Geologic Cross Section A–A' Through the Appalachian Basin From

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Cross Section A–A' Through the Appalachian Basin From Geologic Cross Section A–A′ Through the Appalachian Basin From the Southern Margin of the Ontario Lowlands Province, Genesee County, Western New York, to the Valley and Ridge Province, Lycoming County, North-Central Pennsylvania By Michael H. Trippi, Robert T. Ryder, and Catherine B. Enomoto Pamphlet to accompany Scientific Investigations Map 3425 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Acting Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment— visit https://www.usgs.gov or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Trippi, M.H., Ryder, R.T., and Enomoto, C.B., 2019, Geologic cross section A–A′ through the Appalachian basin from the southern margin of the Ontario Lowlands province, Genesee County, western New York, to the Valley and Ridge province, Lycoming County, north-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3425, 2 sheets, 74-p. pamphlet, https://doi.org/10.3133/sim3425. ISSN 2329-1311 (print) ISSN 2329-132X (online) ISBN 978-1-4113-4284-2 ii Contents Introduction......................................................................................................................................................................................................................................1 Construction of the Cross Section ...............................................................................................................................................................................................1 Structural Framework ....................................................................................................................................................................................................................4 Basement Rocks and Associated Structures ...................................................................................................................................................................4 Thin-Skinned Structures .......................................................................................................................................................................................................6 Stratigraphic Framework ...............................................................................................................................................................................................................7 Lower Cambrian to Upper Ordovician Siliciclastic and Carbonate Strata ...................................................................................................................7 Upper Ordovician to Lower Silurian Siliciclastic Strata ................................................................................................................................................10 Lower Silurian to Middle Devonian Carbonate and Evaporite Strata .........................................................................................................................11 Middle Devonian to Lower Mississippian Siliciclastic Strata ......................................................................................................................................13 Middle and Upper Mississippian and Pennsylvanian Siliciclastic Strata ..................................................................................................................15 Acknowledgments ........................................................................................................................................................................................................................15 References Cited...........................................................................................................................................................................................................................15 Appendix 1. Table Summarizing Stratigraphic Units and Depths of Stratigraphic Units for Drill Holes 1–10 in Cross Section A–A′ ....................27 Appendix 2. Scale, Units, and Depths for Gamma-Ray Logging Runs ..............................................................................................................................73 Figures [On map sheets] 1. Map showing the location of cross section A–A′ with political and geographic features in New York and Pennsylvania 2. Map showing the location of cross section A–A′ with surface and subsurface structural features in New York and Pennsylvania 3. Correlation chart of Proterozoic and Paleozoic rocks along cross section A–A′ in New York and Pennsylvania Tables Table 1. Drill holes used to construct cross section A–A’ ....................................................................................................................................................2 iii Conversion Factors Multiply By To obtain Length foot (ft) 0.3048 meter (m) meter (m) 3.281 foot (ft) mile (mi) 1.609 kilometer (km) kilometer (km) 0.6214 mile (mi) Geologic Cross Section A–A′ Through the Appalachian Basin from the Southern Margin of the Ontario Lowlands Province, Genesee County, Western New York, to the Valley and Ridge Province, Lycoming County, North-Central Pennsylvania By Michael H. Trippi, Robert T. Ryder, and Catherine B. Enomoto Introduction (1990), de Witt and others (1993), Hettinger (2001), of carbon dioxide (for example, Smith and others, Hickman and others (2006), Riley and others (2006), 2002; Lucier and others, 2006). Geologic cross section A–A′ is the fifth in a series Smith and Leone (2010), and Mount (2014). Although of cross sections constructed by the U.S. Geological some of these other cross sections show more structural Survey (USGS) to document and improve understand- and stratigraphic detail, they are of more limited extent Construction of the Cross Section ing of the geologic framework and petroleum systems geographically and stratigraphically. of the Appalachian basin. Cross section A–A′ provides a Cross section A–A′ contains much information Cross section A–A′ is oriented northwest to south- regional view of the structural and stratigraphic frame- that is useful for evaluating energy resources in the east, approximately normal to the structural grain of the work of the Appalachian basin from the southern mar- Appalachian basin. Although the Appalachian basin region. Several abrupt bends in the section, however, gin of the Ontario Lowlands province in western New petroleum systems identified by Swezey (2002) and are required to accommodate key drill holes that pen- York, across the Allegheny Plateau province of central Milici and others (2003) are not shown on the cross etrate a thick section of Paleozoic sedimentary rocks. New York and north-central Pennsylvania, to the Valley section, many of their key elements (such as source Cross section A–A′ is based on geological and and Ridge province in north-central Pennsylvania, a dis- rocks, reservoir rocks, seals, and traps) can be inferred geophysical data from 10 deep drill holes (table 1), tance of approximately 176 miles (mi) (figs. 1 and 2). from lithologic units, unconformities, and geologic 3 of which penetrate the Paleozoic sedimentary rocks This cross section is a companion to cross sections structures shown on the cross section. Other aspects of the basin and bottom in Mesoproterozoic crystal- E–E′, D–D′, C–C′, and I–I′ (Ryder and others, 2008; of petroleum systems (such as the timing of petroleum line basement rocks of the Grenville province (Rankin Ryder and others, 2009; Ryder and others, 2012; Ryder generation and petroleum migration pathways) may be and others, 1993). The locations of the tops of each and others, 2015) that are located approximately 100 to evaluated by burial history, thermal history, and fluid stratigraphic unit penetrated in the 10 deep drill holes 500 mi to the southwest (see index map, sheet 2). Cross flow models on the basis of what is shown on the cross were converted from depth in feet (ft) below the kelly section A–A′ complements earlier geologic or strati- section. In addition, cross section A–A′ may be used bushing (KB) to depth below ground level (GL), and graphic cross sections through the central New York as a reconnaissance tool to identify plausible geologic then were plotted on the cross section with respect to and north-central Pennsylvania part of the Appalachian structures and strata for the subsurface storage of liquid mean sea level (MSL). Detailed depth information for basin by Wagner (1966), Colton (1970), Faill and others waste (for example, Colton, 1961; Lloyd and Reid, the tops of the stratigraphic units in each drill hole is (1977), Faill (1979), Berg and others (1980), Harper 1990; Clark and others, 2005) or for the sequestration reported in appendix 1. 2 Geologic Cross Section A–A′ Through the Appalachian Basin Table 1. Drill holes used to construct cross section
Recommended publications
  • The La Coulee Formation, a New Post-Acadian Continental Clastic Unit Bearing Groundwater Calcretes, Gaspe Peninsula, Quebec
    Document generated on 09/23/2021 3:19 p.m. Atlantic Geology The La Coulee Formation, a new post-Acadian continental clastic unit bearing groundwater calcretes, Gaspe Peninsula, Quebec Pierre Jutras, Gilbert Prichonnet and Peter H. von Bitter Volume 35, Number 2, 1999 Article abstract A I km2 erosional remnant of the La Coulee Formation, a previously URI: https://id.erudit.org/iderudit/ageo35_2art03 unrecognized stratigraphic unit, has been studied in the Perce area of the Gaspd Peninsula. It unconformably overlies folded Cambrian to Devonian See table of contents rocks and is unconformably overlain by the mid-Carboniferous Bonaventure Fonnation. The erosional remnant includes the lowest 60 m of this newly identified formation of unknown thickness. Original sedimentary fades are Publisher(s) limited to 50 m of breccia debris flows passing stratigraphically upward into 10m of conglomeratic debris flows. Groundwater calcrete formation has Atlantic Geoscience Society partially or completely transformed the lowest 30 m of the sequence. The depositional environment is interpreted as being related to a proximal ISSN continental alluvial fan. The nearby presence of a saline body of water is inferred to account for thick and massive groundwater calcrete formation and 0843-5561 (print) water-saturated debris flows in a relatively arid climatic context Most of the 1718-7885 (digital) formation was eroded prior to deposition of the Bonaventure Formation. However, the basal groundwater calcretes were more widely preserved. They Explore this journal underlie the Bonaventure Formation in most of the Perce1 area and in the Saint-Elzear area, close to a hundred kilometres to the southwest. Post-sedimentary faulting has affected both the La Coulee and Bonaventure Cite this article formations.
    [Show full text]
  • Lexington Quadrangle Virginia
    COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES GEOLOGY OF THE LEXINGTON QUADRANGLE VIRGINIA KENNETH F. BICK REPORT OF INVESTIGATIONS I VIRGINIA DIVISION OF MINERAL RESOURCES Jomes L. Colver Commissioner of Minerol Resources ond Stote Geologist CHARLOTTESVI LLE, VI RGI N IA 1960 COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES GEOLOGY OF THE LEXINGTON QUADRANGLE VIRGINIA KENNETH F. BICK REPORT OF INVESTIGATIONS I VIRGINIA DIVISION OF MINERAL RESOURCES Jomes L. Colver Commissioner of Minerol Resources ond Stote Geologist CHARLOTTESVI LLE, VI RGI N IA 1960 Couuowwoer,rn op Vtncrwre DopenrupNr op Puncnesrs exo Supptv Rrculroxn 1960 DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT Richmond. Virginia MenvrN M. SurHnnr,eNn, Director BOARD Vrcron W. Stnwenr, Petersburg, Chairtnan G. Ar,vrn MessnNnunc, Hampton, Viee'Chairman A. Pr,urvrnr BmnNn, Orange C. S. Cenrnn, Bristol ANpnpw A. Fenr,pv, Danville WonrnrrvcroN FauLKNEn, Glasgow SvoNpv F. Slter,r,, Roanoke EnwrN H. Wrr,r,, Richmond Wrr,r,renr P. Wooor,nv. Norfolk CONTENTS Pece Abstract. '"*i"#:;;;;: . : ::: , : ::.:::::::::..::::::. :.::.::::::: ::,r Z Geography 8 Purpose. 4 Previous Work. Present Work and Acknowledgements. 5 Geologic Formations. 6 Introduction. 6 Precambrian System. 6 Pedlar formation 6 Precambrian and Cambrian Systems. 6 Discussion. 6 Swift Run formation 8 Catoctin greenstone. I Unieoiformation...... ......... I Hampton(Harpers)formation. .......... I Erwin (Antietam) quartzite. Cambrian System . I0 Shady (Tomstown) dolomite 10 Rome (Waynesboro) formation.... ll Elbrook formation. 12 Conococheague limestone. l3 Ordovician System. ......., 14 Chepultepeclimestone. .......... 14 Beekmantown formatron. 14 New Market limestone. 15 Lincolnshire limestone. 16 Edinburg formation. 16 Martinsburg shale... 17 SilurianSystem. ......... 18 Clinchsandstone..... .......... 18 Clinton formation.
    [Show full text]
  • Geologic Cross Section C–C' Through the Appalachian Basin from Erie
    Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p.
    [Show full text]
  • PALEOZOIC STRATIGRAPHIC COLUMN of Central Pennsylvania
    PALEOZOIC STRATIGRAPHIC COLUMN of Central Pennsylvania _____________________________________________________________________*Ridge Makers System & Series Formation and Members General Description Llewellyn Formation Cycles of conglomerate or sandstone; underclay coal, shale Pnn. L & N 2000’+ Pottsville Formation* Cycles of conglomerate or sandstone; underclay coal, shale L & M 1400’ Mauch Chunk Grayish red and gray shale M 5000’ Miss. Pocono* Mount Carbon Gray to buff, medium grained, cross-bedded sandstone 1600’ 940’ Beckville Gray to buff, medium grained, cross-bedded sandstone Lower 225’ Spechty Kopf Gray, fine and medium grained sandstone conglomerate 435’ near middle and base Catskill Duncannon Asymmetric, upward-fining fluvial cycles, basal nonred, locally 7250’ 2000’ conglomeratic sandstone is overlain by grayish red sandstone and siltstones Sherman Creek Interbedded grayish red claystone and fine grained, cross- 2400’ bedded sandstone Upper Irish Valley Interbedded, grayish red and olive gray sandstone, siltstone, 2850’ shale, overlain upward-fining cyclic deposits of gray sandstone and red siltstone Trimmers Rock Medium gray siltstone and shale, with fine grained sandstone in 2000’ upper part; graded bedding common Harrell Olive and medium light gray shale 200’ Mahantango Sherman Ridge* Olive gray, fossiliferous, claystone with interbedded fine 1600’ 600’ sandstones which coarsen upward Montebello Olive gray, medium grained, locally conglomeratic, fossiliferous 600’ sandstone, interbedded with siltstone and claystone in upward-
    [Show full text]
  • Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
    82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St.
    [Show full text]
  • Pdf/13/6/2206/3990899/2206.Pdf 2206 by Guest on 23 September 2021 Research Paper
    Research Paper GEOSPHERE Detrital zircons and sediment dispersal in the Appalachian foreland GEOSPHERE; v. 13, no. 6 William A. Thomas1, George E. Gehrels2, Stephen F. Greb3, Gregory C. Nadon4, Aaron M. Satkoski5, and Mariah C. Romero6 1Emeritus, University of Kentucky, and Geological Survey of Alabama, P. O. Box 869999, Tuscaloosa, Alabama 35486-6999, USA doi:10.1130/GES01525.1 2Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA 3Kentucky Geological Survey, University of Kentucky, Lexington, Kentucky 40506-0107, USA 4 12 figures; 3 supplemental files Department of Geological Sciences, Ohio University, Athens, Ohio 45701-2979, USA 5Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706-1692, USA 6Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA CORRESPONDENCE: geowat@uky .edu CITATION: Thomas, W.A., Gehrels, G.E., Greb, S.F., Nadon, G.C., Satkoski, A.M., and Romero, M.C., 2017, Detrital zircons and sediment dispersal in the Appala­ ABSTRACT INTRODUCTION chian foreland: Geosphere, v. 13, no. 6, p. 2206–2230, doi:10.1130/GES01525.1. Seven new detrital-zircon U-Pb age analyses along with a compilation The late Paleozoic Appalachian orogen along eastern North America (Fig. 1) of previously published data from Mississippian–Permian sandstones in the long has been recognized as the dominant source of clastic sediment spread- Received 6 March 2017 Appalachian foreland (total n = 3564) define the provenance of Alleghanian ing cratonward into orogenic foreland basins (e.g., King, 1959; Thomas, 1977) Revision received 10 July 2017 Accepted 27 September 2017 synorogenic clastic wedges, as well as characterize the detritus available to and beyond, into intracratonic basins and farther across the North American Published online 19 October 2017 any more extensive intracontinental dispersal systems.
    [Show full text]
  • A2 and B2: Upper Devonian Kellwasser Extinction Events in New York and Pennsylvania: Offshore to Onshore Transect Across the F
    A2 AND B2: UPPER DEVONIAN KELLWASSER EXTINCTION EVENTS IN NEW YORK AND PENNSYLVANIA: OFFSHORE TO ONSHORE TRANSECT ACROSS THE FRASNIAN-FAMENNIAN BOUNDARY ON THE EASTERN MARGIN OF THE APPALACHIAN BASIN ANDREW M. BUSH AND J. ANDREW BEARD Geosciences & Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269 GORDON BAIRD Department of Geosciences, SUNY Fredonia, Fredonia, NY 14063 D. JEFFREY OVER Department of Geological Sciences, SUNY Geneseo, Geneseo, NY 14454 with contributions by KATHERINE TUSKES Department of Geological Sciences, Atmospheric, Ocean, and Earth Science, George Mason University, Manassas, VA 20110 SARAH K. BRISSON AND JALEIGH Q. PIER Geosciences & Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269 INTRODUCTION Earth-system perturbations caused a series of mass extinction events during the Devonian Period, including the Taghanic event in the Givetian, the Lower and Upper Kellwasser events in the Frasnian, and the Hangenberg event in the Famennian (House, 2002; Bambach, 2006). These extinctions occurred against the backdrop of orbitally forced sea-level fluctuations, the Acadian Orogeny (Averbuch et al., 2005), the expansion of plants and animals on land (Algeo et al., 1995), and ecological changes in the marine biosphere (Signor and Brett, 1984; Bambach, 1999). The Frasnian-Famennian boundary in particular represents a significant global crisis, considered one of the “big five” mass extinctions (Raup and Sepkoski, 1982) that led to the demise of the widespread and diverse Devonian
    [Show full text]
  • The Classic Upper Ordovician Stratigraphy and Paleontology of the Eastern Cincinnati Arch
    International Geoscience Programme Project 653 Third Annual Meeting - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett – Kyle R. Hartshorn – Allison L. Young – Cameron E. Schwalbach – Alycia L. Stigall International Geoscience Programme (IGCP) Project 653 Third Annual Meeting - 2018 - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Kyle R. Hartshorn Dry Dredgers, 6473 Jayfield Drive, Hamilton, Ohio 45011, USA ([email protected]) Allison L. Young Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Cameron E. Schwalbach 1099 Clough Pike, Batavia, OH 45103, USA ([email protected]) Alycia L. Stigall Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Lab, Athens, Ohio 45701, USA ([email protected]) ACKNOWLEDGMENTS We extend our thanks to the many colleagues and students who have aided us in our field work, discussions, and publications, including Chris Aucoin, Ben Dattilo, Brad Deline, Rebecca Freeman, Steve Holland, T.J. Malgieri, Pat McLaughlin, Charles Mitchell, Tim Paton, Alex Ries, Tom Schramm, and James Thomka. No less gratitude goes to the many local collectors, amateurs in name only: Jack Kallmeyer, Tom Bantel, Don Bissett, Dan Cooper, Stephen Felton, Ron Fine, Rich Fuchs, Bill Heimbrock, Jerry Rush, and dozens of other Dry Dredgers. We are also grateful to David Meyer and Arnie Miller for insightful discussions of the Cincinnatian, and to Richard A.
    [Show full text]
  • Structural Geology of the Transylvania Fault Zone in Bedford County, Pennsylvania
    University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2009 STRUCTURAL GEOLOGY OF THE TRANSYLVANIA FAULT ZONE IN BEDFORD COUNTY, PENNSYLVANIA Elizabeth Lauren Dodson University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Dodson, Elizabeth Lauren, "STRUCTURAL GEOLOGY OF THE TRANSYLVANIA FAULT ZONE IN BEDFORD COUNTY, PENNSYLVANIA" (2009). University of Kentucky Master's Theses. 621. https://uknowledge.uky.edu/gradschool_theses/621 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS STRUCTURAL GEOLOGY OF THE TRANSYLVANIA FAULT ZONE IN BEDFORD COUNTY, PENNSYLVANIA Transverse zones cross strike of thrust-belt structures as large-scale alignments of cross-strike structures. The Transylvania fault zone is a set of discontinuous right-lateral transverse faults striking at about 270º across Appalachian thrust-belt structures along 40º N latitude in Pennsylvania. Near Everett, Pennsylvania, the Breezewood fault terminates with the Ashcom thrust fault. The Everett Gap fault terminates westward with the Hartley thrust fault. Farther west, the Bedford fault extends westward to terminate against the Wills Mountain thrust fault. The rocks, deformed during the Alleghanian orogeny, are semi-independently deformed on opposite sides of the transverse fault, indicating fault movement during folding and thrusting. Palinspastic restorations of cross sections on either side of the fault zone are used to compare transverse fault displacement.
    [Show full text]
  • Ordovician Point Pleasant/Utica-Lower Paleozoic
    Ordovician Point Pleasant/Utica-Lower Paleozoic Total Petroleum System—Revisions to the Utica- Lower Paleozoic Total Petroleum System in the Appalachian Basin Province Scientific Investigations Report 2019–5025 U.S. Department of the Interior U.S. Geological Survey Cover. An outcrop of planar- to irregular-bedded limestone and shale of the Point Pleasant Formation that is exposed along Big Run in Clermont County, Ohio. The red and white measuring stick is approximately 0.5 meters in length (1.6 feet). Permission was required prior to entering private property to visit this exposure. Photograph from Schumacher and others (2013). Inset photograph. Well core no. 3003 (API no. 3403122838) from the Point Pleasant Formation, Coshocton County, Ohio (interval depth, 5,660–5,670 feet). Total length of core shown is approximately 3 feet. Photograph provided by Michael Solis, Ohio Department of Natural Resources, Division of Geological Survey. Ordovician Point Pleasant/Utica-Lower Paleozoic Total Petroleum System— Revisions to the Utica-Lower Paleozoic Total Petroleum System in the Appalachian Basin Province By Catherine B. Enomoto, Michael H. Trippi, and Debra K. Higley Scientific Investigations Report 2019–5025 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov.
    [Show full text]
  • Application of Foreland Basin Detrital-Zircon Geochronology to the Reconstruction of the Southern and Central Appalachian Orogen
    JG vol. 118, no. 1 2010 Tuesday Oct 27 2009 01:03 PM/80097/MILLERD CHECKED Application of Foreland Basin Detrital-Zircon Geochronology to the Reconstruction of the Southern and Central Appalachian Orogen Hyunmee Park, David L. Barbeau Jr., Alan Rickenbaker, Denise Bachmann-Krug, and George Gehrels1 Department of Earth and Ocean Sciences, University of South Carolina, Columbia, South Carolina 29208, U.S.A. (e-mail: [email protected]) ABSTRACT q1 We report the U-Pb age distribution of detrital zircons collected from central and southern Appalachian foreland basin strata, which record changes of sediment provenance in response to the different phases of the Appalachian orogeny. Taconic clastic wedges have predominantly ∼1080–1180- and ∼1300–1500-Ma zircons, whereas Acadian clastic wedges contain abundant Paleozoic zircons and minor populations of 550–700- and 1900–2200-Ma zircons q2 consistent with a Gondwanan affinity. Alleghanian clastic wedges contain large populations of ∼980–1080-Ma, ∼2700- Ma, and older Archean zircons and fewer Paleozoic zircons than occur in the Acadian clastic wedges. The abundance of Paleozoic detrital zircons in Acadian clastic wedges indicates that the Acadian hinterland consisted of recycled material and possible exposure of Taconic-aged plutons, which provided significant detritus to the Acadian foreland basin. The appearance of Pan-African/Brasiliano- and Eburnean/Trans-Amazonian-aged zircons in Acadian clastic wedges suggests a Devonian accretion of the Carolina terrane. In contrast, the relative decrease in abundance of Paleozoic detrital zircons coupled with an increase of Archean and Grenville zircons in Alleghanian clastic wedges indicates the development of an orogenic hinterland consisting of deformed passive margin strata and Grenville basement.
    [Show full text]
  • A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils
    Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils Author(s) MacGabhann, Breandán Anraoi Publication Date 2012-08-29 Item record http://hdl.handle.net/10379/3406 Downloaded 2021-09-26T20:57:04Z Some rights reserved. For more information, please see the item record link above. A Solution to Darwin’s Dilemma: Differential taphonomy of Palaeozoic and Ediacaran non- mineralised discoidal fossils Volume 1 of 2 Breandán Anraoi MacGabhann Supervisor: Dr. John Murray Earth and Ocean Sciences, School of Natural Sciences, NUI Galway August 2012 Differential taphonomy of Palaeozoic and Ediacaran non-mineralised fossils Table of Contents List of Figures ........................................................................................................... ix List of Tables ........................................................................................................... xxi Taxonomic Statement ........................................................................................... xxiii Acknowledgements ................................................................................................ xxv Abstract ................................................................................................................. xxix 1. Darwin’s Dilemma ...............................................................................................
    [Show full text]