Diagnosing Gastric Helicobacter Infections in Dogs and Cats

Total Page:16

File Type:pdf, Size:1020Kb

Diagnosing Gastric Helicobacter Infections in Dogs and Cats Article #4 CE Diagnosing Gastric Helicobacter Infections in Dogs and Cats Michael S. Leib, DVM, MS, DACVIM Robert B. Duncan, DVM, PhD, DACVP Virginia–Maryland Regional College of Veterinary Medicine (Virginia Tech) ABSTRACT: Helicobacter spp are commonly identified in the stomachs of dogs and cats. The role of these bacteria in the pathogenesis of gastritis and chronic vomiting is not presently known. Spiral bacteria can be easily identified by histologic assessment or rapid urease testing of gastric biopsy samples or by evaluating gastric brush cytology specimens. Other diagnostic tests have been conducted in humans and experimentally in dogs and cats.This article reviews the procedures as well as advantages and disadvantages of avail- able diagnostic tests for gastric Helicobacter spp in dogs and cats. piral bacteria were identified in the stom- This article describes the common methods of achs of humans and animals in the late identifying spiral bacteria in the stomachs of 1800s.1 However, it was not until the early dogs and cats. S 2 1980s that Warren and Marshall proposed a Helicobacter spp are gram-negative, micro- relationship between Helicobacter pylori and aerophilic, motile, and curved or spiral bacteria gastric disease in humans.3 Soon after, studies with multiple terminal flagella.12,13 They contain in dogs and cats clearly demonstrated that spi- large quantities of the enzyme urease, which ral bacteria were commonly found in the stom- results in production of ammonia and bicarbon- achs of clinically normal dogs and cats as well ate from urea. This alters the pH surrounding as dogs and cats with signs of gastrointestinal the bacteria and helps them colonize the acidic disease.4–11 However, a direct causal relation- environment of the stomach.12,14 ship between spiral bacteria and gastric disease More than 30 Helicobacter spp have been has not been established in dogs or cats. identified in humans and animals.13 In addition Although the potential pathogenic role of to the species found in the stomach, others have Helicobacter spp in dogs and cats is being inves- been identified in the intestine and liver.15,16 H. tigated, we routinely determine whether the pylori is the most common gastric species in organisms are present in all dogs and cats with humans. It has been shown to be a major cause signs of chronic vomiting. A percentage of of gastritis and peptic ulcers as well as to these patients have been treated for Helicobacter increase the risk of gastric cancer.17,18 Infection spp, and some have responded favorably. We rates in humans can approach 100% in develop- want to emphasize that a thorough diagnostic ing countries and 25% to 60% in developed evaluation to search for other countries.19 Infection is usually acquired in Send comments/questions via email potential causes of vomiting childhood and most often persists for life. Most [email protected], should always be conducted infected humans remain asymptomatic.20 How- fax 800-556-3288, or web before considering Helicobac- ever, peptic ulcers may develop in 10% and gas- CompendiumVet.com ter spp to be etiologic agents. tric cancer in 1% to 2% of those infected. March 2005 221 COMPENDIUM 222 CE Diagnosing Gastric Helicobacter Infections in Dogs and Cats Although H. pylori has been identified in research and serology.14,38–43 Although noninvasive methods as colony cats,21–23 infection of pet dogs and cats with other well as polymerase chain reaction testing, scanning elec- species occurs most commonly. Most Helicobacter spp tron microscopy, and culture of gastric biopsy specimens commonly found in the stomachs of dogs and cats are have been investigated in dogs and cats,8,9,21,23,27,44–50 they larger than H. pylori (1.5 to 3 µm).13 Large spiral bacte- are not routinely available to practitioners. Presently, ria (4 to 10 µm) identified in the stomachs of dogs were clinical diagnosis of Helicobacter infection in dogs and initially called Gastrospirillum hominis. They were later cats requires endoscopic examination or exploratory reclassified as Helicobacter heilmannii.10,12 Other large celiotomy. Spiral bacteria can be identified in gastric gastric spiral bacteria such as Helicobacter felis, Helicobac- biopsy or brush cytology specimens or indirectly by ter bizzozeronii, and Helicobacter salomonis have been rapid urease testing of gastric mucosal samples.5–9,51 identified and are indistinguishable from H. heilmannii Results of histologic evaluation of biopsy samples using routine light microscopy.24–26 Multiple species can require 24 to 72 hours. Results of gastric brush cytology be present in an individual animal.27 and rapid urease testing are available much sooner. Besides the potential role of Helicobacter spp in the pathogenesis of gastritis and chronic vomiting, zoonotic BRUSH CYTOLOGY potential is another reason to identify these species in dogs Gastric brush cytology is the least expensive and most and cats. Although most evidence suggests that the practical diagnostic method and has the quickest turn- zoonotic potential is very low, some evidence supports around time. After an endoscopic examination has been potential zoonotic transmission. H. heilmannii is a rare completed and biopsy samples from the duodenum and cause of gastritis in humans, accounting for approximately stomach have been collected, a brush cytologic specimen Helicobacter spp may cause or contribute to gastritis and vomiting in dogs and cats. 0.1% of cases.28 An epidemiologic survey of humans with can be collected. A guarded cytology brush should be H. heilmannii gastritis showed that contact with dogs and passed through the biopsy channel of the endoscope into cats was a significant risk of infection.28 In addition, there the gastric body along the greater curvature. The cytol- was an association between H. Heilmannii gastritis and ogy brush should be extended from the sheath and gen- gastric lymphoma, although this could be coincidental.29 tly rubbed along the mucosa from the antrum toward the H. pylori has been identified in research colony cats, fundus along the greater curvature. Hemorrhagic areas demonstrating that cats could serve as a reservoir.21,22 Sev- associated with previous biopsy sites should be avoided. eral studies have identified cat ownership as a risk factor The brush should be retracted into the protective sheath for H. pylori infection in humans.30,31 However, other stud- and withdrawn from the endoscope. The brush should ies have shown that contact with dogs or cats is not a risk be extended from the sheath and gently rubbed across factor for H. pylori infection.32–37 Although the potential several glass microscope slides, which are air-dried and for zoonotic transmission appears slight, until this issue is stained with a rapid Wright’s stain. The slide should be conclusively resolved, it seems prudent to determine magnified ×100, immersed in oil, and examined. Areas whether Helicobacter spp are present in dogs and cats dur- with numerous epithelial cells and large amounts of ing diagnostic evaluation of gastric disorders. mucus should initially be viewed. If present, spiral bacte- Invasive methods of diagnosing Helicobacter infection ria should be easily seen. They are usually at least as long in humans include bacterial culture, routine microscopic as the diameter of an erythrocyte, and their classic spiral or ultrastructural examination, polymerase chain reac- shape is obvious (Figure 1). The number of spiral bacte- tion testing, and rapid urease testing of gastric mucosal ria can be highly variable (i.e., from one in every several biopsy specimens, which are usually obtained via fields to massive numbers in most fields). We examine at endoscopy.14,38–40 Noninvasive methods of diagnosis least 10 oil-immersion fields on two slides before the include urea breath testing, fecal antigen determination, specimen is considered negative. Unlike diagnostic tests COMPENDIUM March 2005 Diagnosing Gastric Helicobacter Infections in Dogs and Cats CE 223 Figure 1. Gastric brush cytology specimens stained with Dip Quick Stain Solution (Jorgensen Laboratories, Loveland, CO). 10 µm 10 µm Large numbers of spiral bacteria from a cat. Cellular debris is Higher magnification (of image on left) showing the spiral nature scattered throughout. of the bacteria. that involve using a single (or several) small biopsy sam- ple(s), brush cytology gathers surface mucus and epithe- lial cells from a much larger area, increasing the chance of identifying bacteria. Brush cytology was found to be more sensitive than urease testing or histopathologic examination of gastric tissue in identifying Helicobacter organisms in dogs and cats.6,51,52 RAPID UREASE TEST The rapid urease test detects the presence of bacterial urease produced by Helicobacter spp in a biopsy sam- ple.13,14 We use the CLOtest (Ballard Medical Products, Draper, UT; Figure 2), which is commercially available. Individual tests cost approximately $6. The test consists of agar gel with urea and a pH indicator (i.e., phenol red) in a small, plastic well. Tests should be kept refrig- erated before use. To conduct the test, a biopsy sample Figure 2. Negative and positive results of a CLOtest. obtained from the angularis incisura of the stomach should be pushed into the gel. The test should be main- tained at room temperature and examined frequently for to 30 minutes.7 If the color of the gel has not changed 24 hours. If bacterial urease is present, urea will be within 24 hours, the result should be interpreted as neg- hydrolyzed to ammonia, changing the pH of the gel. ative. A CLOtest with negative results can be reused The gel should turn from yellow to magenta. The rate at within a short period if it is kept at room temperature.53 which the gel changes color is proportional to the num- Urease tests can also be made by placing 10% ber of Helicobacter organisms present.
Recommended publications
  • Food Or Beverage Product, Or Probiotic Composition, Comprising Lactobacillus Johnsonii 456
    (19) TZZ¥¥¥ _T (11) EP 3 536 328 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 11.09.2019 Bulletin 2019/37 A61K 35/74 (2015.01) A61K 35/66 (2015.01) A61P 35/00 (2006.01) (21) Application number: 19165418.5 (22) Date of filing: 19.02.2014 (84) Designated Contracting States: • SCHIESTL, Robert, H. AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Encino, CA California 91436 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • RELIENE, Ramune PL PT RO RS SE SI SK SM TR Los Angeles, CA California 90024 (US) • BORNEMAN, James (30) Priority: 22.02.2013 US 201361956186 P Riverside, CA California 92506 (US) 26.11.2013 US 201361909242 P • PRESLEY, Laura, L. Santa Maria, CA California 93458 (US) (62) Document number(s) of the earlier application(s) in • BRAUN, Jonathan accordance with Art. 76 EPC: Tarzana, CA California 91356 (US) 14753847.4 / 2 958 575 (74) Representative: Müller-Boré & Partner (71) Applicant: The Regents of the University of Patentanwälte PartG mbB California Friedenheimer Brücke 21 Oakland, CA 94607 (US) 80639 München (DE) (72) Inventors: Remarks: • YAMAMOTO, Mitsuko, L. This application was filed on 27-03-2019 as a Alameda, CA California 94502 (US) divisional application to the application mentioned under INID code 62. (54) FOOD OR BEVERAGE PRODUCT, OR PROBIOTIC COMPOSITION, COMPRISING LACTOBACILLUS JOHNSONII 456 (57) The present invention relates to food products, beverage products and probiotic compositions comprising Lacto- bacillus johnsonii 456. EP 3 536 328 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 536 328 A1 Description CROSS-REFERENCE TO RELATED APPLICATIONS 5 [0001] This application claims the benefit of U.S.
    [Show full text]
  • Review: Other Helicobacter Species
    DOI: 10.1111/hel.12645 SUPPLEMENT ARTICLE Review: Other Helicobacter species Armelle Ménard1 | Annemieke Smet2 1INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université Abstract de Bordeaux, Bordeaux, France This article is a review of the most important, accessible, and relevant literature pub‐ 2 Laboratorium of Experimental lished between April 2018 and April 2019 in the field of Helicobacter species other than Medicine and Pediatrics, Department of Translational Research in Immunology and Helicobacter pylori. The initial part of the review covers new insights regarding the pres‐ Inflammation, Faculty of Medicine and ence of gastric and enterohepatic non‐H. pylori Helicobacter species (NHPH) in humans Health Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium and animals, while the subsequent section focuses on the progress in our understand‐ ing of the pathogenicity and evolution of these species. Over the last year, relatively Correspondence Armelle Ménard, Laboratoire de few cases of gastric NHPH infections in humans were published, with most NHPH in‐ Bactériologie, INSERM U1053, Campus de fections being attributed to enterohepatic Helicobacters. A novel species, designated Carreire, Université de Bordeaux, Bâtiment 2B RDC ‐ Case 76, 146 rue Léo Saignat, “Helicobacter caesarodunensis,” was isolated from the blood of a febrile patient and F33076 Bordeaux, France. numerous cases of human Helicobacter cinaedi infections underlined this species as a Email: Armelle.Menard@u‐bordeaux.fr true emerging pathogen. With regard to NHPH in animals, canine/feline gastric NHPH cause little or no harm in their natural host; however they can become opportunistic when translocated to the hepatobiliary tract. The role of enterohepatic Helicobacter species in colorectal tumors in pets has also been highlighted.
    [Show full text]
  • Genomics of Helicobacter Species 91
    Genomics of Helicobacter Species 91 6 Genomics of Helicobacter Species Zhongming Ge and David B. Schauer Summary Helicobacter pylori was the first bacterial species to have the genome of two independent strains completely sequenced. Infection with this pathogen, which may be the most frequent bacterial infec- tion of humanity, causes peptic ulcer disease and gastric cancer. Other Helicobacter species are emerging as causes of infection, inflammation, and cancer in the intestine, liver, and biliary tract, although the true prevalence of these enterohepatic Helicobacter species in humans is not yet known. The murine pathogen Helicobacter hepaticus was the first enterohepatic Helicobacter species to have its genome completely sequenced. Here, we consider functional genomics of the genus Helico- bacter, the comparative genomics of the genus Helicobacter, and the related genera Campylobacter and Wolinella. Key Words: Cytotoxin-associated gene; H-Proteobacteria; gastric cancer; genomic evolution; genomic island; hepatobiliary; peptic ulcer disease; type IV secretion system. 1. Introduction The genus Helicobacter belongs to the family Helicobacteriaceae, order Campylo- bacterales, and class H-Proteobacteria, which is also known as the H subdivision of the phylum Proteobacteria. The H-Proteobacteria comprise of a relatively small and recently recognized line of descent within this extremely large and phenotypically diverse phy- lum. Other genera that colonize and/or infect humans and animals include Campylobac- ter, Arcobacter, and Wolinella. These organisms are all microaerophilic, chemoorgano- trophic, nonsaccharolytic, spiral shaped or curved, and motile with a corkscrew-like motion by means of polar flagella. Increasingly, free living H-Proteobacteria are being recognized in a wide range of environmental niches, including seawater, marine sedi- ments, deep-sea hydrothermal vents, and even as symbionts of shrimp and tubeworms in these environments.
    [Show full text]
  • Evolutionary Dynamics of the Vapd Gene in Helicobacter Pylori and Its
    ISSN Online: 2372-0956 Symbiosis www.symbiosisonlinepublishing.com Research Article SOJ Microbiology & Infectious Diseases Open Access Evolutionary dynamics of the vapD gene in Helicobacter pylori and its wide distribution among bacterial phyla Gabriela Delgado-Sapién1, Rene Cerritos-Flores2, Alejandro Flores-Alanis1, José L Méndez1, Alejandro Cravioto1, Rosario Morales-Espinosa1* *1Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México 04510. 2Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México 04510. Received: 12th August , 2020; Accepted: 15th November 2020 ; Published: 03rd December, 2020 *Corresponding author: RosarioMorales-Espinosa, PhD, MD, Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasi- tología. Universidad Nacional Autónoma de México. Avenida Universidad 3000, Colonia Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México City, México.Tel.: +525 5523 2135; Fax: +525 5623 2114 E-mail: [email protected] factors [1,2,3]. Genetic diversity is seen among H. pylori strains Abstract from different origins and ethnic populations, as well as within The vapD gene is present in microorganisms from different phyla H. pylori populations within a single stomach. It is well known and encodes for the virulence-associated protein D (VapD). In some that H. pylori is a highly recombinant microorganism [4-8] and microorganisms, it has been suggested that vapD participates in either a natural transformant, which explains its genomic variability protecting the bacteria from respiratory burst within the macrophage and diversity that favour a better adaptive capacity and its or in facilitating the persistence of the microorganism within the permanence on the gastric mucosa for decades.
    [Show full text]
  • The Role of Helicobacter Spp. Infection in Domestic Animals
    Chapter 2 The Role of Helicobacter spp. Infection in Domestic Animals Achariya Sailasuta and Worapat Prachasilchai Additional information is available at the end of the chapter http://dx.doi.org/10.5772/53054 1. Introduction 1.1. Overview and pathogenesis The discovery of the association of Helicobacter pylori with chronic gastritis, peptic ulcers and gastric neoplasia, mucosa-associated lymphoid tissue-type lymphoma and carcinoma, has led to fundamental changes in the understanding of gastric disease in humans. Some hu‐ mans with H. pylori infection develop only mild, asymptomatic gastritis. Whether more se‐ vere disease develops thought to be influenced by individual host factors and pathogenicity of the bacteria involved. The odd of developing symptomatic H. pylori infection varies by geographic location and age. Different strains of H. pylori have recently been identified. Therefore, H. pylori should be considered a population of closely related but genetically het‐ erogenous bacteria of different genotypes and virulence. A gastric spiral bacteria of superkingdom bacteria, phylum proteobacteria, subphylum delta/epsilon subdivisions, class epsilonproteobacteria, order campylobacter, family helico‐ bacteraceae, genus Helicobacter spp. is gram-negative, spiral-shaped bacteria. At least 13 species have been reported, and most are suspected or proven gastric or hepatic patho‐ gens. Helicobacter spp. have been reported in humans: mainly H. pylori, nonhuman pri‐ mates: H. nemestrinae, cats and dogs various species, including H. pylori, H. felis, H. salomonis, H. rappini, H. heilmannii, and H. bizzozeronii, pigs: H. heilmannii, ferrets: H. muste‐ lae, and cheetahs: H. acinonys. More recently we have learned that nearly all mammmals harbor their own species of Helicobacter infection.
    [Show full text]
  • The Following Pages Constitute the Final, Accepted and Revised Manuscript of the Article
    The following pages constitute the final, accepted and revised manuscript of the article: Nilsson, Hans-Olof and Pietroiusti, Antonio and Gabrielli, Maurizio and Zocco, Maria Assunta and Gasbarrini, Giovanni and Gasbarrini, Antonio “Helicobacter pylori and Extragastric Diseases - Other Helicobacters” Helicobacter. 2005;10 Suppl 1:54-65. Publisher: Blackwell Use of alternative location to go to the published version of the article requires journal subscription. Alternative location: http://dx.doi.org/10.1111/j.1523-5378.2005.00334.x HELICOBACTER PYLORI AND EXTRAGASTRIC DISEASES - OTHER HELICOBACTERS Hans-Olof Nilsson, Antonio Pietroiusti*, Maurizio Gabrielli#, Maria Assunta Zocco#, Giovanni Gasbarrini#, Antonio Gasbarrini# Department of Laboratory Medicine, Lund University, Lund, Sweden *Medical Semiology and Methodology, Department of Internal Medicine, Tor Vergata University, Rome, Italy #Department of Internal Medicine, Catholic University the Sacred Heart, Gemelli Hospital Rome, Italy Correspondence and reprints request to: Antonio Gasbarrini, MD Istituto di Patologia Speciale Medica Universita’ Cattolica del Sacro Cuore Policlinico Gemelli, Largo Gemelli 8, 00168 Rome, ITALY Telephone: 39-335-6873562 39-6-30154294 FAX: 39-6-35502775 E-mail: [email protected] 2 ABSTRACT The involvement of Helicobacter pylori in the pathogenesis of extragastric diseases continues to be an interesting topic in the field of Helicobacter-related pathology. Although conflicting findings have been reported for most of the disorders, a role of H. pylori seems to be important especially for the development of cardiovascular and hematologic disorders. Previously isolated human and animal Helicobacter sp. flexispira and ′Helicobacter heilmannii′ strains have been validated using polyphasic taxonomy. A novel enterohepatic helicobacter has been isolated from mastomys and mice, adding to the list of helicobacters that colonize the liver.
    [Show full text]
  • Appendix a Bacteria
    Appendix A Complete list of 594 pathogens identified in canines categorized by the following taxonomical groups: bacteria, ectoparasites, fungi, helminths, protozoa, rickettsia and viruses. Pathogens categorized as zoonotic/sapronotic/anthroponotic have been bolded; sapronoses are specifically denoted by a ❖. If the dog is involved in transmission, maintenance or detection of the pathogen it has been further underlined. Of these, if the pathogen is reported in dogs in Canada (Tier 1) it has been denoted by an *. If the pathogen is reported in Canada but canine-specific reports are lacking (Tier 2) it is marked with a C (see also Appendix C). Finally, if the pathogen has the potential to occur in Canada (Tier 3) it is marked by a D (see also Appendix D). Bacteria Brachyspira canis Enterococcus casseliflavus Acholeplasma laidlawii Brachyspira intermedia Enterococcus faecalis C Acinetobacter baumannii Brachyspira pilosicoli C Enterococcus faecium* Actinobacillus Brachyspira pulli Enterococcus gallinarum C C Brevibacterium spp. Enterococcus hirae actinomycetemcomitans D Actinobacillus lignieresii Brucella abortus Enterococcus malodoratus Actinomyces bovis Brucella canis* Enterococcus spp.* Actinomyces bowdenii Brucella suis Erysipelothrix rhusiopathiae C Actinomyces canis Burkholderia mallei Erysipelothrix tonsillarum Actinomyces catuli Burkholderia pseudomallei❖ serovar 7 Actinomyces coleocanis Campylobacter coli* Escherichia coli (EHEC, EPEC, Actinomyces hordeovulneris Campylobacter gracilis AIEC, UPEC, NTEC, Actinomyces hyovaginalis Campylobacter
    [Show full text]
  • Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
    GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs.
    [Show full text]
  • Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A.
    [Show full text]
  • Land Use and Land Cover Change: the Effects of Woody Plant Encroachment and Prescribed Fire on Biodiversity and Ecosystem Carbon
    LAND USE AND LAND COVER CHANGE: THE EFFECTS OF WOODY PLANT ENCROACHMENT AND PRESCRIBED FIRE ON BIODIVERSITY AND ECOSYSTEM CARBON DYNAMICS IN A SOUTHERN GREAT PLAINS MIXED GRASS SAVANNA A Dissertation by EMILY BROOKE HOLLISTER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major Subject: Molecular and Environmental Plant Sciences LAND USE AND LAND COVER CHANGE: THE EFFECTS OF WOODY PLANT ENCROACHMENT AND PRESCRIBED FIRE ON BIODIVERSITY AND ECOSYSTEM CARBON DYNAMICS IN A SOUTHERN GREAT PLAINS MIXED GRASS SAVANNA A Dissertation by EMILY BROOKE HOLLISTER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Thomas W. Boutton Committee Members, R. James Ansley David D. Briske Christopher W. Schadt David A. Zuberer Chair of the Molecular and Environmental Plant Sciences Faculty, Jean H. Gould May 2008 Major Subject: Molecular and Environmental Plant Sciences iii ABSTRACT Land Use and Land Cover Change: The Effects of Woody Plant Encroachment and Prescribed Fire on Biodiversity and Ecosystem Carbon Dynamics in a Southern Great Plains Mixed Grass Savanna. (May 2008) Emily Brooke Hollister, B.A., Wells College Chair of Advisory Committee: Dr. Thomas W. Boutton In the southern Great Plains, the encroachment of grassland ecosystems by mesquite (Prosopis glandulosa), is widespread, and prescribed fire is commonly used in its control. Despite this, substantial quantitative information concerning their influences on the community composition, functional dynamics, and soil organic carbon (SOC) storage potential of grassland ecosystems is lacking.
    [Show full text]
  • Tese Adelina Margarida Parente
    Defences of Helicobacter species against host antimicrobials Adelina Margarida Lima Pereira Rodrigues Parente Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa Oeiras, June, 2016 Defences of Helicobacter species against host antimicrobials Adelina Margarida Lima Pereira Rodrigues Parente Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa Oeiras, June 2016 From left to right: Mónica Oleastro (4th oponente), Gabriel Martins (3 rd opponent), Marta Justino (Co-supervisor) , Miguel Viveiros (2 nd opponent), Adelina Margarida Parente , Lígia Saraiva (supervisor) , Cecília Arraiano (president of the jury), and Maria do Céu Figueiredo (1 st opponent). nd 22 June 2016 Second edition, June 2016 Molecular Mechanisms of Pathogen Resistance Laboratory Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa 2780-157 Portugal ii “Science knows no country, because knowledge belongs to humanity, and is the torch which illuminates the world” Louis Pasteur iii iv Acknowledgments Firstly, I would like to express my gratitude to the person that allowed me the opportunity to perform a PhD and who also contributed the most for my accomplishment of this thesis by constantly supporting me during these last years. I thus thank my supervisor, Dr. Lígia Saraiva , for her permanent availability whenever I needed guidance, for all the excellent ideas and advices related to my practical work and lastly for all the patience and enthusiasm! I also thank Dr. Lígia for her rigour and enormous help in the writing of this thesis.
    [Show full text]
  • Helicobacter Pylori Gastric Helicobacters in Iranian Dyspeptic Patients Shakiba Shafaie1, Hami Kaboosi1* and Fatemeh Peyravii Ghadikolaii2
    Shafaie et al. BMC Gastroenterology (2020) 20:190 https://doi.org/10.1186/s12876-020-01331-x RESEARCH ARTICLE Open Access Prevalence of non Helicobacter pylori gastric Helicobacters in Iranian dyspeptic patients Shakiba Shafaie1, Hami Kaboosi1* and Fatemeh Peyravii Ghadikolaii2 Abstract Background: Non Helicobacter pylori gastric Helicobacters (NHPGHs) are associated with a range of upper gastrointestinal symptoms, histologic and endoscopic findings. For the first time in Iran, we performed a cross- sectional study in order to determine the prevalence of five species of NHPGHs in patients presenting with dyspepsia. Methods: The participants were divided into H. pylori-infected and NHPGH-infected groups, based on the rapid urease test, histological analysis of biopsies, and PCR assay of ureA, ureB,andureAB genes. The study included 428 gastric biopsies form dyspeptic patients, who did not receive any treatment for H. pylori.Thesampleswere collected and sent to the laboratory within two years. H. pylori was identified in 368 samples, which were excluded from the study. Finally, a total of 60 non-H. pylori samples were studied for NHPGH species. Results: The overall frequency of NHPGH species was 10 for H. suis (three duodenal ulcer, three gastritis, and four gastric ulcer samples), 10 for H. felis (one gastritis, three duodenal ulcer, and six gastric ulcer samples), 20 for H. salomonis (four duodenal ulcer, five gastritis, and 11 gastric ulcer samples), 13 for H. heilmannii (three gastritis, five duodenal ulcer, and five gastric ulcer samples), and 7 for H. bizzozeronii (zero gastric ulcer, two duodenal ulcer, and five gastritis samples). Conclusions: Given our evidence about the possibility of involvement of NHPGHs in patients suffering from gastritis and nonexistence of mixed H.
    [Show full text]