Ordovician News 2005
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background -
Morphology and Systematic Position of Tryhlidium Canadense Whiteaves
Morphology and systematic position of Tryblidium canadense Whiteaves, 1884 (Mollusca) from the Silurian of North America JOHNS. PEEL Peel, J. S.: Morphology and systematic position of Tryblidium Canadense Whiteaves, 1884 (Mollusca) from the Silurian of North America. Bull. geol. Soc. Denmark, vol. 38, pp. 43-51. Copenhagen, April 25th, 1990. https://doi.org/10.37570/bgsd-1990-38-04 The nomenclative history of Tryblidium canadense Whiteaves, 1884, a large, oval, univalved mollusc originally described from the Silurian Guelph Formation of Ontario, is reviewed. Following comparison to Archinace/la Ulrich & Scofield, 1897, in which genus it has generally been placed for almost a century, Whiteaves' species is redescribed and assigned to a new gastropod genus, Guelphinace/la. John S. Peel, Geological Survey of Greenland, Oster Voldgade JO, 1350 Copenhagen K, Denmark. February 10th, 1989. Whiteaves (1884) described a single internal the sub-apical wall. He commented that the mould of a large (45 mm), oval, univalved mol structure seemed to be a single continuous mus lusc from the Guelph Formation (Silurian) of cular impression and not two separate depres Hespeler, Ontario, Canada as Tryblidium Cana sions, as suggested by Lindstrom (1884), al dense (Fig. 1). Uncertainty surrounding its sys though he did not refer directly to the latter's tematic position developed immediately when description. He made no reference to the thin Lindstrom (1884) questioned the assignment to dorsal band which Lindstrom (1884) had consid the genus Tryblidium -
Paleozoic Geology of the Dobbin Summit-Clear Creek Area, Monitor
AN ABSTRACT OF THE THESIS OF DIANE CAROL WISE for the degree of MASTER OF SCIENCE in Geology presented on August 13, 1976 Title: PALEOZOIC GEOLOGY OF THE DOBBIN SUMMIT- CLEAR CREEK AREA, MONITOR RANGE, NYiE COUNTY, NEVADA Abstract approved: Redacted for Privacy son Paleozoic limestones, dolomites, quartz arenites, and other clastic rocks were mapped in the vicinity of Dobbin Summit and Clear Creek in the central Monitor Range. Sedimentary rock units present in this area represent the shallow-shelf eastern assemblage and basin and also the basin-slope facies of the traditional limestone- clastic assemblage. The four oldest, Ordovician, units were deposited in shallow shelf environments. The Lower Ordovician Goodwin Formation is composed of about 1200 feet of calcareous shales and thin-bedded limestones. The overlying Antelope Valley Limestone is about 500 feet thick and consists of wackestones, packstones, and rare algal grainstones.The Copenhagen Formation (135 feet thick) is the highest regressive deposit of sandstone, siltstone, and limestone below the transgressive Eureka Quartzite.The Eureka is a quartz arenite 181 feet thick, with an intercalated shallow marine dolomite member. The transition from shallow to deep water conditions can be seen in the change from algal boundstones to laminated lime mud- stones in the Hanson Creek Formation (190 feet thick).The super- jacent Roberts Mountains Formation (285 feet thick) is composed of lime mudstones and allodapic beds deposited in basinal, deep water conditions.During earliest Devonian -
Kope Formation Disturbed
Types and Examples of Slides Glossary – Clay-rich deposits prone to failure, – Fine-grained laminated deposits of Landslides and board Backwater deposits Lake bed clays they are best developed south of the Ohio River. They occur clay and silt laid down in lakes dammed by ice during fences tilted, monuments tilted pulled apart in terraces at the mouths of tributaries to a larger stream the Pleistocene Epoch (Ice Age). They are exceptionally Your Property colluvium - soil where glacial outwash caused a temporary lake to form. unstable, even on gentle slopes. OH tension Bedrock – Term used by engineers and geologists when Lamination – A texture in soil or rock that is made up of Study curved tree Area trunks cracks, tilted referring to the Ordovician limestones and shales that very thin (a few millimeters to a centimeter) parallel layers IN pavement underlie soil everywhere in the area. The bedrock itself (see fig. 21). The layers may reflect an annual pattern of seldom fails, and so determining the depth to bedrock is a sedimentation. KY Kope Formation tilted guard key part of any site investigation. rails and Ordovician System – The set of rock formations that utility poles Bridging – Large rock fragments that interfere with proper make up the local bedrock. It consists of limestone and trace of compaction of finer fill material. shale that was deposited in an ancient ocean between 444 scarp and 488 million years ago. Colluvium – A clay-rich deposit derived from weathering of bedrock that has moved downslope by gravity from its – Sand and gravel deposits left from the flowing CREEP Outwash place of origin. -
The Classic Upper Ordovician Stratigraphy and Paleontology of the Eastern Cincinnati Arch
International Geoscience Programme Project 653 Third Annual Meeting - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett – Kyle R. Hartshorn – Allison L. Young – Cameron E. Schwalbach – Alycia L. Stigall International Geoscience Programme (IGCP) Project 653 Third Annual Meeting - 2018 - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Kyle R. Hartshorn Dry Dredgers, 6473 Jayfield Drive, Hamilton, Ohio 45011, USA ([email protected]) Allison L. Young Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Cameron E. Schwalbach 1099 Clough Pike, Batavia, OH 45103, USA ([email protected]) Alycia L. Stigall Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Lab, Athens, Ohio 45701, USA ([email protected]) ACKNOWLEDGMENTS We extend our thanks to the many colleagues and students who have aided us in our field work, discussions, and publications, including Chris Aucoin, Ben Dattilo, Brad Deline, Rebecca Freeman, Steve Holland, T.J. Malgieri, Pat McLaughlin, Charles Mitchell, Tim Paton, Alex Ries, Tom Schramm, and James Thomka. No less gratitude goes to the many local collectors, amateurs in name only: Jack Kallmeyer, Tom Bantel, Don Bissett, Dan Cooper, Stephen Felton, Ron Fine, Rich Fuchs, Bill Heimbrock, Jerry Rush, and dozens of other Dry Dredgers. We are also grateful to David Meyer and Arnie Miller for insightful discussions of the Cincinnatian, and to Richard A. -
A Molecular Phylogeny of the Patellogastropoda (Mollusca: Gastropoda)
^03 Marine Biology (2000) 137: 183-194 ® Spnnger-Verlag 2000 M. G. Harasevvych A. G. McArthur A molecular phylogeny of the Patellogastropoda (Mollusca: Gastropoda) Received: 5 February 1999 /Accepted: 16 May 2000 Abstract Phylogenetic analyses of partiaJ J8S rDNA formia" than between the Patellogastropoda and sequences from species representing all living families of Orthogastropoda. Partial 18S sequences support the the order Patellogastropoda, most other major gastro- inclusion of the family Neolepetopsidae within the su- pod groups (Cocculiniformia, Neritopsma, Vetigastro- perfamily Acmaeoidea, and refute its previously hy- poda, Caenogastropoda, Heterobranchia, but not pothesized position as sister group to the remaining Neomphalina), and two additional classes of the phylum living Patellogastropoda. This region of the Í8S rDNA Mollusca (Cephalopoda, Polyplacophora) confirm that gene diverges at widely differing rates, spanning an order Patellogastropoda comprises a robust clade with high of magnitude among patellogastropod lineages, and statistical support. The sequences are characterized by therefore does not provide meaningful resolution of the the presence of several insertions and deletions that are relationships among higher taxa of patellogastropods. unique to, and ubiquitous among, patellogastropods. Data from one or more genes that evolve more uni- However, this portion of the 18S gene is insufficiently formly and more rapidly than the ISSrDNA gene informative to provide robust support for the mono- (possibly one or more -
Detrital Zircon U-Pb Geochronology and Hf Isotope Geochemistry of the Roberts Mountains Allochthon: New Insights Into the Early GEOSPHERE; V
Research Paper GEOSPHERE Detrital zircon U-Pb geochronology and Hf isotope geochemistry of the Roberts Mountains allochthon: New insights into the early GEOSPHERE; v. 12, no. 3 Paleozoic tectonics of western North America doi:10.1130/GES01252.1 Gwen M. Linde1, James H. Trexler, Jr.1, Patricia H. Cashman1, George Gehrels2, and William R. Dickinson2,* 12 figures; 2 tables; 2 supplemental tables 1Department of Geological Sciences and Engineering, University of Nevada, Reno, Nevada 89557-0172, USA 2Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, USA CORRESPONDENCE: gwenlinde@ yahoo .com CITATION: Linde, G.M., Trexler, J.H., Jr., Cashman, ABSTRACT et al., 1958; Burchfiel and Davis, 1972; Madrid, 1987). Various workers have P.H., Gehrels, G., and Dickinson, W.R., 2016, Detrital zircon U-Pb geochronology and Hf isotope suggested wildly disparate sources for the RMA strata. Some workers (e.g., geochemistry of the Roberts Mountains allochthon: Detrital zircon U-Pb geochronology and Hf isotope geochemistry provide Roberts et al., 1958; Burchfiel and Davis, 1972; Poole et al., 1992) suggested New insights into the early Paleozoic tectonics of new insights into the provenance, sedimentary transport, and tectonic evo- that the RMA strata originated in western Laurentia (Fig. 1) and deposited in western North America: Geosphere, v. 12, no. 3, p. 1016–1031, doi:10.1130/GES01252.1. lution of the Roberts Mountains allochthon strata of north-central Nevada. an ocean basin to the west. Speed and Sleep (1982) hypothesized that the RMA Using laser-ablation inductively coupled plasma mass spectrometry, a total of strata are the accretionary prism of a far-traveled arc. -
Ordovician Point Pleasant/Utica-Lower Paleozoic
Ordovician Point Pleasant/Utica-Lower Paleozoic Total Petroleum System—Revisions to the Utica- Lower Paleozoic Total Petroleum System in the Appalachian Basin Province Scientific Investigations Report 2019–5025 U.S. Department of the Interior U.S. Geological Survey Cover. An outcrop of planar- to irregular-bedded limestone and shale of the Point Pleasant Formation that is exposed along Big Run in Clermont County, Ohio. The red and white measuring stick is approximately 0.5 meters in length (1.6 feet). Permission was required prior to entering private property to visit this exposure. Photograph from Schumacher and others (2013). Inset photograph. Well core no. 3003 (API no. 3403122838) from the Point Pleasant Formation, Coshocton County, Ohio (interval depth, 5,660–5,670 feet). Total length of core shown is approximately 3 feet. Photograph provided by Michael Solis, Ohio Department of Natural Resources, Division of Geological Survey. Ordovician Point Pleasant/Utica-Lower Paleozoic Total Petroleum System— Revisions to the Utica-Lower Paleozoic Total Petroleum System in the Appalachian Basin Province By Catherine B. Enomoto, Michael H. Trippi, and Debra K. Higley Scientific Investigations Report 2019–5025 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. -
F I N a L Mineral Assessment Report
BLM F I N A L MINERAL ASSESSMENT REPORT Battle Mountain District Office - Nevada J A N U A R Y 2 0 1 2 This page intentionally left blank Bureau of Land Management Mineral Assessment Report SUMMARY The Bureau of Land Management (BLM) Battle Mountain District Office (BMDO) is in the process of revising the district’s Resource Management Plan (RMP). As part of the RMP revision process, the BLM is required to prepare a Mineral Assessment Report providing information regarding mineral occurrences and potential within the BMDO Planning Area (planning area). This report provides an intermediate level of detail for mineral assessment as prescribed in BLM Manual 3060 (BLM 1994). Information presented in this report will be summarized and incorporated into an Environmental Impact Statement (EIS) for the proposed RMP and into the final RMP. The geologic history of central and southern Nevada and the planning area is very complex and includes two major cycles of sedimentation (western and eastern facies sources), episodic thrust faulting, mountain building, and associated intrusive and igneous activity. More recent geologic history includes a period of crustal extension that was accompanied by bimodal (rhyolite-basalt) volcanism, large volume caldera volcanism, and basin and range block-faulting resulting in high-levels of shallow crustal heat flow. The regional and local geologic setting has been instrumental in the location of and potential for numerous economic metallic mineral deposits in the planning area, as well as development of economic geothermal resources. MINING AND MINERAL ACTIVITY IN NEVADA Mineral exploration, particularly for gold, is an ongoing enterprise in Nevada by both operators of existing mines and by other exploration companies. -
Mineral Potential Report
FRTC Modernization EIS Supporting Study Mineral Potential Report This Page Intentionally Left Blank REPORT Mineral Potential Report for the Fallon Range Training Complex Modernization for ManTech International Corporation Submitted to: ManTech International Corporation 420 Stevens Avenue, Suite 300 Solana Beach, California 92075 Submitted by: Golder Associates Inc. +1 520 888-8818 18108941 November 2018 November 2018 18108941 Executive Summary This Mineral Potential Report (MPR) has been prepared to support an Environmental Impact Statement (EIS) for the land withdrawal extension and expansion at the Naval Air Station (NAS) Fallon Range Training Complex (FRTC), in Churchill, Lyon, Mineral, Nye, and Pershing Counties, Nevada. This MPR is intended to be used as a planning tool that provides land managers with mineral resource information to develop management plans. The FRTC is part of the US Department of Navy (DON). The FRTC currently encompasses an area of 223,562 acres (ac). Figure ES.1 presents the areas involved. The FRTC consists of federal land that has been withdrawn from public use and reserved for military training and operations through the Military Lands Withdrawal Act of 1999, Public Law 106-65 (MLWA). The current withdrawal will expire in November 2021, unless Congress enacts legislation providing an extension. Withdrawal of additional lands to support DON activities in ranges B-16, B-17, B-20, and the DVTA may impact public and private lands including mining and geothermal leases, as well as access to mineral exploration and production infrastructure such as roads, pipelines, and temporary and fixed facilities. As part of the EIS process, the DON proposed three action alternatives for the land withdrawal extension and expansion for the FRTC. -
Business Development Opportunities in the Utica Shale Play in Consideration of the Geographic Alignment of the Fairway
Business Development Opportunities in the Utica Shale Play in Consideration of the Geographic Alignment of the Fairway Defining Business Opportunities within a Geographic Footprint Jim Scherrer, Energy Resources Director Geologic Analysis November 2015 The purpose of this document is to highlight the current business development opportunities that arise across the breadth of the Utica Shale fairway. The oil and gas resources underlying the Marcellus from within the “Utica Shale” play have become better defined through the shale resource exploration and recovery operations of various exploration and production (E&P) Above: The “tiramisu model” companies. The geographic alignment is unique and now is provides a visualization of the better defined; offering opportunities for business horizontal drilling taking place in development that aligns with the geography of the fairway. shale repositories worldwide. Additionally, boundaries such as the “Line of Death” for economic quantities of oil and gas within the play have been better delineated. More recent test drilling within the Appalachian Basin below the Marcellus (Devonian Period), in stratigraphy generally known as the “Utica” (Ordovician Period), there has been a resurgence of activity as this carbon-rich play has yielded unexpected, very positive results. This Utica formation assessment also includes the Point Pleasant formation. Taury Smith (NY State Geological Survey) says the Utica Shale play is more appropriately called the “Utica Shale and associated organic‐rich calcareous shale and interbedded limestone and shale play.” This report relies on many sources, but primarily the Utica Shale Appalachian Basin Exploration Consortium (the Consortium). The 15 members of the Consortium were joined by individuals from four state geological surveys, two universities, one consulting company, the U.S. -
Utica Shale Play Geology Review
Utica Shale Play Geology review April 2017 Independent Statistics & Analysis U.S. Department of Energy www.eia.gov Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA’s data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other federal agencies EIA author contact: Dr. Olga Popova Email: [email protected] U.S. Energy Information Administration | Utica Shale Play i April 2017 Introduction The U.S. Energy Information Administration (EIA) is adding and updating geologic information and maps of the major tight formations and shale plays for the continental United States. This document outlines updated information and maps for the Utica shale play of the Appalachian basin. The geologic features characterized include a contoured elevation of the formation top (structure), contoured thickness (isopach), paleogeography elements, and tectonic structures (regional faults and folds, etc.), as well as play boundaries, well location, and initial GOR (gas-to-oil ratio) of wells producing from January 2004 through December 2016. EIA integrates these geologic elements into a series of maps. The Utica play map consists of layers of geologic and production information that users can view either as separate thematic maps (such as Figure 1) or as interactive layers of the U.S. Energy Mapping System. Additional map layers may be added if additional geologic data (such as petrophysical and thermodynamic formation properties) become available.