related brain regions in LgA were used for controls. Four analysis methods were compared: rats in comparison with ShA rats and cocaine naive controls. Affymetrix MICROARRAY SUITE 4 and MICROARRAY SUITE 5, which use Results were extensively validated by RT-PCR in individual animals perfect-match-minus-mismatch models, and DCHIP and RMA, which from an independent replication of the experiment.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]