<<

fTT'Dfc - Dfc — SL>9^-

Die Expedition ’96 des FS ’’Polarstern” (ARK XII) mit der Arctic Climate System Study (ACSYS)

The expedition ARCTIC ’96 of RV ’’Polarstern” (ARK XII) with the Arctic Climate System Study (ACSYS)

Ernst Augstein and Cruise Participants

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED FOREIGN SALE§ PROHIBITED n n

Ber. Polarforsch. 234 (1997) ISSN 0176 - 5027 DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document Contents / Inhaltsverzeichnis

1. Zusammenfassung 3 2. Summary and Itinerary 7 3. Research Programmes 10 3.1 Physical and Chemical Oceanography 10 3.1.1 Introduction 10 3.1.2 Methods and First Result of Temperature, Salinity 11 and Oxygen Measurements 3.1.3 Nutrients 13 3.1.4 Carbonate System 14 3.1.5 Chloroflourocarbons 15 3.1.6 Tritium, Helium and 180 15 3.1.7 Inorganic Minor Element Tracers 15 3.1.8 Volatile Halogenated Organic Compounds 16 3.1.9 Dissolved Organic Matter 17 3.1.10 Physical and Chemical Speciation of Plutonium 18 (and Americum) in the Arctic Water Column 3.1.11 Acoustic Doppler Current Profiler (ADCP) 19 3.1.12 Shipborne ADCP 19 3.1.13 Optics 20 3.1.14 Ocean Moorings 21 3.2 Oceanographic / Meteorological Buoys 22 3.3 The Atmospheric Boundary Layer 23 3.4 Sea Ice Physics and Biology 27 3.4.1 Visual Ice Observations 27 3.4.2 On Ice Measurements 30 3.4.3 Laser Altimeter 30 3.4.4 Ice and Snow Thickness 30 3.4.5 Ridge Sail Profiles 32 3.4.6 Trafficability 33 3.4.7 Sea Ice Remote Sensing 35 3.4.8 Biological and Physical Sea Ice Properties 37 3.5 Marine Biology 41 3.5.1 Phyto- and Zooplankton Ecology and 41 Vertical Particle Flux

1 3.5.2 Biomass Distribution 41 3.5.3 Taxonomy and Spatial Distribution 42 of the Microplanktonic Community 3.5.4 Epipelagic Community 43 3.5.5 Meso- and Bathypelagic Communities 45 4. Station List 47 5. Participating Institutions 51 6. Participants 53 7. Ship's Crew 54

2 ARCTIC '96 Cruise Report / Fahrtbericht

1. Zusammenfassung

Die Expedition ARCTIC '96 wurde von zwei Forschungsschiffen, der deutschen POLARSTERN und der schwedischen ODEN unter Beteiligung von Wissenschaftlern und Technikern aus Deutschland, Finnland, GroBbritannien, Inland, Kanada, Norwegen, RuBland, Schweden und den Vereinigten Staaten von Amerika durchgefuhrt. Das gemeinsam entworfene multidisziplinare Forschungs- programm wurde unter Berucksichtigung der spezifischen zeitlichen und logistischen Anforderungen der einzelnen Arbeitsgruppen unter den beiden Schiffen passend aufgeteilt. DemgemaB bildeten auf der ODEN die geologischen, geophysikalischen und luftchemischen Arbeiten sowie die Eisfernerkundung das Schwergewicht, wahrend auf der POLARSTERN vorrangig Messungen zur physikalischen, chemischen und biologischen Ozeanographie, Atmospharenphysik und der Erforschung des Meereises vorgenommen wurden.

Die physikalischen Projekte auf der POLARSTERN dienten uberwiegend der Un- terstutzung der Arctic Climate System Study (ACSYS) des Weltklimaforschungs- programms, die auf die Erforschung der vorherrschenden ozeanischen, atmospharischen, kryospharischen und hydrologischen Prozesse der Arktisregion ausgerichtet ist. Dabei soil der Beschreibung und numerischen Modellierung der Zirkulation, Wassermassenmodifikation sowie der Transpose von Energie und Stoffen im Nordpolarmeer einschlieBlich seiner Randmeere besondere Aufmerksamkeit gewidmet werden. Im Hinblick auf diese Ziele wurden auf POLARSTERN Messungen durchgefuhrt urn

• die hydrographischen Strukturen des Ozeans auf der Schnittlinie von Franz- Joseph-Land nach zu erfassen und den Wassermassen- austausch zwischen den flachen sibirisch-europaischen Schelfmeeren und dem tiefen Nordpolarmeer durch den St. Anna- und den Voronin-Trog abzuschatzen.

• die Ozeanzirkulation in dem Nansen- und Amundsen-Becken quantitativ zu beschreiben unter besonderer Beachtung der topographischen Einflusse des Lomonossow Ruckens und anderer Bodenstrukturen.

• die zeitlichen Variationen der Stromungen entlang des Kontinentalabhangs und uber dem Lomonossow Rucken sowie der mit ihnen verknupften Warme- und Salztransporte festzustellen.

• den atmospharischen Antrieb des Meereises bei verschiedenen groBraumigen Luftstromungen zu bestimmen.

• statistisch signifikante Aussagen fiber die Dicke und die Morphologie des Meereises in verschiedenen Regionen des Nordpolarmeeres zu ermdglichen.

Neben diesen auf die ACSYS bezogenen Arbeiten wurden Beobachtungen zum Studium der Meereislebewesen, der regionalen Verteilung des Phyto- und

3 Zooplanktons und die Analyse bedeutsamer chemischer Prozesse in unterschiedlichen Zirkulationsasten des Nordpolarmeeres vorgenommen. Zu diesem Zweck wurden Messungen vom Schiff aus, mit Hilfe von Hubschraubern und auf dem Meereis mit verschiedenen teilweise neu entwickelten Instrumenten durchgefuhrt. Die physikalischen und chemischen Oaten dienen unter anderem auch der Uberprufung und Verbesserung von Ozean-, Meereis- und Klimamodellen.

An Bord der POLARSTERN befanden sich 43 Seeleute, ein russischer Eislotse und 53 Wissenschaftler und Techniker aus Deutschland (29), Schweden (7), RuBland (6), USA (5), Kanada (3), Finnland (1), Irland (1) und GroBbritannien (1). Das MeBprogramm wurde von multinationalen Arbeitsgruppen durchgefuhrt, die spater auch die Datenaufbereitung und wissenschaftliche Bewertung der Ergebnisse gemeinsam vornehmen werden. Die Zusammenarbeit zwischen der ODEN und der POLARSTERN wahrend der Expedition bezog sich im wesentlichen auf logistische Unterstutzung. Wahrend zweier Treffen auf See fand ein Personalaustausch statt und es wurden Instrumente und Treibstoff umgeladen. Zur gegenseitigen Information uber den Arbeitsablauf, die Wetter- und Eisverhaltnisse wurden taglich Funkgesprache zwischen den wissenschaftlichen Leitern und den Kapitanen beider Schiffe gefuhrt.

POLARSTERN lief am Freitag, den 12. Juli 1996 aus aus und erreichte nach einer ruhigen Seereise am 19. Juli den russischen Hafen Murmansk, wo sich 7 russische und ein finnischer Wissenschaftler sowie 2 Eislotsen einschifften. Reprasentanten der Behorden und wissenschaftlichen Einrichtungen der Stadt besuchten am Nachmittag des 19. Juli das Schiff anlaBlich eines kleinen Empfangs. Am 20. Juli verlieB POLARSTERN Murmansk mit dem Ziel Karasee. AuBerhalb der 12-Meilenzone wurde noch einmal Treibstoff von einem Tankschiff ubernommen, urn fur den langen Aufenthalt im eisbedeckten Nordpolarmeer gut gerustet zu sein. Die Packeisgrenze wurde am 23. Juli bei 78°N uberquert, einen halben Tag vor dem ersten Treffen mit der ODEN, die bereits einige Tage in der Barentssee Messungen durchgefuhrt hatte. Wahrend die Schiffe fur einige Stunden zusammen drifteten wechselten ein Eislotse und ein Wissenschaftler von der POLARSTERN zur ODEN wahrend der fur beide Schiffe zustandige russische Beobachter in umgekehrter Richtung zur POLARSTERN uberstieg. Ferner wurden der ODEN einige aus Deutschland mitgefuhrte Gerate ubergeben.

Nach einigen Stunden Fahrt im Konvoi trennten sich die Schiffe am 24. Juli 1996, indem die ODEN ihren nordwartigen Kurs zum Lomonossow-Rucken fortsetzte und POLARSTERN nach Osten steuerte, urn das MeBprogramm mit einem zonalen hydrographischen Schnitt zwischen Franz-Joseph-Land und Severnaya Zemlya aufzunehmen (Figure 1). Dort wurden mit einer CTD (conductivity, temperature, depth) - Sonde, einem Wasserschopfsystem und einem ADCP (acoustic doppler current profiler) der thermohaline Aufbau und mit Einschrankungen das Stromungsfeld auf einer Schnittflache durch den St. Anna- und Voronin-Trog in relativ dichten Abstanden erfaBt. Ferner wurden Wasserproben zur Bestimmung ozeanischer Spurenstoffe, radioaktiver Isotope und verschiedener Nahrstoffe geschopft sowie Planktonnetzfange vorgenommen. Langere MeBstationen wurden - wie wahrend der gesamten Reise im Eis - fur umfangreiche Meereisbeprobungen genutzt, um an Bord Oder spater in den Heimatlabors physikalische, chemische und

4 biologische Analyser durchzufuhren. Insbesondere konnten auf langeren Traverser uber groBe Schollen mit einem newer MeBsystem statistisch signifikante Eisdickenverteilungen registries werden und Eisrucken detailliert vermessen werden. SchlieBlich dienten die von einem Hubschrauber getragene Turbulenzsonde HELIPOD und ein am Bugkran befestigter mit 5 Turbulenzsonden ausgerusteter Profilmast zur Erfassung der vertikalen turbulenten Impels-, Warme- und Wasserdampftransporte. Hubschrauberfluge in verschiedenen Hohen konnten auch zur Bestimmung von Vertikalprofilen der turbulenten Flusse und deren spektralen Verteilung bis zum Oberrand der atmospharischen Grenzschicht genutzt werden.

Auf dem Wege nach Severnaya-Zemlya nahm die Eiskonzentration standig zu und behinderte schlieBlich das Fortkommen des Schiffes so stark, daB POLARSTERN etwa 30 sm nach Norden ausweichen muBte, urn den ostlichen Kurs uber die Troge am 1. August 1996 bei 82°N / 90°E vollenden zu kbnnen. Nach Ausbringen er ersten automatischen meteorologischen Driftboje wurden zunachst der Kontinentalabhang und dann das Nansen Becken, der Mittelozeanische Rucker und das Amundsen Becken in nordostlicher Richtung uberquert. Dabei wurde das auf der Zonaltraverse begonnene MeBprogramm im wesentlichen in gleichartiger Weise fortgesetzt. Auf dem Weg nach Norden nahm die Eiskonzentration unerwartet deutlich ab, so daB POLARSTERN auf den Fahrtstrecken zwischen den ozeanographischen Stationer in breiten Rinnen bisweilen Geschwindigkeiten bis zu 12 kn erreichte. Dadurch wurden nicht nur die Zeitverluste des ersten Abschnittes schnell aufgeholt sondern auch eine Erweiterung des MeBprogramms vor allem an den Flanker der Tiefseerucken ermoglicht. Dabei wurde u. a. gefunden, daB der Mittelozeanische Rucker zwischen dem Nansen- und Amundsen-Becken zumindest auf der POLARSTERN-Route in den Echolot- messungen - im Gegensatz zu der uns verfugbaren Seekarte - nicht in Erscheinung trat.

Wegen der gunstigen Eisverhaltnisse erreichte POLARSTERN die Bohrposition der ODEN auf dem Lomonossow-Rucken drei Tage fruher als geplant, so daB die zweite Begegnung beider Schiffe auf den 11./12. August vorverlegt wurde. Aufgrund der besonders gunstigen Eislage einigten sich Wissenschaftler und Kapitane darauf, die Aufnahme von drei Verankerungen am Nordrand der Laptev- See der POLARSTERN allein zu uberlassen und die Fahrtroute der ODEN durch Verlagerung des Arbeitsgebiets nach Norden abzuandern. Zur Vermeidung von Treibstoffengpassen wurde Schiffsdiesel von der ODEN zur POLARSTERN und Hubschraubertreibstoff in umgekehrter Richtung transferiert. Der russische Beobachter nutzte das Treffen, urn wieder auf die ODEN zuruckzukehren, nachdem er einen russischen Wissenschaftler beauftragt hatte, die Beobachterfunktion auf POLARSTERN zu ubernehmen. POLARSTERN setzte am 12. August den hydrographischen Schnitt vom Amundsen-Becken uber den Lomonossow-Rucken fort und erreichte am 15. August das Makarov-Becken.

Die anschlieBende Marschfahrt nach Suden war wieder durch breite Rinnen begunstigt, so daB die gewonnene Zeit fur ein erweitertes MeBprogramm auf der sudlicheren Traverse uber den Lomonossow-Rucken genutzt werden konnte. Im Amundsen-Becken wurde ein MeBnetz von meteorologischen und ozeanographischen automatischen Driftstationen auf dem Meereis ausgelegt, das uber eine langere Zeit den atmospharischen Antrieb und die ozeanischen GroBen

5 in der oberen Wassersaule im Zentrum des Transpolaren Eisdriftstroms messen soil. Auf der Strecke zu den drei Verankerungen in der Umgebung des Kontinentalhanges und des sildlichen Lomonossow-Ruckens verdichtete sich die Eiskonzentration so stark, dafB die hydrographischen Messungen im nordlichen Verankerungsgebiet sogar teilweise reduziert werden muBten. Trotz der ungunstigen Eisbedingungen gelang es, alle drei Verankerungssysteme in verhaltnismaBig kurzer Zeit sicher zu bergen. Dieser Erfolg beruht zum einen auf der guten technischen Konzeption der Verankerungen und zum anderen auf dem geschickten Handeln der eiiahrenen Schiffsfuhrung und der verantwortlichen Wissenschaftler und Techniker. Der Zeitgewinn beim Bergen der Verankerungen ging zumindest in Teilen durch welter anhaltende Fahrtverzogerungen im PreBeis wieder verloren. Neben kurzeren Zwangsstillstanden blieb POLARSTERN einmal 14 Stunden zwischen zusammengepreBten Schollen stecken.

Glucklicherweise war die Region gerade zu dieser Zeit wolkenarm, so daB den an Bord empfangenen Satellitenbildern nutzliche Informationen ilber die Eisverteilung entnommen werden konnten. Danach batten sich um 100 km lange Rinnen in Fahrtrichtung des Schiffes gebildet, die ein leichtes Vorankommen durch das im ubrigen stark gepreBte Eis versprachen. Hubschraubererkundungsfluge bestatigten diesen Refund, so daB POLARSTERN nach zunachst aufwendigem Rammen innerhalb von zwei Tagen die Eisrandzone erreichen konnte. Hier stand wieder ausreichend Zeit fur umfassende Messungen alter Disziplinen zur Verfugung. Insbesondere wurden die biologischen Beprobungen verdichtet und die Untersuchungen zur atmospharischen Grenzschichtturbulenz ausgedehnt.

Nach AbschluB des gesamten MeBprogramms am 5. September 1996 verlieB POLARSTERN das Meereis und lief in der nahezu eisfreien Laptevsee westwarts in Richtung VilkitskystraBe. Dort wurde auf einer kleinen Insel ein vor einem Jahr angelegtes MeBfeld auf dem Festeis mit einem Hubschrauber besucht, um Informationen fiber Schmelz- und Gefrierprozesse zu gewinnen.

Der Weg durch die VilkitskystraBe, die Karasee und die Barentssee bis nach Murmansk war in diesem Jahr eisfrei und erlaubte wiederum einen Zeitgewinn, der einer wunschenswerten Verlangerung der Umrustzeit des Schiffes in Bremerhaven zugute kam. Wahrend eines kurzen Hafenaufenthaltes in Murmansk am 15./16. September verlieBen ein finnischer und sechs russische Wissenschaftler sowie der Eislotse das Schiff, das dann die Reise durch die Barentssee, die Norwegische See und die Nordsee heimwarts fortsetzte. Am 23. September lief POLARSTERN in Bremerhaven ein, wo sich im Laufe des Tages alle Wissenschaftler und Techniker ausschifften.

6 2. Summary and Itinerary

The multinational expedition ARCTIC '96 was carried out jointly by two ships, the German RV POLARSTERN and the Swedish RV ODEN. The research programme was developed by scientists from British, Canadian, Finish, German, Irish, Norwegian, Russian, Swedish and US American research institutions and universities.The multidisciplinary field programme was shared between the two ships on the basis of their specific technical capabilities. Thus, the work on the ODEN concentrated on geology, geophysics, air chemistry and sea ice remote sensing while the investigations on POLARSTERN were devoted to physical, chemical and biological oceanography, sea ice physics and biology as well as to the atmospheric boundary layer. The physical programme on POLARSTERN was primarily designed to foster the Arctic Climate System Study (ACSYS) in the framework of the World Climate Research Programme (WCRP). Investigations during the recent years have provided substantial evidence that the and the adjacent shelf seas play a significant role in the thermohaline oceanic circulation and may therefore have a distinct influence on global climate. Consequently the main ACSYS goals are concerned with studies of the governing oceanic, atmospheric and hydrological processes in the entire Arctic region. Among those the description and modelling of the circulation, the water mass modification as well as the energy and matter transports in the Arctic Ocean are of high importance. On POLARSTERN measurements were conducted in this respect to - specify hydrographic structures on the transect from Franz Joseph Land to Severnaya Zemlya which will enable one to determine the water mass exchanges between the shelf seas and the deep Arctic basins via the St. Anna and Voronin Troughs, - describe the circulation within the Nansen and Amundsen Basins as well as to detect the topographic influence of the Lomonosov Ridge on the water mass spreading across the basins, -- observe the time variations of the currents, the heat and the salt transports along the continental slope and across the ridge, - determine the atmospheric forcing on sea ice under different large scale atmospheric flow conditions - provide information on the thickness and surface morphology of sea ice in various regions of the Arctic Ocean. In addition to these ACSYS related topics measurements were carried out to study the sea ice biota, to describe the lateral distribution of phytoplankton and zooplankton and to identify the governing chemical processes in the water columns of different circulation branches. For these purposes measurements were made from the ship, with the aid of helicopters and from ice floes with a series of instruments some of which have been newly developed. The physical and chemical data will, among others, serve to test and to improve present and future ocean, sea ice and climate models. On POLARSTERN 43 crew, 1 Russian ice pilot and 53 scientists and technicians from Germany (29), (7), Russia (6), USA (5), Canada (3), Finland (1), Ireland (1) and the United Kingdom (1) participated in the cruise. The measurements were carried out by multinational subgroups and the processing and scientific analysis of the data will also be done jointly by members of the participating institutions in the near future. The cooperation between the ODEN and the POLARSTERN during the expedition was mainly restricted to logistic matters. During two rendezvous at sea personnel, scientific gear and fuel were exchanged.

7 I Daily radio conferences were held for mutual information on the current activities on both ships as well as on weather and ice conditions. POLARSTERN departed from Bremerhaven on Friday, 12 July 1996 and she arrived after a smooth voyage on 19 July in Murmansk, Russia. Here 7 Russian and 1 Finish scientists and 2 ice pilots embarked. Local representatives visited the ship during the afternoon of the same day in the framework of a cocktail reception. POLARSTERN left port again on 20 July for the . When she had passed the Russian territoral waters she met a small tanker at sea to top up herfuel tanks in final preparation for the long voyage into the ice covered Arctic Ocean. The pack ice was encountered on 23 July at about 78°N in the Barents Sea half a day before the first rendezvous with the Swedish partnership ODEN. During this meeting 1 scientist and 1 ice pilot as well as some instruments were transferred from POLARSTERN to ODEN and the Russian observer who was in charge for both ships moved to POLARSTERN to stay there for the next 3 weeks.

Figure 1: Cruise track of RV POLARSTERN during ARCTIC '96

The two ships separated on 24 July when POLARSTERN commenced the first hydrographic section across the St. Anna and Voronin Troughs as shown in Fig. 1 and ODEN continued her northward course towards the Lomonosov Ridge. Hydrographic vertical profiles were measured with the aid of a CTD (conductivity, temperature, depth) sonde, rosette water samplers and occasionally an acoustic doppler current profiler (ADCP). The dense hydrographic network on all transects included at various stations also biological net hauls, measurements on ice floes and atmospheric turbulence investigations. For the latter a new vertically pointing mast with acoustic anemometers and thermometers was attached to the bow crane. Furthermore, a sophisticated device, the HELIPOD which was suspended at a 15 m long cable below a helicopterto measure turbulent fluxes along specific flight tracks at various heights. On the way from Franz Joseph Land to Severnaya Zemlya the ship's motion was increasingly slown down towards the east by highly concentrated and partly compressed sea ice. Finally POLARSTERN had to make a 30 nm side step to the north to be able to finalyse the full section across both troughs on 1 August 1996. On the eastern side of the transect the first meteorological automatic surface buoy was deployed on an ice floe. At about 82°N / 90°E POLARSTERN set course first towards north to cross the continental slope and afterwards to the northeast for a

8 long transect from the Kara Sea via the Nansen Basin, the Mid Oceanic Ridge, the Amundsen Basin, the Lomonosov Ridge into the Makarov Basin. The farther the ship got north the more favourable the ice conditions became. Leads grew wider and longer so that the ship could sometimes speed up to 12 knots between stations. Since our planning was based on a mean speed of 3 kn within the ice time was gained for extended measurements along the route. To our surprise the Mid Oceanic Ridge (Gakkel Ridge) was merely obvious in the echo soundings so that no orographic boundary separates the Nansen and the Amundsen Basins at least on POLARSTERN's track line. Because of the relatively fast motion of the ship we approached the ODEN at the envisaged drilling site 3 days earlier than anticipated. Thus, the second rendezvous was arranged for the 11 / 12 August 1996 over the Lomonosov Ridge. The main purpose of the meeting was to transfer ship's diesel from the ODEN to the POLARSTERN and helicopter fuel into the reverse direction. Furthermore, the Russian observer returned to the ODEN. During a planning meeting of the chief scientists and the masters of both ships it was concluded that according to this year's ice conditions POLARSTERN would try to retrieve three ocean moorings at the continental slope of the Laptev Sea without the assistence of ODEN. On the basis of this decision ODEN modified her plans for the research work and for her way home. POLARSTERN continued the interrupted hydrographic section and reached the Makarov Basin on 15 August 1996. On the transit voyage to the next section across the Lomonosov Ridge the ship hit again many leads so that a significant amount of time could be saved for more measurements along the transect. An array of automatic meteorological and oceanographic surface buoys was deployed in the central Amundsen Basin. The letter provide atmospheric surface data and conduct also measurements of the temperature, salinity and currents in the upper 200 m of the water column. During the transit to the most northerly mooring location the ice concentration increased considerably and POLARSTERN's speed was remarkably reduced. In spite of the dense ice cover the mooring could be recovered rather rapidly on 23 August due to its accurate positioning system and to the careful manoeuvering of the ship by her experienced personnel. The ship steamed then first 30 nm to the west to commence the southern zonal section across the Lomonosov Ridge. Due to compressed ice this task was rather cumbersome and finally two of the planned stations had to be skipt since helicopter reconnaissance flights made it obvious that the entire passage to the second mooring had to be made through a compact sea ice cover. POLARSTERN arrived at the second mooring position on 29 August. Fortunately there were some small patches of open water at and near the location of the mooring so that the retrieval could be managed again within a few hours time. During the completion of the meridional section across the mooring POLARSTERN had to overcome the severest ice conditions of the entire expedition and she was once trapped for 14 hours by compressed ice floes. During the transit to the third mooring cloud free satellite images of our wider area could be received on the ship showing long and broad leads pointing from the actual ship's position towards the location of the last mooring. These indications were confirmed by helicopter flights so that the 180 nm distance could be traversed in less than two days. Since a low ice concentration prevailed over the mooring a fast and easy recovery was possible and again more time could be made available for observations and samplings. This opportunity was used on the one hand to collect additional biological material and on the other hand to extend the atmospheric boundary layer investigations in the marginal ice zone. When all measurements were completed the observational programme on POLARSTERN was terminated on 5 September 1996. At midnight of the same day the ice edge was crossed and the homeward journey started through almost ice free waters of the Laptev Sea. The last scientific mission was carried out by a helicopter to revisit an experimental site on the fast ice of a

9 Because of generally stern winds in the Kara and Barents Seas the ship could move with reduced power to the port of Murmansk to save fuel and to avoid refuelling prior to the arrival in Bremerhaven. During the port call in Murmansk on 15/16 September 6 Russian scientists one Finish colleague as well as the Russian ice pilot disembarked. POLARSTERN arrived at her home port Bremerhaven on 23 September to terminate her ARCTIC '96 cruise.

3. Research Programmes

3.1 Physical and Chemical Oceanography (AWI, IfMH, IfMK, IUH, AARI, GU, BIO, UW, ESR, SIO, LDEO, UCD)*

3.1.1 Introduction

Waters modified in the Arctic Ocean influence the thermohaline circulation of the Atlantic Ocean and thereby also of the global ocean. As the modification of waters in the Arctic is largely controlled by shelf processes, characteristics of the inflow from the shelves are of similar importance as of the flow of different branches along the continental slope and along oceanic ridges. Our measurements are thus carried out to better comprehend the circulation pattern, flow rates and water mass modification in the Eurasian part of the Arctic Ocean. Atlantic water enters the Arctic Ocean through Pram Strait and through the Barents and Kara Seas. Both branches merge over the continental slope in the eastern Nansen Basin. The Atlantic water passing through the Barents and Kara Seas is considerably modified by air-sea interaction processes and by inflow of river water. Consequently this water is colder and less saline when it meets the Pram Strait Branch of Atlantic water in the Nansen Basin so that a distinct front separates these two water masses. Various substances originating from the atmosphere and from river input or resulting from shelf specific biological processes enable us to trace the flow path of the Barents Sea Branch Water throughout the Arctic Ocean and to determine its flow rate. From previous cruises it was concluded that both of the above mentioned branches partly recirculate in the Nansen and Amundsen Basins and partly enter the Canadian Basin across the southern Lomonosov Ridge. Deep waters may also be exchanged between the Amundsen and Makarov Basin intermittently through trenches of the Lomonosov Ridge. Earlier measurements have already shown highly structured vertical layers which are frequently characterized by inversions of the temperature and the salinity. Some of these layers can be identified over large (basin wide) distances. The inversions are believed to result from interleaving of different water masses at frontal zones. Finally double-diffusion processes may to a certain extent alter the vertical temperature and salinity distribution of the layered structures. The specific oceanographic goals during this cruise were to • accomplish a hydrographic vertical section across the St. Anna and the Voronin Throughs to examine the water mass characteristics of the inflow from the Barents and Kara Seas into the Nansen Basin

* see Chapter 5 for explanation of contributing institutions

10 • qualitatively and quantitatively describe the circulation in the Nansen, Amundsen and Makarov Basins as well as the exchanges of intermediate and deep waters between the different basins • investigate the fate of shelf water within the deep basins • determine the gas exchange (oxygen and carbon dioxide) between the partly ice covered Arctic Ocean and the atmosphere • study processes influencing the heat, salt and momentum fluxes in the surface layer and across the halocline • determine the optical properties of the Arctic sea water in summer conditions

Figure 2: Dots mark all hydrographic stations and the M symbols indicate the positions of the three moorings

All observations were made on transects (Fig. 2) along the Kara Sea shelf break crossing the St. Anna and Voronin Troughs, across the Nansen and Amundsen Basins into the Makarov Basin, across the Lomonosov Ridge and across the continental slope of Laptev Sea and the East Siberian Sea. The station spacing ranged between 5 km and 30 km. CTD/rosette casts were made on all stations.

3.1.2 Methods and First Results of Temperature, Salinity and Oxygen Measurements

Vertical profiles of temperature and conductivity were measured with a modified Neil Brown Mark III b CTD system combined with a 36-bottle rosette sampler, both from the Scripps Institution of Oceanography. The CTD was also equipped with two platinum resistance thermometers to controll the stability of its temperature sensor. The temperature and pressure gauges of the CTD were calibrated before and after the cruise. Salinity values derived from the CTD measurements were calibrated with the aid of water samples which were analyzed on board with a Guildline Autosal 8400 B salinometer. The sampling and measurement of dissolved oxygen were carried out according to the WOCE protocol. Analyses of oxygen were performed by a modified Winkler titration procedure. The titrator has a precision of about +/- 0.05 pM/kg under laboratory conditions but due to sampling errors at sea the relative accuracy lies at

11 +/- 0.2 pM/kg. The absolute accuracy which accounts e.g. for the systematic error caused by the natural iodate in seawater is estimated to range at 1 to 2 |iM/kg. Examples of the distributions of salinity and dissolved oxygen across the Nansen and Amundsen Basins and the Lomonosov Ridge are shown in Fig. 3 and 4, respectively.

0 200 400 600 800 km

Figure 3: Salinity distribution on the section from the continental slope of the Kara Sea to the Makarov Basin

12 29 31 35 38 40 42 43 46 48 50 52 54 55 56 58 60 64 68 72

0 50 100 150 200 250 300 350 400 450 500 Distance (nm)

Figure 4: Same section as Fig. 3 for dissolved oxygen

3.1.3 Nutrients

In the Arctic Ocean nutrient concentrations provide a valuable tool to trace water masses and to detect transport and mixing mechanisms. By this means Pacific water with high silicate concentration which flows through Bering Strait can be traced via the Chukchi-East Siberian Sea to Fram Strait and the Sea. Silicate concentrations in deeper water were used to determine large scale circulation patterns and they have provided convincing evidence that the shelf- slope plume contributes to the formation of deep water. Silicate, phosphate and total nitrate (nitrite plus nitrate), were analysed from all sampling depths at all stations. The samples were drawn in 30 ml plastic bottles, refrigerated and analysed normally within 36 hours after collection. Analyses were carried out with an AutoAnalyzer by standard procedures.

13

39 3.1.4 Carbonate System

The carbonate system was determined by analysing the rosette water samples for Total Dissolved Inorganic Carbon (Ct), Total Alkalinity (At) and pH. They are defined as CT = [C02] + [H2C03] + [HC03] + [C032'] At § [HC03] + 2[C032'] + [B(OH)4‘] pH = -log [H+]

Hence, any of the carbonate species can be calculated from two of these parameters. CT was determined by the standard coulometric technique, AT by potentiometric titration and pH by a multi-wavelength spectrophotometric technique. Both At and Ct are largely correlated with salinity but some biogeochemical processes will shift their concentration. AT is mainly affected by formation and dissolution of metal carbonates, while CT also is affected by air-sea exchange of C02 and by photosynthesis and microbial decay of organic matter. Like CT, pH is affected by all of these processes. In the Arctic Ocean AT and CT are useful tracers of runoff, as this contains high concentration of HC03" as a combined result of decay of organic matter and dissolution of metal carbonates. The motivation for determining the carbonate system during Arctic '96 was; (i) to study shelf - deep basin interaction by using signals caused by biogenic processes on the shelves, (ii) to investigate how the runoff is spread out into the central Arctic Ocean from the Kara and Laptev Seas and (Hi) to estimate the air -sea exchange of C02 in ice covered regions. Samples from about 75 % of the stations occupied during the cruise were analysed for all three parameters. An example of the runoff signal being stronger in the top 100 m over the Lomonosov Ridge (Stn 70) compared to the Nansen Basin (Stn 36) is shown in Fig. 5.

Normalized G (Mmol/kg)

2140 2160 2180 2200 2220

200- - 300- - 400- - 500 - Stn 36 600-- Stn 70 700- - 800- - 900-- 1 ooo-

Figure 5: Depth profiles of total dissolved inorganic carbon, normalized to a salinity of 35, for stations 36 (Nansen Basin) and 70 (Lomonosov Ridge).

14 3.1.5 Chloroflourocarbons

Chloroflourocarbons measured during this expedition, CFC-11, CFC-12, CFC-113 and carbon tetrachloride (CCL4) are anthropogenic compounds the concentration of which has been increasing in the atmosphere, and hence in ocean surface waters, beginning with CCL4 early in this century, CFC-11 and CFC-12 in mid ­ century and CFC-113 in recent decades. CFC-11 and CFC-12 are believed to be highly stable in the marine environment. CCL4 is thought to be stable in cold waters below 10°C but does hydrolyze in warm waters. In the ocean these compounds help to estimate exchange rates of water and to trace water masses by distinguishing "older" water from "younger" water. CFG measurements were made in samples from almost all stations shown in Figure 2 and from all depths. Samples were drawn in 100 ml syringes and analysed within 24 hours after sampling. Analyses were done by members of the Institut fur Meereskunde, (IfMK) and of the Bedford Institute of Oceanography (BIO). Both groups used purge-and-trap systems, one measuring CFC-11 and CFC-12 (IfMK) and the other (BIO) measuring all four compounds. More than 600 of the samples were analysed. Intercalibration between the two systems resulted in sufficient agreement for CFC-12, while a ten per cent difference in CFC-11 values needs still to be explained.

3.1.6 Tritium, Helium and 180

Transient tracers such as Tritium/3He and stable isotopes like 18 0 provide information on circulation and residence times of water masses. Tritium decays with a half life time of 12.43 years into stable 3He. Thus, the ratioTritium/ 3He can be used to determine the last time at which a water molecule has been in contact with the atmosphere. The stable isotope 18 0 , in combination with salinity, is well suited to separate river water and sea ice meltwater fractions within the Arctic Ocean. High latitude river runoff is marked by low 18 0/160 values, whereas in sea ice this ratio is primarily determined by the generally higher value of the freezing sea water. Members of the Lamont-Doherty Earth Observatory of the Columbia University (LDEO) and of the Institut fur Umweltphysik der Universitat Heidelberg (IUP) have collected over 800 Tritium, Helium an 18 0 samples. The water was stored in 40 ml pinched-off copper tubes, 1 liter glass bottles and 50 ml glass bottles. The samples will be analysed at LDEO and IUP both using fully automated isotope mass spectrometers. Precision of ±0.2% for the 3He/4He ratio and of ±2% for Tritium are routinely achieved. The stable isotope ratio of 18 0/160 will be obtained to an accuracy of ±0.02 to 0.03 0/00

3.1.7 Inorganic Minor Element Tracers

At all stations samples were taken for the Oregon State University to determine inorganic minor element tracers such as Rb, Cs, Ba, Sr, Li, B, F, I, Cd and isotopes of Sr and Li. Results of these analyses will be used to trace river waters along their paths in the Arctic Ocean.

15 3.1.8 Volatile Halogenated Organic Compounds

Volatile halogenated compounds are ubiquitous trace constituents of the oceans and the atmosphere. Among others halogens have the ability to affect the atmospheric ozone budget. Bromine is found most often in compounds originating from the ocean although the bromide concentration is much lower than that of chloride in sea water. Besides of brominated substances, chlorinated and iodinated ones are also present in the oceans. But no reliable estimates are actually available on the strength of the oceanic source. Organo-chlorine compounds in the marine environment are primarily attributed to human activities (pesticides, anti-freezing agents etc.), but in addition both, macroalgae and microalgae produce chlorinated compounds such as chloroform, trichlorethylene and perchlorethylene which are emitted from the ocean into the atmosphere, where they participate in various chemical reactions. Iodinated compounds have relatively short lifetimes in the troposphere, whereas chlorinated and brominated ones may even reach the stratosphere. During this cruise the distribution of halocarbons in the water column, the formation of halocarbons by pelagic and ice-living organisms and the flux of halocarbons across the air-sea interface were investigated. For these purposes sea water samples were collected from the rosette sampler on most of the ship's transects. Water was drawn in 100 ml glass syringes. The compounds were pre-concentrated with a purge and trap system prior to analysis with capillary gas chromatography. Due to the analysis time of 28 minutes samples could be taken from only 12 different depths. To avoid contamination of the purge and trap system with micro-organisms, all samples were filtered through a GFC filter prior to analysis. The formation of naturally produced halocarbons by different sized micro-organisms, were studied. Surface water was filtered through a unit with 5 different sized filters: 1000, 150, 12, 2 an 0.4 mm. Each fraction contained 250 ml of water. After the filtration of approximately 25 I of water, during a period of 4 hours, the water from the different compartments was put in 60 ml glass bottles. Care was taken to avoid any headspace volum in Oder to minimise losses of the compounds to air. The glass bottles were put into a refrigerator, with a mean temperature of 0°C, and a light intensity of approximately 20 - 40 mmol photons m-2 s-1. The formation of halocarbons was measured after 6 to 60 hours after sampling. Prior to injection, the water was filtered through a GFC filter, and the chlorophyll content was measured by standard procedures. The lower most 20 cm of icecores were collected at 16 stations in order to determine the formation of halocarbons by ice-living organisms. 10 cm pieces of ice were put into air tight glass jars, which were also put into the refrigerator. Air samples were collected at different time intervalls. Fluxes of the compounds across the air-sea interface were derived with the additional aid of the air samples. We found the mean surface concentrations of the biogenic halocarbons to be relatively low during the entire cruise. Bromoform is generally produced by macro ­ algae in rather high quantities and to a lesser extent by pelagic organisms. Since this substance has a relatively long half-life time in sea water, it can be traced throughout the entire water mass. But during the cruise the mean surface water concentration was less than 1 ng/l, which is rather low in comparison to 4 ng/l measured in the Arctic Ocean 1991. And at depths below the productive zone the concentration were frequently below the detection limit (100 pg/l). In contrast iodinated substances were found more frequently this year than in 1991. An example of the distribution pattern of iodinated compounds is shown in Fig. 6.

16 Depth (m) 200 through - temperature - to matter Before Water hydrochlorid precombusted of amount cycles. The GF/F), Lena, produce dioxide leads 3.1.9 Figure

Humic

the dissolved Bremerhaven

ml DOM

to

Yenissey moleculare Dissolved

samples filled of 6: extraction of

DOM Substances the of in substances

substances

The

several 0.01

in DOM the

into XAD-columns catalytic organic marine

acid

distribution Methyl in

N glass

the and

global

were

precombusted

the

HOI is structures of

resins Organic

(

transported

Merck the

Ob. samples

ecosystems which

(HS).

iodide fibre world which oxidation). carbon to

filtered

atmosphere.

humic remove From

was

of

filters Here

distribution

are

within

suprapur). oceans of are Methyliodide

Matter

will

eluted (DOC)

through our DOM substances, mostly

ampoules

preperatory

into retained salt. (

be helps samples Whatman 24 24.07

analysed during has

the for 200 (DOM)

The Of h. Distance which

(ng/I) resistant

to 20 precombusted

-

17

Thereafter,

further the 01 Arctic

major across from

determine and resins

I . its

we 08.96 seawater

across

work of GF/C).

will same (km)

for: 250

way through

stored

the intend

the to Ocean

experiments importance

the were

had be St.Anna

microbial

carbon-cycle.

acidified order 20

St. the the

samples to determined in

to

stored 300 glas

through I

Anna

a investigate global columns were be

- frozen of

the

Voronin

attacks. done fibre

are magnitude filtrates on at

and

acidified were Arctic

carbon

the -30°C.

the state.

filters Humification, already processes

were Voronin by

troughs

the

filtered Siberian A

Ocean.

bioavailability. were

HTCO

considerable

and

The Upon modification to

rinsed ( as

Whatman

on pH2

Troughs

nitrogen through organic passed

carbon

board. which return rivers

(high

with with e.g.

The fraction eluted with base is a so called hydrophobic acid (HbA), and the fraction eluted thereafter with methanol is considered as hydrophobic neutral (HbN). - Amino acids in the water samples and in the XAD-fractions with the aid of HPLC after precolumn derivatisation with o-pthalaldehyde (OPA) and N-lsobuyryl-L- cystein (IBLC). This method permits the separation of all important D- and L-amino acids. Free amino acids (FAA) will be measured directly, combined amino acids will be hydrolysed with 6 N hydrochloric acid. 3-D-fluorescense spectra of the DOM were recorded for further characterization. Filtered water samples were measured in 1 cm cuvettes with a Perkin Elmer LS 50 fluorometer. The excitation range was 200 - 350 nm, the emission range was 230 - 450 nm. Experiments on the bioavailability of HS were conducted already on board. Natural bacterial population of the corresponding water sample were extracted gently by gravity filtration (0,2 [l). The bacteria were then added to artificial seawater supplemented with HS as the only carbon source. To assess the limiting parameters experiments were conducted with different nutrient and HS concentrations. Incubations were done near in situ temperatures ( 0- -1°C). During two weeks subsamples were taken in certain time intervalls for later analysis of DOC, bacterial numbers and bacterial growth rate

3.1.10 Physical and Chemical Speciation of Plutonium (and Americium) in the Arctic Water Column

The main objective of the Plutonium and Americium analyses is to examine the kinetics of transuranium nuclides reactivity within the Arctic water column and how they are influenced by the chemical speciation and association with suspended particulate and colloidal matter. The overall goal is to achieve an understanding of the basic processes governing the horizontal and vertical dispersion of Plutonium and Americium under extreme environmental conditions.

Particular emphasis was put on the determination of high resolution vertical profiles of Plutonium and Americium in the shelf seas and the central Arctic Ocean, the partition of these radionuclides between filtered and suspended particulate phases, the fraction in colloidal form and the size and composition of the latter. The aim was to obtain a reliable database on radionuclide concentrations in the various water masses, as well as experimental values for the parameters controlling the transfer rate between the water column and the sediment compartments. The values will ultimately be used to refine and validate an existing compartment model covering the Arctic seas and to predict individual and collective doeses from potential discharges of radioactivity to these seas. The latter is the goal of a multinational collaboration (ARMARA) involving thirteen European institutions. A total of 75 sea water samples were collected from different depths at 41 stations along the ship's transects. Near-surface sea water samples were taken from approx. 10 m below the surface using the membrane pump located at the ship's bow, while deep waters were retrieved using 10 I Niskin bottles mounted in a rosette sampler. In all cases, samples were promptly filtered in situ through membrane (screen) filters (0.45 pm) and the filters were retained for analysis of radionuclide content in the suspended particulate fraction. The filtered fractions were then pre-concentrated onboard either for subsequent total Plutonium (and Americium) analysis by co-precipitation with ferrix hydroxide according to the method of Wong et al. or for Plutonium oxidation state distribution analysis using a scaled-up version of the rare-earth fluoride co-precipitation technique of Lovett and Nelson.

18 Along the hydrographic section between Franz-Josef-Land and Severnaya Zemlya, a total of 32 samples were collected at 14 stations. Sampling concentrated along the eastern flanks of the St. Anna and Voronin Troughs, where water mass outflow from the shelves was anticipated. The analyses included the determination of total Plutonium concentrations, the examination of the oxidation state distribution of Plutonium in filtered sea water at two vertical profiles in the St. Anna Trough and the size fractionation of particle-bound Plutonium in surface waters, including the colloidal component. The oxidation state distribution of Plutonium in filtered water was examined at two high-resolution vertical profiles taken during the second hydrographic section between the Nansen and Makarov Basins. The samples were collected from two stations located at the deepest parts of the Nansen and Amundsen Basins. Each profile consisted of samples retrieved from eight depths ranging from 10 to 4500 m. On the sections across the Lomonosov Ridge and across the continental slope in the Laptev Sea region, a total of 28 surface and sub-surface samples were taken for total Plutonium and Americium concentrations. Two large volume samples were also collected in order to examine the size fractionation of the colloidal component of these radionuclides by tangential-flow ultrafiltration. A considerable part of the analysis was conducted already on board of the ship and the final analysis of the samples will be carried out at the Department of Experimental Physics, University College Dublin. It is estimated that this will involve a total about 250 separate radiochemical determinations, including reagent blanks and international intercomparisons. Plutonium concentrations in the speciation samples will be determined by high-resolution mass spectrometry, while total Plutonium and Americium samples will be determined using a combination of high- resolution alpha spectrometry and high-resolution mass spectrometry.

3.1.11 Acoustic Doppler Current Profiler (ADCP)

CTD measurements combined with an ADCP were carried out to detect details of water motions associated with small scale temperatures and salinity structures. ADCP/CTD observations were made on the zonal section across the Kara Sea across the continental slope in the Kara Sea sector and across the Lomonosov Ridge between the Amundsen and Makarov Basins.

Two ADCP, one measuring at 150 KHz and the other a 600 kHz, were applied. The first has a range of 250 m, the second a range of 60 m. In the interior of the water column, only relative motions (shears) associated with the interleaving structures can be detected. However, at almost all stations the instruments were run also on a bottom track mode to record motions at the shelf break and at the slopes of the Lomonosov Ridge. During the cruise 54 casts with the SeaBird CTD and a RD- ADCP were accomplished. The winch speed was about 40 cm/s in order to get detailed measurements of the fine structure and to achieve a low noise level for the ADCP.

3.1.12 Shipborne ADCP

Vertical profiles of the ocean currents in the topmost 250-350 m of the water column were obtained at most of the hydrographic stations. The measurements consist of time series which are made up by vertical profiles of one-minute vector-average current values. Typically 2-4 hours long, records were obtained. One observational period exceeded 15 hours in time. Some results from the 15-hour record are presented in Fig. 7. These measurements will supplement

19 other recent observations of the vertical shear in the upper few hundred meters of the Arctic Ocean. Similar data were obtained from POLARSTERN in the Eurasian Basin in 1993 and 1995, and data have been acquired in the Canadian Basin during summer 1996 by a US Navy submarine. Vertical shear can be used in conjunction with CTD measurements to estimate vertical mixing parameters and to derive vertical fluxes of heat and salt in the upper ocean.

- - - East-West Current North-South Current

/ Y i

234.40 234.80 235.20 Day of Year

Figure 7: An example of shipborne Doppler current measurements below the mixed layer

3.1.13 Optics

The optical characteristics of the sea water affect the production of phytoplankton and the absorption of solar radiation in the upper layers of the water column. Ocean colour is furthermore utilized for optical remote sensing in order to determine the surface chlorophyll. Therefore, measurements have been conducted

to describe optical properties in the Arctic Ocean surface water and to explain the observed distributions of chlorophyll, oxygen and phosphate in Arctic surface waters.

Optical measurements in the upper 60 m of the water column were performed at 44 CTD stations where chlorophyll was also analysed.

The following devices were applied:

Quanta meters for underwater irradiance measurements in the visible wavelength interval of 350-700 nm. One plane quanta meter for relative irradiance. One LiCor spherical quanta meter for the scalar irradiance of the total flux of photons to a sphere (PAR-Photosynthetic Available Radiation). Both were lowered on the same frame equipped with a pressure sensor.

Secchi disc of 50 cm diameter for Secchi depth readings of the total backscattered light.

20 Colour Index meter to measure the radiance of the backscattered light close to the surface for three different wavelengths (450, 510, 550 nm).

Quantum sensor to measure Photosynthetic Photon Flux Density (PPFD) in the atmosphere as reference during the underwater measurements.

The estimate of the Secchi depth by eye was made at about 6 m above the sea surface. Quanta measurements were mostly made during overcast conditions. The quanta meter readings will be analysed together with the readings of the deck quanta. The incoming daylight during station time varied between 942 and 51 pmol m-2s-i. As a result of absorption and scattering of the solar flux the irradiance diminishes in an approximately exponential manner. The exponential decrease of quanta at two stations is shown in Fig. 8. Station 29 has more chlorophyll in the upper oceanic layer than station 80, Secchi depths readings in Arctic waters are highly dependent on the particle content of the water and less on dissolved (yellow) substances. The particles could be of both organic and inorganic origin. The Secchi depth (Zs) gives a rather good approximation of the light attenuation.

ARK XII STATION 029 ARK XII STATION 080

PAR IrredUne* (mewl w2s-!> PAR hnedUAC* (mmol e-le-1) 200 300

Figure 8: Vertical profiles of the photosynthetic available radiation (PAR)

The Colour Index meter is designed to measure the underwater light regime independent of clouds, sun elevation, waves and ship shading. It contains two photocells equipped with interference filters of 450 nm, 520 nm and 550 nm that face downward to record nadir radiances. The Colour Index, defined as the radiance of blue (450 nm)/radiance of green (520 nm) yields information about the quanta distribution in the whole euphotic zone. Thus, from the colour index it is possible to calculate how deep light penetrates. The averaged colour index for all 44 stations is 2.14 at 1.5 m depth. The depth of the euphotic zone calculated from the colour index for all 44 stations is 60 m.

3.1.14 Ocean Moorings

Three highly instrumented moorings had been deployed one year ago at the continental slope of the Amundsen and Makarov Basins and at the Eurasian side of the Lomonosov Ridge (Fig. 2) at depths around 1700 m. Each mooring was equipped with current meters at 100, 270, 700, 1100 meters depth and at 20 meters above the bottom. At the two uppermost and at the deepest levels Sea Bird SBE-16 (SeaCats) instruments were also installed to measure the

21 conductivity and temperature. The depths were chosen to monitor the halocline (100 m), the warm Atlantic core water (270 m), the Barents Sea inflow (700 m and 1100 m) and to detect currents of dense bottom water originating from the shelves. Two of the moorings carried upward looking sonars to determine the draft of sea ice. The mooring at the Lomonosov Ridge was furthermore equipped with two sediment traps at 150 m depths and at 150 m above the bottom. The current meters and the SeaCats of all moorings and one upward looking sonar have operated continuously. Each sediment trap has collected twelve monthly samples. The recovered instruments will be calibrated and the data will be reduced by the owners of the various instruments. Preliminary current meter data (converted onboard) are portrayed in Fig.9.

currents from mooring LOMO-2 '95 nominal depth 116 m.

22/08/95 21/09/95 21/10/95 20/11/95 50 t

25 - 25 -■ 25 -

50 - 50 4 50 4 22/08/95 21/09/95 21/10/95 20/11/95

Figure 9: 3 days time series of current vectors at the mooring LOMO-2

3.2 Oceanographic / Meteorological Buoys (AWI, AARI)

Eight drifting surface buoys were deployed at positions indicated in Fig. 10. The positions of the drifting buoys are determined by the Global Positioning System (GPS). All buoys, except one, are equipped with sensors for air temperature and air pressure. Two buoys are additionally equipped with ice thickness sensors, two others with anemometers at 2 m height. Five buoys have been deployed in an array of 160 km diameter. The central two buoys carry a 200 m long subsurface chain with sensors for water temperature, conductivity, pressure and current velocity. These two buoys were deployed 8 km apart on one large ice floe in order to record small scale coherent oceanic features. All data are transferred in real time to the Global Telecommunication System (GTS) and are thus available for weather forecast purposes.

22 • Oceanogr.-buoys

Figure 10: Positions of automatic meteorological surface buoys (triangles) and two oceanographic systems (dot)

3.3 The Atmospheric Boundary Layer (AWI, IMKH, AERODATA, AARI, OAP)

Fluctuations of the wind velocity, the air temperature and moisture were measured to document the structure of turbulence in the polar atmosphere and to improve the parameterization of the subgridscale processes in atmospheric models of different spatial resolution. Measurements were carried out with the aid of a new sophisticated instrument, the HELIPOD, which is mounted on a 15 m long cable below the cabin of a helicopter and with a turbulence measuring system (TMS) which is installed at a vertical mast at the ship's bow crane. The TMS records turbulent fluxes of heat and momentum in 5 different levels between 3 m and 20 m height above the sea surface with sonic anemometers / thermometers. And humidity fluctuations are detected by a Lyman alpha sensor at 3 m height. In addition the absolute humidity is measured by a dew point mirror and the vertical profiles of air temperature are obtained from PT-100 temperature sensors also at 5 levels. The HELIPOD is able to measure wind vector, air temperature and moisture fluctuations with a time resolution of 100 Hz. Since the motions of the sonde are recorded simultaneously by special devices accurate values of the turbulent quantities can be determined. The system is designed, to work autonomously. To correct for any time drift of the fast sensors highly stable slow sensors are measuring temperature and relative humidity in parallel. During Arctic '96 the TMS could be operated at 35 ship stations on 24 days. The minimum observational time lasted about 2.5 hours in order to achieve a satisfactory statistical accuracy. 24 HELIPOD flights were carried out on 20 days. Flight patterns to determine vertical flux profiles and surface fluxes are portrayed in Fig. 11. Surface fluxes have been mainly determined from flights in about 10 m height, for horizontal averages of more or less 30 km. The ice topography was measured simultaneously by a laser altimeter. Vertical profiles of the fluxes have

23 been gained from box patterns with side lenghts of 8 km. The flight levels ranged from 7.5 m height to the top of the atmospheric boundary layer (approx. 100- 200 m).

Longitude / (deg E) 129.3 129.8

77.681

77.625 -< -1 1.7 Distance E/W / km ARK—XII: Flight # 22

Longitude / (deg E) 141.3 142.9 144.5 81.15

80.96

-20.6 80.78 -27.7 Distance E/W / km ARK—XII: Flight # 17

Figure 11: Actual helicopter flight pattern. Repeat tracks refer to different flight levels

Turbulence measurements could be made on a large part of POLARSTERN's route (Fig. 12) so that the data are representative for summertime atmospheric conditions over the European Arctic Ocean. Most of the observations were carried out when ice concentrations ranged above 80 %. Nevertheless inhomogeneous surface temperatures prevailed due to changes of ice thickness and to the effects of leads. Furthermore, the low level air flow was affected by the surface roughness caused by ice ridges and the edges of ice floes. Consequently, the surface layer was frequently well mixed while the upper part of the atmospheric boundary layer starting at 20 to 30 m height was stably stratified. In a few cases slightly stable or unstable density distributions were met also near the lower boundary of the atmosphere.

24 TMSandHEUPOD mtasttrments. ARKXIIfrom 25.07.96 to 05 09.96

• TMS Figure 12: Positions where turbulence measurements were carried out with the HEUPOD (triangles) and with the profile mast at the ship's bow crane (dots)

Typical profiles of the turbulent fluxes are shown for two days (July 30 and August 20), when simultaneous measurements were carried out with the TMS and the HEUPOD (Fig. 13).

x % e

100

E s

o * 40 O 50

VP so

■ 03 . * " GO& ■ .* 0 5 0 5 heal flux in W m"2 beat flux in W m"2 August 20 July 30

• r * I 50 = 3A,

-0 15 -010 -0 05 0t -008 -006 -004 -002 0^ momcnium flux in N m2 momentum flux m Nm2

Figure 13: Vertical distributions of turbulent heat and momentum fluxes

25 The TMS values represent time averaged data over a period of about 45 minutes, the HELIPOD-data are horizontally averaged over some 30 km. The momentum fluxes of the two different systems fit rather well while the sensible heat fluxes seem to indicate some disagreement. But detailed inspections of the boundary conditions at the ship convinced us that local surface temperatures which differ distinctly from area averages have caused the observed differences. In particular on 20 August the ship's bow was located over a small lead which obviously created a local low level internal boundary layer. In several other cases out of a total of ten the results of both systems agreed closely. Six experiments have been carried out to study internal boundary layers, which evolve during the passage of the airflow from the ice edge towards open water. For these purposes POLARSTERN was moved at a low speed of about 0.5 knots upwind across the lead towards the ice edge. During the study on 8 August the water surface temperature was lower than the ice surface temperature so that a thin stable layer was present downstream over the water as illustrated in Fig. 14, which displays the momentum and sensible heat fluxes, the local drag coefficients (defined as the square of local friction velocity devided by the local windspeed) and the local stability function 1/L (L is the Monin Obukhov stability length), as observed with the TMS.

4—H z = 20.2 m G—B z = 13.0 m A—A z = 8.0 m 0—0 z = 5.4 m x —x z = 3.8m

2000 1500 1000 500 0 distance from the icefloein m

Figure 14: Turbulent momentum (upper panel) and heat (lower panel) fluxes as well as the drag coefficients (Cd) and the static stability function (1/L). For details see text

26 3.4 Sea Ice Physics and Biology (AWI, IPO, AARI, GU, HUT, SPRI)

3.4.1 Visual Ice Observations

Visual ice observations were made from the ship's bridge every two hours when steaming through the ice. Concentrations of different ice types, ice thickness, snow thickness, flow size, lead width, melt pond distribution and ridging characteristics were observed. In addition, concentration of the sediment laden ice and the amount of ice algae were estimated. The total ice concentration versus time is displayed on Fig. 15.

qqOOqOOOOOOOO

Figure 15: Total ice concentration

After 15 August the formation of new thin ice (Fig. 16) began already.

if O C thin ice % O 10

0 ^OOOOOOOOOOOOOOOOOOOOO O i i i-i 24 Jul 29 Jut 03. Aug 08. Aug 13 Aug 18. Aug 23. Aug 28 Aug 02. Sep 07. Sep

Figure 16: Concentration of thin ice

The main feature on Figure 15 is the low concentration between 9 and 15 August during the northern most section of the cruise which is also obvious on the AVHRR image in Fig. 17. In this area second-year or multiyear ice was predominant (Fig. 18) and the snow cover amounted to 40 cm. According to the one year's drift of three ARGOS surface buoys (Fig. 19) the sea ice we met in the most northern area was formed in the Laptev Sea area at least one year ago. Summer surface melting conditions were observed only in the northern Kara Sea and in the southern Nansen Basin.

27 Figure 17: AVHRR image of the expedition area; cruise track: white line

28 |oC 2nd and multiyear %| foo O 80 o o 60 -

40

20 »» o . °oo ° oo oo o * 0 ^ OO> l*— ❖< I OOOOOOO o OoOO I 03 Aug 18. Aug 13 Aug 18. Aug 23. Aug 28. Aug 02. Sep 07. Sep

Figure 18: Concentration of second and multiyear ice

120"

Figure 19: Cruise track with indications of Julian days, three straight lines are connecting the starting and actual positions of ARGOS-tracked buoys

29 3.4.2 On Ice Measurements

Measurements on the ice were performed on 37 floes. The geographical locations of these stations are indicated in Fig. 19. Ice station work comprised ice thickness measurements, ridge sail levelling and partly ice core drilling. The cruise track provided a unique opportunity to study different states of the ice cover upstream of the Transpolar Drift.

3.4.3 Laser Altimetry

The ice surface topography was frequently determined with a vertically downward looking laser altimeter mounted on a helicopter. The instrument was flown with a speed of 80 kn at a height of 30 m above the surface. The pixel spacing was about 0.02 m. Typical flight patterns were equilateral with a side length of 20 nautical miles. 23 flights were performed with a total profile length of about 2000 km. Additionally, some laser altimeter data were obtained during the HELIPOD flights. The data quality is expected to be high due to the absence of melt ponds and to the closed snow cover. The measurements will be primarily analysed for pressure ridge statistics. The data will also serve as ground truth values for satellite radar altimeter measurements as well as for comparisons with the ice draft values derived from the upward looking sonars (ULS) of the ocean moorings. A ridge height distribution for a flight across one mooring site is demonstrated on Fig. 20. The height distribution will be compared to the keel depth time series measured by the moored ULS.

L±J , i . , i ■ 0.30 Laser flight LOMO t 0.25 - n Length:Length: 156156 kmkm r ; No.No. ofof ridges:ridges: 839839 : ^ 0.20- MeanMean height:height: 1.15m1.15 m - I o,sJ 1 I- I ; , ! u- o.io- r

0.05-i -y-| r

0.00 —n------“HT~l~fT~nlifarm -ri | lnnn i rTp i i i \ i i i i - 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Ridge height, m

Figure 20: Ridge height distribution obtained from a laser altimeter flight

3.4.4 Ice and Snow Thickness

At 35 positions ice thickness was measured along linear profiles covering both level and deformed ice by means of an electromagnetic inductive (EM) technique. The EM instrument (coil spacing 3.66 m, signal frequency 9.8 kHz) was mounted into a kajak which was pulled over the ice. On average, the thickness profiles extended over at least 1000 m with a point spacing of 5 m. In addition, snow thickness and surface elevation (by means of levelling) were determined with a similar spacing along the first 200 m of the profiles and ice thickness was measured

30 along these short sections by drilling at 20 m distance intervalls to calibrate the EM soundings. The mean and modal total thickness for all stations as well as the standard deviation together with minimum and maximum values are shown in Fig. 21. These thicknesses compare rather well with the mean ice thickness determined from video images taken at the ship's bridge. From our observations six different ice regimes can be distinguished which are indicated in Table 1 and displayed in Fig. 22.

Mean Mode

111111111 i 1111 [i 1111 > i > • I ‘0 230 Station (Julian Day)

Figure 21: The thickness distribution along the cruise track

Thickness, m

1.0-f —— Region 1, n = 576 Region2,

-- 0.5 *5 0.5-

0.0 —ij —— Region3, n = 967 ...... Region4, n a 782 - - - Region 5, n = 3655 - 0.5 o 0.5

1.0- Region6. n « 1189

- 0.5 o 0.5-

>- 0.0 0.0 -1

Thickness, m

Figure 22: Standardized ice thickness spectra for 6 different regions of the Arctic Ocean

31 All sampled floes were covered by old snow and in the northerly regions also by fresh snow on top. The snow was thickest around ridges, thus smoothing their relief. Measured mean snow thicknesses and their standard deviations are also listed in Table 1. The mean density of 31 samples of old snow was 407 ^-73 kg/m3-

Table 1: Subdivision of the cruise track into six regions showing different ice and snow thickness characteristics (see also Figure 21)

Reqion Stations Mean Total Mode Mean Snow Std. dev. Thickness Thickness 1 Kara Sea 207-213 1.64+49% 0.8 0.08 0.10 2 Nansen Basin 214-216 2.37+48% 1,6 0.07 0.09 3 Transpolar Drift, west 216-221 2.50±38% 2 0.21 0.16 4 Transpolar Drift, east 222-227 3.02±33% 2,4 0.26 0.15 5 Transpolar Drift, south 229-243 2.1 3±31 % 1 .9 0.14 0.12 6 Laptev Sea 246-249 1,29±58% 1 ,3 0.10 0.06

3.4.5 Ridge Sail Profiles

The topography of the maximum height along pressure ridges was measured on most ice stations by a laser levelling device at 1 m intervals (Fig. 23). Generally data on ridges are obtained from transects across the ridges by aircraft laser altimetry and keel depths are measured by submarine sonars so that the sail heights or keel depths are random samples of the actual values. With the aid of the sail profile statistics these data may be converted into more realistic ridge thickness values. A total number of 25 ridges with a total length of 3.2 km was investigated. The maximum elevation found was 5.6 m and the mean elevation amounted to 3.1 m. Cross-sectional profiles were measured on 7 stations with special emphasis on the detection of the snow thickness (Fig. 24).

ooooooooooo Nr>vw

Figure 23: Topography of a pressure ridge along its axis

32 Figure 24: Topography of snow covered pressure ridges across their axes

3.4.6 Trafficability

When POLARSTERN was steaming in the pack-ice ship performance data were analysed together with ice thickness, lead width, floe size and ridging information. A considerable portion of the icegoing time was needed for ramming as can be concluded from Fig. 25. However, significant correlations were observed neither between the ridging intensity and the number of rammings per nautical mile nor between the ship performance and ice thickness. This is due to the fact that the ship proceeded along leads, whenever possible. But the number of rammings clearly depends on the lead width (Fig. 26). When the latter was small and many floes were compressed the ship had to ram frequently and even got repeatedly stuck. From 21 to 31 August the ship got stuck 15 times. In addition to the ship's performance one hour observations were made for five different ice conditions for ice resistance calculations. During these occasions the local ice conditions and all ship-ice contact events were recorded, the thickness was monitored continuously and the thrust, propeller pitch and torque were logged in one minute intervals.

Time used to ramming

10 *k

Figure 25: Percentage of daily time required for ramming

33

A - 5.00 - 4.50 -0<>

I 3.50 - § 1.3.00 - O 8,2.50 1 2.00 t o o | 1.50 TO <, o O c 1.00 t o o O 0.50 T ^ o.oo 4------o— 0.00 0.05 0.15 0 20 Lead width (km)

Figure 26: Number of rammings per mile of progress versus lead width

Figure 27: Magnified AVHRR image distinctly showing long leads in the sea ice

34 3.4.7 Sea Ice Remote Sensing

A HRPT (High Resolution Picture Transmission) system on board POLARSTERN received AVHRR data of the NOAA-Satellites 12 and 14 from approximately 300 overpasses. The images were used to monitor the ice conditions along the cruise track and to support the ship's navigation. Later the scenes will be evaluated together with satellite data from the ERS-SAR and from the radar altimeter. An example of the obtained images is portrayed on Figure 17. The enlargement of the southern Laptev Sea on Fig. 27 reveals wide and rather long leads within the otherwise closed ice cover. This information was used to optimize the ship's route in these basically severe ice conditions. Comparing the track of POLARSTERN with the satellite image taken some hours earlier some hints on the ice drift can be obtained. In addition to the NOAA data 21 images from the OKEAN satellite were received and stored for later analysis. To improve the algorithms for satellite passive microwave signals of sea ice, radiometric measurements were performed near the ice surface. The passive microwave signal of first-year and second-year ice was measured at 15 stations at frequencies of 11, 21, 35 and 37 GHz with horizontal and vertical polarization under different environmental conditions (Table 2). 3 microwave- radiometers (11, 21, 35 GHz) of the University of Bern (Switzerland) and one of the Arctic and Antarctic Research Institute, St. Petersburg (Russia) were applied.

Table 2: Radiometer Stations

Station No. Date Radiometric Measurements

41/018 28.07. 11,21,35 GHz 20-70 deg., FY-ice,frozen puddle 41/022 30.07. 11,21,35 GHz 20-70 deg. 41/029 01.08. 11,21,35 GHz 20-70 deg. 41/043 05.08. 11,21,35 GHz 20-70 deg. 41/046 06.08. 11,21,35 GHz 20-70 deg., 50 deg. profile 12 m 41/048 07.08. 11,21,35 GHz 20-70 deg., profile 3 m 41/052 08.08. 11,21,35 GHz 20-70 deg., 50 deg.with and without fresh snow layer 41/055 09.08. 11,21,35 GHz 20-70 deg. 41/073 16.08. 11,21,35 GHz 20-70 deg., 50 deg.with and without metal sheet 41/080 19.08. 11,21,35,37 GHz 20-70 deg. 41/083 21.08. 11,21,35,37 GHz 20-70 deg., 50 deg. profile 10 m (11,21,35 GHz, snow thickness) 41/088 25.08. 11,21,35 GHz 20-70 deg., 40.50.60.70 deg. profiles 15 m, snow thickness 41/090 26.08. 11,21,35 GHz 20-70 deg., 20,45,55,60 deg. profiles 5 m, 50 deg. profile 15 m, snow thickness (new snow, refrozen snow) 41/100 02.09. 11,21,35 GHz 20-70 deg., 50 deg. profile 55 m, snow thickness 41/103 03.09. 11,21,35 GHz 20-70 deg., 50 deg. profile 40 m, 30.40.60.70 deg. profiles 3 m

35 The radiometers were installed on a sledge at a height of about 1.8 m over the ice surface. The angle of incidence could be changed between 20 and 70 degrees in steps of 5 degrees. Additionally, profile measurements with a typical point spacing of 0.5 m were performed to analyse lateral changes in the microwave emissivity. The microwave signals along these profiles correlated significantly with the snow thickness. Detailed values for two floes are reproduced in Tables 3 and 4 The signals of the different channels are obviously closely correlated.

Table 3: Correlation coefficients for measurements at station 41/103

11h 21h 35h 11v 21v 35v SnowTh 11 h 1.000 0.939 0.899 0.972 0.954 0.904 0.665 21 h 0.940 1.000 0.981 0.921 0.989 0.975 0.757 35h 0.899 0.981 1.000 0.879 0.970 0.995 0.786 11V 0.972 0.921 0.879 1.000 0.951 0.890 0.690 21 v 0.954 0.989 0.970 0.951 1.000 0.975 0.755 35v 0.904 0.975 0.995 0.890 0.975 1.000 0.783 SnT 0.665 0.757 0.786 0.690 0.755 0.783 1.000

Table 4: Correlation coefficients for measurements at station 41/100

11 h 21h 35h 11 v 21v 35v SnowTh 11 h 1.000 0.680 0.630 0.890 0.686 0.633 0.367 21 h 0.680 1.000 0.955 0.804 0.967 0.940 0.523 35h 0.630 0.955 1.000 0.730 0.933 0.977 0.446 11v 0.890 0.804 0.730 1.000 0.842 0.771 0.515 21 v 0.686 0.967 0.933 0.842 1.000 0.960 0.427 35v 0.633 0.940 0.977 0.771 0.960 1.000 0.410 SnT 0.367 0.523 0.446 0.515 0.427 0.410 1.000

36 3.4.8 Biological and Physical Sea Ice Properties

A total of 185 ice cores were taken at 23 locations for physical and biological investigations. Temperature, salinity, chlorophyll and meiofauna-organisms were determined. Grazing and growth rates of sea ice organisms were derived and cultures of sea ice organisms were established for future experiments. Three plankton samples were taken with a 20 pm net from the ice edge for comparisons with the pelagic community in the underlying water column. In addition, one sample was taken from new ice to investigate the colonisation by meiofauna organisms. Cores were drilled with a KOVACS ice corer (10 cm diameter). Ice temperatures were measured every 10 cm with a digital temperature probe inside the core immediately after drilling. The same core was then cut into 10 cm segments. The melted segments were analysed for salinity and chlorophyll. Additional ice cores from the same site were cut into 10 to 2 cm thick segments for investigations on sea ice biota. For meiofauna-studies, the segments were melted in an excess of 0,2 pm filtered sea water at 4°C to avoid osmotic stress to the organisms. After complete melting, the sample was concentrated over a 20 pm sieve and either sorted alive under a dissecting microscope or fixed with Bouin's solution or formalin (1% end- concentration) for later sorting and taxonomic studies. Cultures of sea ice organisms were established from melted samples in culture flasks under a light- dark-cycle of 12:12 hours. Average core salinities between 3 and 4 °/00 (Fig. 28) dominate the sample and the salinity profiles which are characteristic of summer desalinated ice, i.e. the upper 30 - 50 cm comprises very low salinities with slightly higher values below (Fig. 29). Four cores with average salinities < 2°/00, were taken from areas of refrozen melt ponds and one core with an average salinity of 5.2 °/00 was taken from a site near the floe edge. The temperature profiles were determined by the relatively high air temperature near the top and the freezing water temperature at the bottom. The density of core segments was calculated from volumetric and mass measurements. The average density for all segments was 876.3 kgnr3 with a maximum of 988.4 kgnr3 and a minimum of 716.9 kgnr3- All density profiles showed a trend of increasing density with core depth. From these bulk properties, the brine and gas volumes of the cores can be calculated.

Average Core Salinity / ppt

Figure 28: Mean Salinity distribution in sea ice cores

37 Bulk Salinity / ppt 0 2 4 6

o 120

Figure 29: Typical vertical salinity profile in sea ice during ARCTIC '96

At 17 stations, the temperature and salinity of the underlying water columns was measured using a portable conductivity-temperature (CD) device. The probe was passed through the bore hole on a graduated cable and the CD profile of the water was measured to a maximum depth of 15m. It was anticipated that a sharp halocline would be observed where fresh melt water overlies the more saline oceanic surface water. This feature was not observed at any of the stations and all profiles showed a uniform salinity over the full depth. Measured salinities ranged from 34.2%0 to 32.3%o. This absence of under ice melt water may be explained by the low surface ablation. The salinity of surface water along the cruise track (Fig. 30) is separated into two distinct groups; stations 207-220 with an average 33.9%o ±0.3 and stations 223-246 with an average 32.7%o ±0.3. The saline Barents Sea water (207 - 220) differs from the fresher surface layer which is likely to be modified by river run-off. Variability within these two groups is attributed to salinity variationes by melt water. The meiofauna community is dominated by ciliates but rotatoria and a few nematodes are also present as indicated in Fig. 31 and 32. Highest concentrations of organisms occur in the lowermost centimetres, but in core 208-07 a relatively high concentration of ciliates was also found in the upper 20 cm. Compared to earlier investigations, the abundance of metazoans in the ice community of these cores was lower, but wether this holds true for the whole region has to be seen from the remaining samples.

Julian Day

Figure 30: Surface water salinity along the cruise track

38 ARK 12 core 208-07 (41/010)

■ Nematoda H Rotatoria 20-40 □ Ciliata DU Copepoda

40-50

50-70

70-80

80-90

90-97

organisms/I

Figure 31: Depths distribution of the detected meiofauna in sea ice

ARK12 core 234-15 (41/083)

Rotatoria 30-50 Ciliata 50-70 HI Copepoda

70-90

90-110

9- 110-130

130-150

150-170

170-180

180-186

I I l | I'T T » \ I I I

Figure 32: Same as Fig. 31

39 Sea ice organisms are generally small in size due to the structure of their habitat, the brine pockets and channels inside the ice. Small protozoans and metazoans are regarded to have a disproportionately high rate of growth, metabolism and feeding, so their role in the "in ice food web" may be significant. Quantitative information about fluxes of organic carbon is restricted to measurements of total production of algae and bacteria using radioactive tracers. In most of these experiments ice organisms are kept in water, and the influence of ice is neglected.

Serial dilution experiments (Laundry and Hassett 1982) were conducted to estimate growth and feeding rates of ice organisms. For this purpose ice core sections were melted and sea salt was added. In 14 out of a total of 28 serial dilution experiments ice was present in the bottles. The experiments were run over periods of 3 to 10 days in an incubator at about -2°C and with a 20 - 40 mE m-2s-1 light intensity (PAR). Growth and grazing rates were calculated from biomass measurements (chlorophyll a) and cell counting (Fig. 33).

Regression Plot

0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 1 1,1 f r. undil. water Y = ,136 - ,176 * X; RA2 = ,91

doubbling time autotrophs organisms: 7,35 days, grazing rate: 5.68 days

Regression Plot

,12 -

0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 1 1,1 f r. undil. water Y = ,185 - ,169 * X; RA2 = ,957

doubbling time autotrophs organisms: 5.40 days, grazing rate: 5.91 days

Figure 33: Apparent growth in serial dilution experiments of ice organisms in pure water (top) and in water with ice (bottom)

40 3.5 Marine Biology (AWI, IPO, AARI, MMBI)

3.5.1 Phyto- and Zooplankton Ecology and Vertical Particle Flux

The distribution of phyto- and zooplankton in the water column was measured along the entire cruise track to extend the existing data bases of the Arctic shelf seas which were collected during the recent years. Of particular interest are: • regional differences in the seasonal distribution patterns of phyto- and protozooplankton as well as interannual variations, • the influence of the physical and chemical conditions and of nutrient availability on marine primary and secondary production, • the effects of sea ice on the pelagic food web, • the relationship between algal biomass and grazing pressure, • the vertical transport of organic matter into deeper layers and to the sea floor. At 54 oceanographic stations water samples were taken by the rosette sampling system. On each station subsamples were obtained at twelve discrete depths from the surface (2.5 m) down to the 300 m - layer for the following values: • Chl-a and phaeopigments: Pigment concentrations were measured on board with a Turner Design Fluorometer after filtration of the samples, homogenisation and cold extraction in 90% acetone. • Species abundance: Samples (ca. 200 ml) were fixed with hexamine-buffered 37,5% formalin (final concentration 1.0%). Microscopial analyses will be carried out in the home laboratory to investigate the distribution of the phytoplankton. At fewer stations additional samples were obtained in the upper 300 meters and in deeper layers to determine: • Particulate organic carbon / nitrogen and biogenic silica: Samples were filtered on precombusted glassfibre filters (POC/PON) or cellulose acetate filters (silicea) and stored at -20°C for later analysis in the home laboratory • Proto- and microzooplankton as well as fecal pellets. The samples were fixed with hexamine-buffered formalin (final concentration 2%) and will be analysed under the microscope at home laboratories. Furthermore at the position 81° 4.5'N / 138° 54.0'E two moored sediment-traps (150 m below the surface and 150 m above the sea floor) were recovered which had been deployed one year ago to analyse the seasonal vertical flux of matter down to the bottom. Both traps had functioned accurately and the secured samples were stored at 4°C, they will be analysed at home for the seasonal particle-flux. • Seston samples: The samples were filtered on preweighted glassfibre and stored at -20°C for later analysis in the home laboratory.

3.5.2 Biomass Distribution (chlorophyll-a)

In general the chlorophyll-a values were quite low at positions with a high ice coverage. The level of 1 mg/I was never exceeded except on station 3 (see below), therefore no bloom event could be observed. Almost no chlorophyll-a was found in depths larger than 100 m. On station 3 near Franz Joseph Land maximum-values for chlorophyll-a were detected (Fig. 34). The higher concentration was reached in the upper 20 m with 1.92 mg/I. Most stations were dominated by higher values in the upper 10 to 20 m and an exponential decrease in the depths below. The profile at station 12 is typical for the chlorophyll-a distribution on the transect across the St. Anna and Voronin Troughs.

41 In the deep basins the values were generally smaller than 0.2 pg/l. Only the values at station 58 with an ice concentration of only 20% surmounted this limit. The profile of station 62 under 60% ice cover is more typical for the inner Arctic. Continental slope: At the continental slope of the Laptev Sea chlorophyll-a increased again up to 0.4 mg/I in spite of an ice coverage of about 90%.

Chl a in (pg/l)

station 003 station 012

0.0 0.5 1.0 1.5 2.0

100

150

200 ' ►

250 ' '

300 ' >

Cl)D. station 058 station 062 Q 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0 50

100

150 150 '»

200

250

300 300 ♦ Figure 34: Vertical chlorophyll-a-distribution in 4 different regions

3.5.3 Taxonomy and Spatial Distribution of the Microplanktonic Community

The samples of sea water obtained during the entire cruise were analysed for mikroplankton. 200 ml of water were taken from the rosette sampler and preserved with 1% Lugo! solution. After 3 days of sedimentation the samples were concentrated to the volumes of 2 -3 ml. Identification and enumeration of microplanktonic organisms larger than 15 mm were carried out in the 0.1 ml counting chamber under the Amplival microscope. Size parameters of cells of flagellates, ciliates and of most diatoms were measured individually with the ocular micrometer at the magnification of 400 and then biovolumes were calculated, from individual cell volumes. Microplanktonic organisms smaller than 15 mm were also counted and measured. Some large representatives of the microplankton were enumerated and identified in the entire volume of samples. The data on the taxonomic composition, numbers and biomasses of microplanktonic organisms have been prepared during the cruise already.

42 132 species of microplanktonic organisms were identified in the present material namely 56 dinoflagellate species, 46 diatom species, 20 representatives of other taxonomical groups of flagellated protists, and 10 species of choreotrichous ciliates. Most of diatoms originated from ice ecosystems, whereas the overwhelming majority of flagellates and cilicates represented a typical pelagic assemblage inhabiting ice-free water. The composition of the dinoflagellates was typical for the North Atlantic pelagic ecosystem. Obviously microplanktonic biota are transferred to the Arctic Ocean with prevailing current systems. Here most of warm-water forms die off or transfer into resting stages. Both tend to sink towards deeper regions. The observed microplanktonic community may be subdivided into two major components representing sufficiently autonomous subsystems of the ecological metabolism which are related to different structural compartments of the water column. The first one, predominated by obligatory autotrophic diatom populations, is related to the ice habitats and its populations seed the topmost layers of the water column. The second one is an assemblage of mixotrophic and heterotrophic microplanktonic organisms inhabiting the water column. The open water parts were dominated by flagellates including the rich and rather diversified dinoflagellate assemblage. The dinoflagellates, together with the smallest fraction of heterotrophic flagellates, formed nearly all of the microplankton biomass. The irregularities of ice fields create a complicated network of downward fluxes of living, dying off and dead particulate matter. Therefore, the primary production by autotrophic populations of the ice and ice-related communities results in a series of rather short impulses of particulate organic matter in the top layer of the Arctic Ocean.

3.5.4 Epipelagic Community

31 vertical hauls with a Bongo net were made from 100 m depth to the sea surface, to study the communities of the zooplankton, the size structure of Calanus sp. assemblages as well as euphausiids and chaetognaths. The small copepods (prosome length < 0.5 mm) were abundant at all stations, with the exception of station 057, where the crustaceans from genus Calanus were more abundant. Appendicularians and ostracods were the second important taxonomical groups in term of abundance in the deep water area, and appendicularians and chaetognaths in the slope area. The four assemblages of Calanus sp. were distinguished by prosome length structure (Table 5): (I) Station 031 - one modal class ( 2.0 - 2.5 mm ). (II) Stations 036 - 042 - two modal classes (2.5 - 3.0 and 6.0 - 6.5 mm ). (III) Stations 044 - 057 - two modal classes ( 3.5 - 4.0 and 6.0 - 6.5 mm ) (IV) Stations 059 - 062 - one modal class (3.5 - 4.0 mm) The change of the size structure in Calanus sp. assemblages (Table 6) is a reflection of the differences in species and age composition of the assemblages.

43 Table 5: Size structure (%) in the Calanus sp. assemblages

Prosome Assemblage I Assemblage II Assemblage III Assemblage IV length, mm 1.00-1.50 1.1 1.4 1.51-2.00 2.2 5.8 1.4 2.01-2.50 34.0 14.2 5.6 8.3 2.51-3.00 28.6 26.6 9.4 12.5 3.00-3.50 26.4 10.8 17.5 31.2 3.51-4.00 1.1 10.8 34.8 34.4 4.01-4.50 3.3 3.3 6.9 6.2 4.51-5.00 7.5 2.7 2.1 5.01-5.50 1.1 1.1 0.9 1.0 5.51-6.00 1.1 5.0 5.4 2.1 6.01-6.50 8.3 10.0 6.51-7.00 1.1 5.0 4.0 1.1 7.01-7.50 1.6 1.1 Sum 100.0 100.0 100.0 100.0

Euphausiids were represented by the boreal Atlantic species, Thysanoessa longicaudata. The body length of specimens was 12.5 - 20.5 mm and the age was 2 - 4 years. The age structure of euphausiid pseudopopulations can be used to determine the age of theAtlantic water. Chaetognaths (arrow-worms) are important predators of the marine plankton communities. In the Arctic Ocean four species, Sagitta elegans, S. maxima, Eukrohnia hamata and E. bathypelagica. Sagitta elegans are dominant in the upper 100 m layer, and three other species reside in bathypelagic levels. The stages of maturity of Sagitta elegans at station 012 are reproduced in Table 6.

Table 6: Size structure of Sagitta elegans population at station 012

Body length, Stage I Stage II Stage III Stages l-ll-lll mm 10.0-15.0 2 (2.0 %) 2(1.1 %) 15.1-20.0 12 (11.8%) 12 (6.6 %) 20.1-25.0 28 (27.4 %) 2 (3.1 %) 30 (16.4%) 25.1-30.0 54 (52.9 %) 22 (32.3 %) 2 (16.6%) 78 (42.8 %) 30.1-35.0 4 (3.9 %) 38 (55.8 %) 8 (66.6 %) 50 (27.4 %) 35.1-40.0 2 (2.0 %) 6 (8.8 %) 1 (8.4 %) 9 (5.0 %) 40.1-45.1 45.1-50.0 1 (8.4 %) 1 (0.7 %) Sum 102 68 12 182

44 3.5.5 Meso- and Bathypelagic Communities

The general pattern of mesozooplankton distribution in the Arctic Ocean is well documented. Vertical changes in abundance, biomass and community structure are mostly a consequence of the marked stratification of the water column. The Polar Surface Water, Atlantic Layer and Polar Deep Water strongly differ in environmental factors and are inhabited by different zooplankton communities. The permanent ice coverage leads to a very short phytoplankton bloom and a low primary production. This results in a short pulsed flux of organic matter into the depth. Therefore the mesopelagic zooplankton community should be well adapted to long starvation periods. In contrast to the life cycles of intensively studied dominant epipelagic species, e.g. Calanus spp., the ecological role and the adaptive strategies of meso- and bathypelagic species in the Arctic are unknown. These organisms are mostly omnivorous or carnivorous and have to rely on living and dead organic material sinking down from the euphotic zone as a food resource. Because previous investigations have shown that these meso- and bathypelagic communities represent roughly 2/3 of all Arctic zooplankton, they significantly influence the energy flux within the Arctic marine ecosystem. They affect the remineralisation of nutrients within the water column. As predators they have an impact on herbivorous zooplankton populations. Omnivores transform sedimenting organic particles by feeding on detritus and faecal material (coprophagy). In addition, they produce faecal pellets themselves and may modify the transport mechanisms of particular organic carbon. Faecal pellets form a large fraction of the entire sedimenting matter. Due to their properties, i. e. size, density and high energy content, faecal pellets seem to be an important component in the nutrient regime of the deep sea. During this expedition the feeding ecology of meso- and bathypelagic zooplankton species as well as trophic relationships within the pelagic realm and the impact of this zooplankton community on the particle flux within the water column was studied. Additionally the competition between bathypelagic species was investigated. Along the cruise track 13 deep Bongo net hauls (mesh sizes 500/300 pm, 300/200|im) covering depths down to 2000 m were sampled in the Nansen, Amundsen and Makarov Basins. Individuals of abundant species were sorted out alive and kept in cold containers for later measurements and experiments. Gut evacuation rates (GER) of carnivorous, omnivorous or herbivorous feeding types were measured. The faecal material was collected and preserved for density measurements and LM and SEM investigations. During the following feeding experiments the same individuals where fed with in situ algae, faecal pellets from the herbivorous Calanus glacialis and undetermined detritus (collected by a small net with 70 pm mesh size attached to the bongo net). Again faecal material was collected and preserved for comparison with in situ pellets. The results will allow a qualitative statement on the feeding ecology of the investigated species and will deliver useful values to estimate the role of faecal pellets in the organic particle flux. Measurements of C/N, lipids and carbon isotope ratios will support the understanding of the trophic dynamics in the mesopelagic realm. The Bongo net samples also provided carnivorous specimens for starvation and feeding experiments on board, as well as for respiration measurements and biochemical analyses. The loss of lipids during starvation will allow to calculate individual energy demands. Respiration measurements offer a second independent opportunity to estimate energetic requirements. Feeding experiments conducted with different carnivorous and prey species elucidated the trophic relationships within the bathypelagic realm.

45 Additional material was collected by multiple opening/closing net (Multinet) hauls at five stations on the first transect across St. Anna Trough and Voronin Troughs (down to bottom) and at five stations in the Eurasian and Canadian Basins (maximum depth 3600 m). The samples were preserved in 4% formaline and will be analysed in the Shirshov Institute, Moscow to confirm the presumed vertical distribution and to complete previous investigations. The seven investigated mesopelagic copepod species were feeding on algae and faecal pellets, whereas epipelagic herbivorous copepods refused to consume faecal pellets. Detritus in form of marine snow was accepted by one mesopelagic species. Two mesopelagic species were omnivorous with carnivorous tendencies. Comparative studies of in situ faecal pellets have shown that freshly produced faecal material of copepods has a roughly uniform shape, but may differ in coloration, optical density and size. The size of a faecal pellet depends on the size of the animals, the gut fullness and the quantity of food. Colours of pellets may depend on the colour of guts. Since various copepods have a selective feeding behaviour the composition of faecal material is more or less specific for certain species. Density measurements will show, if the physical density of a faecal pellet is correlated to a species and its ontogenetic stages. The analyses of the net samples showed that carnivorous zooplankton species were abundant throughout the entire area. While hydromedusae, ctenophores and chaetognaths were distributed in patches, carnivorous copepods were present at all stations, inhabiting even the surface layer. The experiments especially focused on Euchaeta spp., since this genus dominates the Arctic carnivorous copepods.

46 4. Station List / Stationsiste

Station Cast Date Time Latitude Longitude Depth Activities

1 1 16.07.1996 05:19 68-04.5 12-13.2 185 CTO

2 16.07.1996 17:06 69-34.2 15-32.4 1900 2 CTD

3 1 24.07.1996 16:18 81-22.8 64-51.9 243 2CTD

4 1 24.07.1996 19:10 81-28.9 65-50.5 400 2CTD

5 1 24.07.1996 23:42 81-27.8 66-51.7 601 2 CTD, ES, MNf

6 1 25.07.1996 06:04 81-21.2 68-20.1 603 2 CTD, O

7 1 25.07.1996 14:33 81-13.4 70-03.6 603 2 CTD, ES, MNf, BNf, O

8 1 25.07.1996 20:50 81-15.7 70-56.8 615 2 CTD

9 1 26.07.1996 03:33 81-17.4 72-01.2 608 2 CTD

10 1 26.07.1996 09:46 81-22.6 72-55.5 598 2 CTD, ADCP, ES, O, 2 MNf

1 1 1 26.07.1996 19:08 81-23.6 73-18.8 567 2 CTD

12 1 27.07.1996 03:48 81-26.0 73-47.4 536 2 CTDES, O, BNf, ADCP

13 1 27.07.1996 15:37 81-26.1 74-12.9 432 2CTD

14 1 27.07.1996 18:15 81-25.6 74-24.3 395 2 CTD, BNf

15 1 27.07.1996 21:08 81-25.1 74-33.4 302 2CTD

16 1 28.07.1996 00:13 81-24.9 74-45.4 210 2CTD

17 1 28.07.1996 03:33 81-25.1 75-44.9 135 2CTD

18 1 28.07.1996 14:30 81-27.5 77-27.4 133 2 CTD, ES, O

19 1 29.07.1996 00:18 81-27.3 78-57.3 129 2 CTD

20 1 29.07.1996 05:30 81-27.3 80-25.2 201 CTD

21 1 29.07.1996 20:24 81-51.1 81-51.1 262 CTD, CTD + ADCP. O

22 1 30.07.1996 05:00 81-28.2 82-09.7 ES

23 1 30.07.1996 12:43 81-32.6 82-42.5 303 2 CTD, O

24 1 30.07.1996 17:36 81-42.0 82-08.9 344 2 CTD, ES, 2 MNf, BNf, O

25 1 31.07.1996 07:23 81-57.5 83-54.2 427 CTD, CTD + ADCP, ES.O

26 1 31.07.1996 18:02 81-50.0 85-59.6 381 2 CTD, O

27 1 01.08.1996 01:21 81-50.2 88-32.1 338 2 CTD

28 1 01.08.1996 04:10 81-48.4 89-18.4 203 2 CTD

29 1 01.08.1996 06:53 81-44.8 90-15.2 169 2 CTD, ES, O

30 1 01.08.1996 13:44 81-59.1 90-49.8 306 CTD

31 2 01.08.1996 16:21 82-01.7 90-50.0 497 2 CTD. BNf

32 1 01.08.1996 18:23 82-02.4 91-50.0 734 2CTD

33 1 01.08.1996 21:21 82-03.8 91-15.5 1006 CTD, CTD + ADCP, BNt

34 1 02.08.1996 02:34 82-05.5 91-30.1 1532 2 CTD

35 1 02.08.1996 08:21 82-11.5 91-54.4 2075 CTD, CTD + ADCP. ES, BNt, O

36 1 02.08.1996 18:11 82-20.0 91-59.8 2636 CTD, BNf

37 1 02.08.1996 23:57 82-31.0 92-17.8 2903 CTD

38 1 03.08.1996 05:39 82-40.4 92-31.3 3086 2 CTD, ES, BNf, O

38 2 03.08.1996 06:18 82-40.5 92-31.0 3086

39 1 03.08.1996 15:12 82-50.5 92-19.0 3261 CTD, ES

40 1 04.08.1996 01:35 83-11.9 94-02.1 3456 CTD, BNf 41 1 04.08.1996 10:01 83-30.0 96-34.8 3615 2 CTD, ES, 2 MNf, O

41 2 04.08.1996 12:44 83-29.0 96-33.9 3620

42 1 04.08.1996 23:23 83-49.8 98-23.7 3781 2 CTD, BNt, BNf

43 1 05.08.1996 13:29 84-12.1 100-32.0 3777 2 CTD, ES, O

43 2 05.08.1996 15:15 84-11.4 100-33.8 3780

47 44 1 05.08.1996 20:15 84-21.6 101-57.3 3764 2 CTD, BNf, O

44 2 05.08.1996 21:59 84-21.3 101-58.5 3761

45 1 06.08.1996 03:47 84-29.0 102-55.7 4016 CTD.CTD + ADCP

46 1 06.08.1996 10:31 84-33.3 103-33.2 4167 2 CTD, ES, BNf, TU, O

46 2 06.08.1996 12:21 84-33.1 103-36.4 4152 i

47 1 06.08.1996 17:47 84-41.7 104-22.1 3817 2 CTD

47 2 06.08.1996 19:47 84-41.7 104-21.3 4013

48 1 07.08.1996 00:42 84-46.7 105-46.6 3861 2 CTD.CTD + ADCP, BNf

48 2 07.08.1996 03:05 84-46.7 105-46.9 3863 2 MNf, ES, MNt, O 49 1 07.08.1996 13:20 84-60.0 107-37.7 3896 CTD, TU

50 2 07.08.1996 20:23 85-10.1 109-17.3 4422 2 CTD, BNf, O

51 1 08.08.1996 03:23 85-17.0 111-35.2 4363 CTO

52 2 08.08.1996 10:40 85-24.3 113-00.6 4424 2 CTD, ES, TU, 0

54 1 08.08.1996 20:41 85-45.5 117-28.2 4430 2 CTD, BNt 54 2 09.08.1996 01:54 85-45.8 117-43.5 4370

55 1 09.08.1996 07:59 85-52.7 121-14.1 4427 2 CTD, ES, MNt, TU, MNf, 55 2 09.08.1996 13:26 85-51.6 121-27.3 4413 BNf, O

56 1 09.08.1996 21:25 86-09.6 125-48.8 4384 2 CTD, MNf

56 2 10.08.1996 00:01 86-09.1 125-56.8 4384

57 1 10.08.1996 05:20 86-17.8 130-37.5 4339 CTD, BNf

58 10.08.1996 09:20 86-24.0 134-01.0 4066 2 CTD, ES, BNt, O

58 2 10.08.1996 11:27 86-23.5 134-11.4 3989 |

59 10.08.1996 17:16 86-25.8 136-02.6 3635 CTD, BNf

60 12.08.1996 11:06 86-26.2 138-53.5 3018 CTD, O

61 1 12.08.1996 14:34 86-27.8 140-11.5 2149 CTD, BNf

62 2 12.08.1996 18:55 86-26.7 141-06.2 1191 CTD, ADCP, O

63 2 13.08.1996 00:08 86-26.7 143-07.5 980 CTD.CTD + ADCP, BNf

64 2 13.08.1996 05:59 86-25.0 144-29.6 878 CTD, ADCP, ES,TU

65 1 13.08.1996 13:30 86-25.2 146-21.5 1063 CTD, ADCP, BNf, O 66 13.08.1996 20:39 86-21.4 148-07.1 988 CTD, ADCP

67 13.08.1996 21:43 86-19.3 150-49.8 1180 CTD, ADCP, BNf, O 68 14.08.1996 02:08 86-14.6 153-01.1 1513 CTD

69 14.08.1996 07:47 86-10.3 155-00.3 1340 ES, MNf, BNf, CTD, O

70 14.08.1996 13:10 85-59.5 159-58.4 2217 CTD, O

71 14.08.1996 18:25 85-58.0 160-30.6 2907 BNt, CTD

72 1 14.08.1996 21:26 85-49.7 161-40.9 3923 2 CTD, MNt, 2 MNf, O

72 2 15.08.1996 02:48 85-48.7 161-35.3 3928 73 16.08.1996 07:20 83-01.1 150-16.7 2630 2 CTD, ES, BNt, MNf, O

73 2 16.08.1996 11:36 83-00.3 150-17.7 2572

74 1 16.08.1996 17:17 82-49.7 147-41.4 2410 CTD, BNf 75 1 16.08.1996 23:54 82-39.3 145-27.3 2212 CTD 76 17.08.1996 05:40 82-31.5 143-33.6 1958 CTD, ES, MNt, 2 MNf, BNf, ! : BNt, TU, O 141-^3.2 77 18.08.1996 04:37 82-30.9 1487 CTD, ADCP

78 18.08.1996 13:32 82-30.1 140-03.0 2307 2 CTD, ES, O, ADCP, TU, BNf

78 3 18.08.1996 16:35 82-30.3 140-04.8 2318

79 18.08.1996 21:00 82-30.0 138-28.3 3599 CTD, ADCP

80 19.08.1996 05:09 82-29.8 136-24.8 3854 CTD, ES, O, 2MNf, MNt, BNf

81 19.08.1996 17:55 82-29.9 134-36.3 3891 CTD, ES, BNt

82 20.08.1996 04:50 82-31.3 132-57.2 3857 2 CTD, ES, MNf, TU, O

48 82 2 20.08.1996 08:08 82-31.5 132-53.8 3972

83 1 22.08.1996 06:00 81-59.6 131-40.1 295 ES.ADCP

83 23.08.1996 02:15 81-57.0 131-39.5 |

84 23.08.1996 09:36 81-04.4 138-55.3 1757 CTD, MNf, O

85 1 23.08.1996 14:02 81-03.9 138-01.6 2256 CTD, BNf

86 23.08.1996 19:49 81-04.5 136-45.3 2750 CTD

87 1 24.08.1996 01:56 81-04.6 135-41.4 3088 2 CTD, BNf

87 2 24.08.1996 03:55 81-05.0 135-41.0 3092

88 2 24.08.1996 23:27 81-04.6 139-42.8 1539 2 CTD, ADCP, BNf

89 1 25.08.1996 11:54 80-59.2 141-48.1 1697 CTD, ES, BNf, 0, ADCP, TU

90 1 26.08.1996 06:12 80-55.4 144-16.3 1846 CTD, ES, TU, MNf, BNf, 0

91 27.08.1996 11:34 80-31.1 148-35.8 1987 CTD, BNF, O

92 1 27.08.1996 18:25 80-25.8 149-29.2 1931 CTD

93 1 28.08.1996 18:51 80-19.4 150-06.9 1730 CTD, ADCP, O

94 1 29.08.1996 07:32 80-09.2 150-03.7 1299 CTD, ES, ADCP

95 1 29.08.1996 19:15 79-59.8 149-55.7 713 CTD, ADCP, BNf

96 30.08.1996 05:14 79-49.4 149-13.2 500 CTD 97 1 30.08.1996 09:44 79-39.5 148-40.5 288 CTD, ES, MNf, BNf, 0

98 1 01.09.1996 08:56 78-31.3 133-55.0 1828 CTD, ADCP, 0

99 1 01.09.1996 21:27 78-58.0 133-09.0 3004 CTD, 3 BNf 100 1 02.09.1996 09:05 78-49.4 132-48.7 2970 CTD, ES, TU, MNf, BNf, O

101 1 02.09.1996 13:33 78-43.0 132-40.3 2924 CTD, TU

102 1 02.09.1996 23:03 78-33.4 132-13.3 2303 CTD, BNf, ADCP

103 1 03.09.1996 06:16 78-27.1 132-39.9 2202 CTD.ADCP.ES

104 1 03.09.1996 12:20 78-17.6 132-32.5 1906 CTD, BNf, ADCP

105 1 03.09.1996 18:24 78-07.9 132-27.1 1264 CTD, ADCP

106 1 03.09.1996 23:18 78-01.8 132-22.4 548 CTD, ADCP, 0

107 1 04.09.1996 02:05 77-59.5 132-30.0 268 CTD 108 1 04.09.1996 10:00 77-41.6 129-45.9 iHJ 109 1 05.09.1996 05:20 77-27.2 125-08.1 iTUES 110 1 05.09.1996 12:10 77-26.1 125-24.4 TU

49 5. Participating Institutions / Beteiligte Institutionen

Acronym Institution No. of Participants

Germany AWI Alfred-Wegener-Institut 13 fur Polar- und Meeresfoischung Am Handelshafen 12 27570 Bremerhaven

AERODATA FlugmeStechnik GmbH 1 Forststr. 33 38108 Braunschweig

DWD Deutscher Wetterdienst 2 Seewetteramt Postfach 3011 90 20304 Hamburg

HSW Helicopter-Service 4 Wasserthal GmbH Katnerweg 43 22393 Hamburg

IfMH Institut fur Meereskunde 2 der Universitat Hamburg Troplowitzstr. 7 22529 Hamburg

IfMK Institut fiir Meereskunde 2 der Universitat Kiel Diistembrooker Weg 20 24105 Kiel

IMKH Institut fur Meereskundeund Klimatologie 2 der Universitat Hannover Herrenhauser Str. 2 30419 Hannover

IPO Institut fiir Polarbkologie 2 der Universitat Kiel Wischofstr. 1-3, Geb. 12 24148 Kiel

IUH Institut fiir Umweltphysik 1 der Universitat Heidelberg Im Neuenheimer Feld 366 69120 Heidelberg

Russia AARI Arctic and Antarctic 3 Research Institute 38, Ul. Bering 199226 St. Petersburg

50 MMBI Murmansk Marine Biological Institute 17, Vladimirskaya St. Murmansk 183010

OAP Obuchov Institute of Atmospheric Physics Pyzhevskiy Pereulok 3 109017 Moscow

Sweden GU Goteborg University Dept, of Oceanography Earth Science Centre 41381 Goteborg Dept, of Analytical and Marine Chemistry 41296 Goteborg

Canada BIO Bedford Institute of Oceanography P.O. Box 1006 Dartmouth N.S. B2Y 4A2

USA UW University of Washington, APL 1013 ME 40 th Seattle, WA 98105

ESR Earth & Space Research 1910 Fairview E., no. 102 Seattle, WA 98102-3699

SIO SCRIPPS Institution of Oceanography University of California, San Diego La Jolla, CA 92093-0214

LDEO Lamont-Doherty Earth Observatory of Columbia University RT9W Palisades, New York, 10964-8000

Finland HUT Helsinki University of Technology Tietotie 1 02150 Espoo

U.K. SPRI Scott Polar Research Institute University of Cambridge Lensfield Road Cambridge, CB21ER

Ireland UCD University College Dublin Dept, of Experimental Physics Belfield, Dublin 4

51 6 Participants / Fahrtteilnehmer

Name Institution Nationality

Abrahamsson, Katarina GU Swedish Andersson, Leif GU Swedish Ariel, Holger IPO German Augstein, Ernst AWI German BahrenfuG, Kristin IfMK German Bjork, Goran GU Swedish Buchner, Jurgen HSW German Bussmann, Ingeborg AWI German Chierici, Melissa GU Swedish Cohrs, Wolfgang AWI German Cottier, Finlo Robert SPRI British Darnall, Clark UW US American Darovskikh, Andrey AARI Russian Drubbisch, Ulrich IfMH German Druzhkov, Nikolay V. MMBI Russian Ekdahl, Anja GU Swedish Ekwurzel, Brenda LDEO USAmerican England, Joachim DWD German Fitznar, Hans-Peter AWI German Frank, Markus IUH German Fransson, Agneta GU Swedish Friedrich, Christine IPO German Grachev, Andrey OAP Russian Haas, Christian AWI German Hiller, Scott SIO USAmerican Kingston, Michael Patrick BIO Canadian Hofmann, Michael IMKH German Ivanov, Vladimir AARI Russian Johnsen, Klaus-Peter AWI German Jones, Edward Peter BIO Canadian Larsson, Anne-Marie GU Swedish Lensu, Mikko HUT Finnish Leon Vintro, Luis UCD Spanish Lundstrom, Volker HSW German Lupkes, Christof AWI German Muench, Robin ESR USAmerican NN (Ice Pilot) Murmansk Shipping Russian NN (Observer) Murmansk Shipping Russian Pivovarov, Sergey AARI Russian Riewesell, Christian HSW German Rudels, Bert IfMH Swedish Schauer, Ursula AWI German Scherzinger, Till AWI German Schreiber Detlev HSW German Schumann, Mathias AERODATA German Siebert, Holger IMKH German

52 Sonnabend, Hartmut DWD German Strohscher, Birgit AWI German Templin, Michael AWI German Timmermann, Axel AWI German Timofeev, Sergey MMBI Russian Weissenberger, Jurgen AWI German Wilhelm, Dietmar IfMK German Williams, Bob SIO USAmerican Zemlyak, Frank BIO Canadian

7. Ship's Crew / Schiffsbesatzung

Profession Name

01. Captain Greve, Ernst-Peter 02.1. Officer Pahl, Uwe 03.1. Officer Rodewald, Martin 04. Chief Engineer Knoop, Detlef 05.2 Officer Grundmann, Uwe 06.2 Officer Spielke, Steffen 07. Medical Doctor Bennemann, J. 08. Radioperator , Georg 09. 2 Engineer Erreth, Mon. Gyula 10. 2 Engineer Ziemann, Olaf 11. 2 Engineer Fleischer, Martin 12. Electronic Technician Lembke, Udo 13. Electronic Technician Muhle, Helmut 14. Electronic Technician Greitemann-Hackl, A. 15. Electronic Technician Roschinsky, Jorg 16. Electrician Muhle, Heiko 17. Boatswain Clasen, Burkhard 18. Carpenter Reise, Lutz 19. Sailor Winkler, Michael 20. Sailor Bindernagel, Knuth 21. Sailor Gil Iglesias, Luis 22. Sailor Pousada Martinez, S. 23. Sailor Kreis, Reinhard 24. Sailor Schultz, Ottomar 25. Sailor Burzan, G.-Ekkehard 26. Sailor Pulss, Horst 27. Technician Arias Iglesias, Enrique 28. Technician PreuBner, Jorg 29. Technician Ipsen, Michael 30. Technician Husung, Udo 31. Technician Grafe, Jens 32. Storekeeper Muller, Klaus 33. Chief Cook Haubold, Wolfgang

53 34. Cook Volske, Thomas 35. Cook Yavuz, Mustafa 36.1 Stewardess Jurgens, Monika 37. Stewardess/Nurse Dahn, Ulrike 38. Stewardess Czyborra, Barbel 39. Stewardess DeuG, Stefanie 40. Stewardess Neves, Alexandra 41. 2. Steward Huang, Wu Mei 42. 2. Steward Mui, Kee Fung 43. Laundryman Yu, Kwok Yuen

54 Folgende Hefte der Reihe „Berichte zur Polarforschung" sind bisher erschienen:

* Sonderheft Nr. 1/1981 - „Die Antarktis und ihr Lebensraum" Eine Einfuhrung fur Besucher - Herausgegeben im Auftrag von SCAR Heft Nr. 1/1982 - .Die Filchner-Schelfeis-Expedition 1980/81“ zusammengestellt von Heinz Kohnen * Heft-Nr. 2/1982-.Deutsche Antarktis-Expeditionl 980/81 mit FS .Meteor'” First International BIOMASS Experiment (FIBEX) - Liste der Zooplankton- und Mikronektonnetzfange zusammengestellt von Norbert Klages. Heft Nr. 3/1982 - .Digitale und analoge Krill-Echolot-Rohdatenerfassung an Bord des Forschungs- schiffes .Meteor"' (im Rahmen von FIBEX 1980/81, Fahrtabschnitt ANT III), von Bodo Morgenstern Heft Nr. 4/1982 - .Filchner-Schelfeis-Expedition 1980/81 “ Liste der Planktonfange und Lichtstarkemessungen zusammengestellt von Gerd Hubold und H. Eberhard Drescher * Heft Nr. 5/1982 - “Joint Biological Expedition on RRS 'John Biscoe', February 1982 " by G. Hempel and R. B. Heywood * Heft Nr. 6/1982 - .Antarktis-Expedition 1981/82 (Unternehmen .Eiswarte')" zusammengestellt von Code Gravenhorst Heft Nr. 7/1982 - .Marin-Biologisches Begleitprogramm zur Standorterkundung 1979/80 mit MS .Polar- sirkel' (Pre-Site Survey) " - Stationslisten der Mikronekton- und Zooplanktonfange sowie der Bodenfischerei zusammengestellt von R. Schneppenheim Heft Nr. 8/1983 - "The Post-Fibex Data Interpretation Workshop" by D. L. Cram and J.-C. Freytag with the collaboration of J. W. Schmidt, M. Mall, R. Kresse, T. Schwinghammer * Heft Nr. 9/1983 - "Distribution of some groups of zooplankton in the inner Weddell Sea in summer 1979/80 " by I. Hempel, G. Hubold, B. Kaczmaruk, R. Keller, R. Weigmann-Haass Heft Nr. 10/1983 - .Fluor im antarktischen Okosystem" - DFG-Symposium November 1982 zusammengestellt von Dieter Adelung Heft Nr. 11/1983 - “Joint Biological Expedition on RRS "John Biscoe", February 1982 (II) " Data of micronecton and zooplankton hauls, by Uwe Piatkowski Heft Nr. 12/1983 - .Das biologische Programm der ANTARKTIS-I-Expedition 1983 mit FS .Polarstern"" Stationslisten der Plankton-, Benthos- und Grundschleppnetzfange und Liste der Probennahme an Robben und Vogeln, von H. E. Drescher, G. Hubold, U. Piatkowski, J. Plotz und J. VoO * Heft Nr. 13/1983 - .Die Antarktis-Expedition von MS .Polarbjdrn" 1982/83“ (Sommerkampagne zur Atka-Bucht und zu den Kraul-Bergen), zusammengestellt von Heinz Kohnen * Sonderheft Nr. 2/1983 - .Die erste Antarktis-Expedition von FS .Polarstern" (Kapstadt, 20. Januar 1983 - Rio de Janeiro, 25. Marz 1983)“, Bericht des Fahrtleiters Prof. Dr. Gotthilf Hempel Sonderheft Nr. 3/1983 - .Sicherheit und Oberleben bei Polarexpeditionen" zusammengestellt von Heinz Kohnen * Heft Nr. 14/1983 - .Die erste Antarktis-Expedition (ANTARKTIS I) von FS .Polarstern" 1982/83" herausgegeben von Gotthilf Hempel Sonderheft Nr. 4/1983 - “On the Biology of Krill Euphausia superba" - Proceedings of the Seminar and Report of the Krill Ecology Group, Bremerhaven 12.-16. May 1983, edited by S. B. Schnack Heft Nr. 15/1983 - "German Antarctic Expedition 1980/81 with FRV "WaltherHerwig" and RV "Meteor"' - First International BIOMASS Experiment (FIBEX) - Data of micronekton and zooplankton hauls by Uwe Piatkowski and Norbert Klages Sonderheft Nr. 5/1984 - "The observatories of the Georg von Neumayer Station", by Ernst Augstein Heft Nr. 16/1984 - "FIBEX cruise zooplankton data" by U. Piatkowski, I. Hempel and S. Rakusa-Suszczewski Heft Nr. 17/1984 - .Fahrtbericht (cruise report) der ,Polarstern"-ReiseARKTIS 1.1983 " von E. Augstein, G. Hempel und J. Thiede Heft Nr. 18/1984 - .Die Expedition ANTARKTIS II mit FS .Polarstern" 1983/84"', Bericht von den Fahrtabschnitten 1,2 und 3, herausgegeben von D. Fiitterer Heft Nr. 19/1984 - .Die Expedition ANTARKTIS II mit FS .Polarstern" 1983/84", Bericht vom Fahrtabschnitt 4, PuntaArenas-Kapstadt (Ant-ll/4), herausgegeben von H. Kohnen Heft Nr. 20/1984 - .Die Expedition ARKTIS II des FS .Polarstern" 1984, mit Beitragen des FS .Valdivia" und des Forschungsflugzeuges .Falcon 20" zum Marginal Ice Zone Experiment 1984 (MIZEX) " von E. Augstein, G. Hempel, J. Schwarz, J. Thiede und W. Weigel Heft Nr. 21/1985 - "Euphausiid larvae in plankton samples from the vicinity of the Antarctic Peninsula, February 1982" by Sigrid Marschall and Elke Mizdalski Heft Nr. 22/1985 - "Maps of the geographical distribution of macrozooplankton in the Atlantic sector of the " by Uwe Piatkowski Heft Nr. 23/1985 - ..Untersuchungen zur Funktionsmorphologie und Nahrungsaufnahme der Larven des Antarktischen Krills Euphausia superba Dana" von Hans-Peter Marschall Heft Nr: 24/1985 - ..Untersuchungen zum Periglazial auf der Kdnig-Georg-lnsel Sudshetlandinseln/ Antarktika. Deutsche physiogeographische Forschungen in der Antarktis. - Bericht uber die Kampagne 1983/84" von Dietrich Barsch. Wolf-Dieter Blumel, Wolfgang Flugel, Roland Mausbacher, Gerhard Stablein. Wolfgang Zick * Heft-Nr. 25/1985 - „Die Expedition ANTARKTIS III mit FS .Polarstern' 1984/1985” herausgegeben von Gotthilf Hempel. "Heft-Nr. 26/1985 - "The Southern Ocean"; A survey of oceanographic and marine meteorological research work by Hellmer et al Heft Nr. 27/1986 - . Spatpleistozane Sedimentationsprozesse am antarktischen Kontinentalhang vor Kapp Norvegia.ostliche Weddell-See" von Hannes Grobe Heft Nr. 28/1986 - ..Die Expedition ARKTIS III mit .Polarstern' 1985" mit Beitragen der Fahrtteilnehmer, herausgegeben von Rainer Gersonde * Heft Nr. 29/1986 - ..5 Jahre Schwerpunktprogramm .Antarktisforschung' der Deutschen Forschungsgemeinschaft." Ruckblick und Ausblick. Zusammengestellt von Gotthilf Hempel, Sprecher des Schwerpunktprogramms Heft Nr. 30/1986 - “The Meteorological Data of the Georg-von-Neumayer-Station for 1981 and 1982" by Marianne Cube and Friedrich Obleitner Heft Nr. 31/1986 - ..Zur Biologie der Jugendstadien der Notothenioidei (Pisces) an der Antarktischen Halbmsel" von A. Kellermann Heft Nr. 32/1986 - ..Die Expedition ANTARKTIS IV mit FS .Polarstern' 1985/86" mit Beitragen der Fahrtteilnehmer, herausgegeben von Dieter Futterer Heft Nr. 33/1987 - ..Die Expedition ANTARKTIS-IV mit FS .Polarstern' 1985/86 - Bericht zu den Fahrtabschmtten ANT-IV/3-4" von Dieter Karl Futterer Heft Nr. 34/1987 - ..Zoogeographische Untersuchungen und Gemeinschaftsanalysen an antarktischem Makroplankton" von U. Piatkowski Heft Nr. 35/1987 - „Zur Verbreitung des Meso- und Makrozooplanktons in Oberflachenwasser der Weddell See (Antarktis)" von E. Boysen-Ennen Heft Nr. 36/1987 - ..Zur Nahrungs- und Bewegungsphysiologie von Salpa thompsoni und Salpa fusiformis" von M. Remke Heft Nr. 37/1987 - "The Eastern Weddell Sea Drifting Buoy Data Set of the Winter Weddell Sea Project (WWSP)" 1986 by Heinrich Hoeber und Marianne Gube-Lehnhardt Heft Nr. 38/1987 - "The Meteorological Data of the Georg von Neumayer Station for 1983 and 1984" by M. Gube-Lenhardt Heft Nr. 39/1987 - ..Die Winter-Expedition mit FS .Polarstern' in die Antarktis (ANT V/1 -3)" herausgegeben von Sigrid Schnack-Schiel Heft Nr. 40/1987 - “Weather and Synoptic Situation during Winter Weddell Sea Project 1986 (ANT V/2) July 16-September 10,1986" by Werner Rabe Heft Nr. 41/1988 - „Zur Verbreitung und Okologie der Seegurken im Weddellmeer (Antarktis)" von Julian Gutt Heft Nr. 42/1988 - "The zooplankton community in the deep bathyal and abyssal zones of the eastern North Atlantic" by Werner Beckmann Heft Nr. 43/1988 - "Scientific cruise report of Arctic Expedition ARK IV/3" Wissenschaftlicher Fahrtbericht der Arktis-Expedition ARK IV/3, compiled by Jdrn Thiede Heft Nr. 44/1988 - "Data Report for FV 'Polarstern' Cruise ARK IV/1, 1987 to the Arctic and Polar Fronts" by Hans-Jurgen Hirche Heft Nr. 45/1988 - ..Zoogeographie und Gemeinschaftsanalyse des Makrozoobenthos des Weddellmeeres (Antarktis)" von Joachim VoB Heft Nr. 46/1988 - "Meteorological and Oceanographic Data of the Winter-Weddell-Sea Project 1986 (ANT V/3)" by Eberhard Fahrbach Heft Nr. 47/1988 - ..Verteilung und Herkunft glazial-mariner Gerolle am Antarktischen Kontinentalrand des ostlichen Weddellmeeres" von Wolfgang Oskierski Heft Nr. 48/1988 - ..Variationen des Erdmagnetfeldes an der GvN-Station " von Arnold Brodscholl . Heft Nr. 49/1988 - „Zur Bedeutung der Lipide im antarktischen Zooplankton" von Wilhelm Hagen Heft Nr. 50/1988 - ..Die gezeitenbedingte Dynamik des Ekstrom-Schelfeises, Antarktis" von Wolfgang Kobarg Heft Nr. 51/1988 - ..Okomorphologie notothennder Fische aus dem Weddellmeer, Antarktis" von Werner Ekau Heft Nr. 52/1988 - ..Zusammensetzung der Bodenfauna in der westlichen Fram-StraBe" von Dieter Piepenburg * Heft Nr. 53/1988 - ..Untersuchungen zur Okologie des Phytoplanktons im sudostlichen Weddellmeer (Antarktis) im Jan./Febr. 1985" von Eva-Maria Nothig Heft Nr. 54/1988 - „Die Fischfauna des ostlichen und sudlichen Weddellmeeres: geographische Verbreitung, Nahrung und trophische Stellung der Fischarten" von Wiebke Schwarzbach Heft Nr. 55/1988 - "Weight and length data of zooplankton in the Weddell Sea in austral spring 1986 (Ant V/3)" by Elke Mizdalski Heft Nr. 56/1989 - "Scientific cruise report of Arctic expeditions ARK IV/1,2 & 3" by G. Krause, J. Meincke und J. Thiede Heft Nr. 57/1989 - ..Die Expedition ANTARKTIS V mit FS .Polarstern' 1986/87 “ Bericht von den Fahrtabschnitten ANTV/4-5 von H. Miller und H. Oerter * Heft Nr. 58/1989 - „Die Expedition ANTARKTIS VI mil FS .Polarstern' 1987/88" von D. K. Futterer Heft Nr. 59/1989 - „Die Expedition ARKTIS V/1a, 1b und 2 mil FS .Polarstern' 1988 " von M. Spindler Heft Nr. 60/1989 - „Ein zweidimensionales Modell zur thermohalinen Zirkulation unter dem Schelfeis" von H. H. Hellmer Heft Nr. 61/1989 - „Die Vulkanite im westlichen und mittleren Neuschwabenland, Vestfjella und Ahlmannryggen, Antarktika" von M. Peters * Heft-Nr. 62/1989 - "The Expedition ANTARKTIS VII/1 and 2 (EPOS I) of RV 'Polarstern' in 1988/89”, by I. Hempel Heft Nr. 63/1989 - „Die Eisalgenflora des Weddellmeeres (Antarktis): Artenzusammensetzung und Biomasse sowie Okophysiologie ausgewahlter Aden" von Annette Barisch Heft Nr. 64/1989 - “Meteorological Data of the G.-v.-Neumayer-Station ()" by L. Helmes Heft Nr. 65/1989 - ..Expedition Antarktis VII/3 in 1988/89" by I. Hempel, P. H. Schalk. V Smetacek Heft Nr. 66/1989 - ..Geomorphologisch-glaziologische Detailkadierung des arid-hochpolaren Borgmassivet, Neuschwabenland, Antarktika" von Karsten Brunk Heft-Nr. 67/1990 - ..Identification key and catalogue of larval Antarctic fishes", edited by Adolf Kellermann Heft-Nr. 68/1990 - „The Expediton Antarktis VII/4 (Epos leg 3) and VII/5 of RV 'Polarstern' in 1989”, edited by W. Arntz, W. Ernst, I. Hempel Heft-Nr. 69/1990 - .Abhangigkeiten elastischer und rheologischer Eigenschaften des Meereises vom Eisgefuge", von Harald Hellmann Heft-Nr. 70/1990 - „Die beschalten benthischen Mollusken (Gastropoda und Bivalvia) des Weddellmeeres, Antarktis", von Stefan Ham Heft-Nr. 71/1990 - ..Sedimentologie und Palaomagnetik an Sedimenten der Maudkuppe (Nordostliches Weddellmeei)". von Dieter Cordes. Heft-Nr. 72/1990 - .Distribution and abundance of planktonic copepods (Crustacea) in the Weddell Sea in summer 1980/81 ”, by F. Kurbjeweit and S. Ali-Khan Heft-Nr. 73/1990 - .Zur Fruhdiagenese von organischem Kohlenstoff und Opal in Sedimenten des sudlichen und Ostlichen Weddellmeeres”, von M. Schluter Heft-Nr. 74/1990 - .Expeditionen ANTARKTIS-VIII/3 und VIII/4 mit FS .Polarstern' 1989" von RainerGersonde und Gotthilf Hempel Heft-Nr. 75/1991 - .Quartare Sedimentationsprozesse am Kontinentalhang des Sud-Orkey-Plateaus im nordwestlichen Weddellmeer (Antarktis)", von Sigrun Grunig Heft-Nr. 76/1990 -.Ergebnisse der faunistischen Arbeiten im Benthal von King George Island (Sudshetlandinseln, Antarktis)", von Martin Rauschert Heft-Nr. 77/1990 - .Verteilung von Mikroplankton-Organismen nordwestlich der Antarktischen Halbinsel unter dem EinfluB sich andernder Umweltbedingungen im Herbst", von Heinz Kloser Heft-Nr. 78/1991 - .Hochauflosende Magnetostratigraphie spatquartarerSedimente arktischer Meeresgebiete", von Norbert R. Nowaczyk

Heft-Nr. 79/1991 - .Okophysiologische Untersuchungen zur Salinitats- und Temperaturtoleranz antarktischer Grunalgen unter besonderer Berucksichtigung des B-Dimethylsulfoniumpropionat (DMSP) - Stoffwechsels”, von Ulf Karsten Heft-Nr. 80/1991-.Die Expedition ARKTIS VII/1 mil FS .Polarstern' 1990” herausgegeben von Jorn Thiede und Gotthilf Hempel Heft-Nr. 81/1991 - .Palaoglaziologie und Palaozeanographie im Spatquartar am Kontinentalrand des sudlichen Weddellmeeres, Antarktis", von Martin Melles Heft-Nr. 82/1991 - .Quantifizierung von Meereseigenschaften: Automatische Bildanalyse von Dunnschnitten und Parametrisierung von Chlorophyll- und Salzgehaltsverteilungen", von Hajo Eicken Heft-Nr. 83/1991 - „Das FlieBen von Schelfeisen - numerische Simulationen mit der Methods der finiten Differenzen", von Jurgen Determann Heft-Nr. 84/1991 - „Die Expedition ANTARKT1S-VI1I/1-2,1989 mit der Winter Weddell Gyre Study der Forschungsschiffe „Polarstern“ und „Akademik Fedorov", von Ernst Augstein, Nikolai Bagriantsev und Hans Werner Schenke Heft-Nr. 85/1991 - „Zur Entstehung von Unterwassereis und das Wachstum und die Energiebilanz des Meereises in der Atka Bucht, Antarktis", von Josef Kipfstuhl Heft-Nr. 86/1991 - „Die Expedition ANTARKTIS-VIII mit „FS Polarstern" 1989/90. Bericht vom Fahrtabschnitt ANT-VIII / 5“, von Heinz Miller und Hans Oerter Heft-Nr. 87/1991 -“Scientific cruise reports of Arctic expeditions ARK VI / 1-4 of RV "Polarstern" in 1989", edited by G. Krause, J. Meincke & H. J. Schwarz Heft-Nr. 88/1991 - „Zur Lebensgeschichte dominanter Copepodenarten (Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia tonga) in der FramstraBe", von Sabine Diel Heft-Nr. 89/1991 - ..Detaillierte seismische Untersuchungen am ostlichen Kontinentalrand des Weddell-Meeres vor Kapp Norvegia, Antarktis", von Norbert E. Kaul Heft-Nr. 90/1991 - „Die Expedition ANTARKTIS-VIII mit FS .Polarstern" 1989/90. Bericht von den Fahrtabschnitten ANT-VIII/6-7", herausgegeben von Dieter Karl Futterer und Otto Schrems Heft-Nr. 91/1991 - “Blood physiology and ecological consequences in Weddell Sea fishes (Antarctica)", by Andreas Kunzmann Heft-Nr. 92/1991 - „Zur sommerlichen Verteilung des Mesozooplanktons im Nansen-Becken, Nordpolarmeer", von Nicolai Mumm Heft-Nr. 93/1991 - .Die Expedition ARKTIS VII mit FS .Polarstern", 1990. Bericht vom Fahrtabschnitt ARK VII/2", herausgegeben von Gunther Krause Heft-Nr. 94/1991 - .Die Entwicklung des Phytoplanktons im ostlichen WeddelImeer (Antarktis) beim Ubergang vom Spatwinter zum Fruhjahr", von Renate Scharek Heft-Nr. 95/1991 - .Radioisotopenstratigraphie, Sedimentologie und Geochemie jungquartarer Sedimente des ostlichen Arktischen Ozeans", von Horst Bohrmann Heft-Nr. 96/1991 - .Holozane Sedimentationsentwicklung im Scoresby Sund, Ost-Grdnland", von Peter Marienfeld Heft-Nr. 97/1991 - .Strukturelle Entwicklung und Abkuhlungsgeschichte der Heimefrontfjella (Westliches Dronning Maud Land/Antarktika)“, von Joachim Jacobs Heft-Nr. 98/1991 - „Zur Besiedlungsgeschichte des antarktischen Schelfes am Beispiel der Isopoda (Crustacea, Malacostraca) , von Angelika Brandt Heft-Nr. 99/1992 - “The Antarctic ice sheet and environmental change: a three-dimensional modelling study", by Philippe Huybrechts * Heft-Nr. 100/1992- .Die Expeditionen ANTARKTIS IX/1-4 des Forschungsschiffes .Polarstern" 1990/91", herausgegeben von Ulrich Bathmann, Meinhard Schulz-Baldes, Eberhard Fahrbacn, Victor Smetacek und Hans-Wolfgang Hubberten Heft-Nr. 101/1992 - .Wechselbeziehungen zwischen Schwermetallkonzentrationen (Cd, Cu, Pb, Zn) im Meewasser und in Zooplanktonorganismen (Copepoda) der Arktis und des Atlantiks", von Christa Pohl Heft-Nr. 102/1992 - .Physiologic und Ultrastruktur der antarktischen Grunalge Prasiola crispa ssp. antarctica unter osmotischem StreB und Austrocknung", von Andreas Jacob Heft-Nr. 103/1992- „Zur Okologie der Fische im Weddelmeer", von Gerd Hubold Heft-Nr. 104/1992 - .Mehrkanalige adaptive Filter fur die Unterdruckung von multiplen Reflexionen in Verbindung mit der freien Oberflache in marinen Seismogrammen", von Andreas Rosenberger Heft-Nr. 105/1992 - .Radiation and Eddy Flux Experiment 1991 (REFLEX /)“, von Jorg Hartmann, Christoph Kottmeier und Christian Wamser Heft-Nr. 106/1992 - .Ostracoden im Epipelagial vor der Antarktischen Halbinsel - ein Beitrag zur Systematik sowie zur Verbreitung und Populationsstruktur unter Beriicksichtigung der Saisonalitat", von Rudiger Kock Heft-Nr. 107/1992 - .ARCTIC '91: Die Expedition ARK-VIII/3 mit FS .Polarstern" 1991", von Dieter K. Futterer Heft-Nr. 108/1992 - .Dehnungsbeben an einer Storungszone im Ekstrom-Schelfeis nordlich der Georg-von-Neumayer Station, Antarktis. - Eine Untersuchung mit seismologischen und geodatischen Methoden”, von Uwe Nixdorf. Heft-Nr. 109/1992- .Spatquartare Sedimentation am Kontinentalrand des sudostlichen Weddellmeeres, Antarktis”, von Michael Weber. Heft-Nr. 110/1992 - .Sedimentfazies und Bodenwasserstrom am Kontinentalhang des nordwestlichen Weddellmeeres”, von Isa Brehme. Heft-Nr. 111/1992- .Die Lebensbedingungen in den Solekanalchen des antarktischen Meereises”, von Jurgen Weissenberger. Heft-Nr. 112/1992-,,Zur Taxonomie von rezenten benthischen Foraminiferen aus dem Nansen Becken, Arktischer Ozean", von Jutta Wollenburg. Heft-Nr. 113/1992-.Die Expedition ARKTIS VIII/1 mit FS “Polarstern" 1991“, herausgegeben von Gerhard Kattner. * Heft-Nr. 114/1992- ,,Die Grundungsphase deutscher Polarforschung, 1865-1875 “, von Reinhard A. Krause.

Heft-Nr. 115/1992-.Scientific Cruise Report of the 1991 Arctic Expedition ARK VIII/2 of RV “Polarstern" (EPOS II)”, by Eike Racnor. Heft-Nr. 116/1992 - „The Meteorological Data of the Georg-von-Neumayer-Station (Antarctica) for 1988,1989,1990 and 1991", by Gert Konig-Langlo. Heft-Nr. 117/1992 - .Petrogenese des metamorphen Grundgebirges der zentralen Heimefrontfjella (westliches Dronning Maud Land / Antarktis)”, von Peter Schulze. Heft-Nr. 118/1993 - „Die mafischen Gauge der Shackleton Range / Antarktika: Petrographie, Geochemie, Isotopengeochemie und Palaomagnetik”, von Rudiger Hotten. * Heft-Nr. 119/1993 - „Gefrierschutz bei Fischen der Polarmeere”, von Andreas P.A. Wohrmann. * Heft-Nr. 120/1993 - „East Siberian Arctic Region Expedition '92: The Laptev Sea - its Significance for Arctic Sea-Ice Formation and Transpolar Sediment Flux” , by D. Dethleff, D. Nurnberg, E. Reimnitz, M. Saarso and Y. P. Sacchenko. -,,Expedition to Novaja Zemlja and Franz Josef Land with RV.'Dalnie Zelentsy" ’, by D. Nurnberg and E. Groth. * Heft-Nr. 121/1993 - .Die Expedition ANTARKTIS X/3 mit FS 'Polarstern' 1992”, herausgegeben von Michael Spindler, Gerhard Dieckmann und David Thomas. Heft-Nr. 122/1993 - „Die Beschreibung der Korngestalt mit Hilfe der Fourier-Analyse: Parametrisierung der morphologischen Eigenschaften von Sedimentpartikeln”, von Michael Diepenbroek. * Heft-Nr. 123/1993 - „Zerstdrungsfreie hochauflosende Dichteuntersuchungen mariner Sedimente”, von Sebastian Gerland. Heft-Nr. 124/1993 - „Umsatz und Verteilung von Lipiden in arktischen marinen Organismen unter besonderer Beriicksichtigung unterer trophischer Stufen”, von Martin Graeve. Heft-Nr. 125/1993 - .Okologie und Respiration ausgewahlter arktischer Bodenfischarten”, von Christian F. von Dorrien. Heft-Nr. 126/1993 -,,Quantitative Bestimmung von Palaoumweltparametern des Antarktischen Oberflachenwassers im Spatquartar anhand von Transferfunktionen mit Diatomeen", von Ulrich Zielinski Heft-Nr. 127/1993 - „Sedimenttransport durch das arktische Meereis: Die rezente lithogene und biogene Materialfracht", von Ingo Wollenburg. Heft-Nr. 128/1993 -,,Cruise ANTARKTIS X/3 of RV 'Polarstern': CTD-Report”, von Marek Zwierz. Heft-Nr. 129/1993 - .Reproduktion und Lebenszyklen dominanter Copepodenarten aus dem Weddellmeer, Antarktis”, von Frank Kurbjeweit Heft-Nr. 130/1993 - .Untersuchungen zu Temperaturregime und Massenhaushalt des Filchner-Ronne-Schelfeises, Antarktis, unter besonderer Beriicksichtigung von Anfrier- und Abschmelzprozessen”, von Klaus Grosfeld Heft-Nr. 131/1993 - „Die Expedition ANTARKTIS X/5 mit FS 'Polarstern' 1992”, herausgegeben von Rainer Gersonde Heft-Nr. 132/1993- „Bildung und Abgabe kurzkettiger halogenierter Kohlenwasserstoffe durch Makroalgen der Polarregionen", von Frank Laturnus Heft-Nr. 133/1994 - “Radiation and Eddy Flux Experiment 1993 (REFLEXII)", by Christoph Kottmeier, Jorg Hartmann, Christian Wamser, Axel Bochert, Christof Lfipkes, Dietmar Freese and Wolfgang Cohrs * Heft-Nr. 134/1994 - "The Expedition ARKTIS-IX/1 ”, edited by Hajo Eicken and Jens Meincke Heft-Nr. 135/1994 - „Die Expeditionen ANTARKTIS X/6-8 ”, herausgegeben von Ulrich Bathmann, Victor Smetacek, Hein de Baar, Eberhard Fahrbach und Gunter Krause Heft-Nr. 136/1994 - .Untersuchungen zur Ernahrungsokologie von Kaiserpinguinen (Aptenodytes forsteri) und Konigspinguinen (Aptenodytes patagonicus)”, von Klemens Piitz * Heft-Nr. 137/1994 - „Die kanozoische Vereisungsgeschichte der Antarktis”, von Werner U. Ehrmann Heft-Nr. 138/1994 - .Untersuchungen stratospharischer Aerosole vulkanischen Ursprungs und polarer stratospharischer Wolken mit einemMehrwellenlangen-Lidar auf Spitzbergen (79°N, 12°E)”, von Georg Beyerle Heft-Nr. 139/1994 - „Charakterisierung der Isopodenfauna (Crustacea, Malacostraca) des Scotia-Bogens aus biogeographischer Sicht: Ein multivariater Ansatz”, von Holger Winkler. Heft-Nr. 140/1994-.Die Expedition ANTARKTIS X/4 mit FS 'Polarstern' 1992”, herausgegeben von Peter Lemke Heft-Nr. 141/1994 - „Satellitenaltimetrie fiber Eis - Anwendung des GEOSAT-Altimeters fiber dem Ekstromisen, Antarktis”, von Clemens Heidland « Heft-Nr. 142/1994- “The 1993 Northeast WaterExpedition. Scientific cruise report of RV’Polarstern’ Arctic cruises ARK IX/2 and 3, USCG ‘Polar Bear’ cruise NEWP and the NEW Land expedition", edited by Hans-Jurgen Hirche and Gerhard Kattner Heft-Nr. 143/1994 - .Detaillierte refraktionsseismische Untersuchungen im inneren Scoresby Sund Ost-Gronland", von Notker Fechner Heft-Nr. 144/1994 -,,Russian-German Cooperation in the Siberian Shelf Seas: Geo-System Laptev Sea", edited by Heidemarie Kassens, Hans-Wolfgang Hubberten, Sergey M. Pryamikov und Rudiger Stein * Heft-Nr. 145/1994 - „The 1993 Northeast WaterExpedition. Data Report of RV ‘Polarstern’ Arctic Cruises IX/2 and 3“, edited by Gerhard Kattner and Hans-Jurgen Hirche. Heft-Nr. 146/1994 - "Radiation Measurements at the German Antarctic Station Neumayer 1982-1992", by Torsten Schmidt and Gert Konig-Langlo. Heft-Nr. 147/1994 - ..Krustenstrukturen und Verlauf des Kontinentalrandes im Weddell Meer / Antarktis", von Christian Hubscher. Heft-Nr. 148/1994-"The expeditions NORILSK/TAYMYR 1993 and BUNGER OASIS 1993/94 of the AWI Research Unit Potsdam", edited by Martin Melles. ” Heft-Nr. 149/1994- "Die Expedition ARCTIC’ 93. Der Fahrtabschnitt ARK-IX/4 mit FS ‘Polarstern’ 1993”, herausgegeben von Dieter K. Futterer. Heft-Nr. 150/1994 - "Der Energiebedarf der Pygoscelis-Pinguine: eine Synopse ”, von Boris M. Culik. Heft-Nr. 151/1994 -,,Russian-German Cooperation: The Transdrift I Expedition to the Laptev Sea", edited by Heidemarie Kassens and Valeriy Y. Karpiy. Heft-Nr. 152/1994 - Die Expedition ANTARKTIS-X mit FS ‘Polarstern’ 1992. Bericht von den Fahrtabschnitten / ANT-X / 1a und 2”, herausgegeben von Heinz Miller. Heft-Nr. 153/1994 - "Aminosauren und Huminstoffe im Stickstoffkreislauf polarer Meere", von Ulrike Hubberten. Heft-Nr. 154/1994 - "Regional und seasonal variability in the vertical distribution of mesozooplankton in the Greenland Sea”, by Claudio Richter. Heft-Nr. 155/1995 - "Benthos in polaren Gewassern”, herausgegeben von Christian Wiencke und Wolf Amtz. Heft-Nr. 156/1995 - "An adjoint model for the determination of the mean oceanic circulation, air-sea fluxes und mixing coefficients”, by Reiner Schlitzer. Heft-Nr. 157/1995 - "Biochemische Untersuchungen zum Lipidstoffwechsel antarktischer Copepoden”, von Kirsten Fahl. ** Heft-Nr. 158/1995 - "Die Deutsche Polarforschung seit der Jahrhundertwende und der EinfluB Erich von Drygalskis", von Cornelia Ludecke. Heft-Nr. 159/1995 - The distribution of d,aO in the Arctic Ocean: Implications for the freshwater balance of the halocline and the sources of deep and bottom waters”, by Dorothea Bauch. * Heft-Nr. 160/1995 - "ReRonstruktion der spatquartaren Tiefenwasserzirkulation und Produktivitat im dstlichen Sudatlantik anhand von benthischen Foraminiferenvergesellschaftungen", von Gerhard Schmiedl. Heft-Nr. 161/1995 - "Der EinfluB von Salinitat und Lichtintensitat auf die Osmolytkonzentrationen, die Zellvolumina und die Wachstumsraten der antarktischen Eisdiatomeen Chaetoceros sp. und Navicula sp. unter besonderer Beriicksichtigung der Aminosaure Prolin", von Jurgen Nothnagel. Heft-Nr. 162/1995 - "Meereistransportiertes lithogenes Feinmaterial in spatquartaren Tiefseesedimenten des zentralen dstlichen Arktischen Ozeans und der FramstraBe”, von Thomas Letzig. Heft-Nr. 163/1995 - "Die Expedition ANTARKTIS-XI/2 mit FS “Polarstern” 1993/94", herausgegeben von Rainer Gersonde. Heft-Nr. 164/1995 - "Regionale und altersabhangige Variation gesteinsmagnetischer Parameter in marinen Sedimenten der Arktis”, von Thomas Frederichs. Heft-Nr. 165/1995 - "Vorkommen, Verteilung und Umsatz biogener organischer Spurenstoffe: Sterole in antarktischen Gewassern”, von Georg Hanke. Heft-Nr. 166/1995 - "Vergleichende Untersuchungen eines optimierten dynamisch-thermodynamischen Meereismodells mit Beobachtungen im Weddellmeer”, von HolgerFischer. Heft-Nr. 167/1995 - "Rekonstruktionen von Palao-Umweltparametern anhand von stabilen Isotopen und Faunen-Vergesellschaftungen planktischer Foraminiferen im Sudatlantik", von Hans-Stefan Niebler Heft-Nr. 168/1995 - "Die Expedition ANTARKTIS XII mit FS ‘Polarstern’ 1993/94. Bericht von den Fahrtabschnitten ANT XII/1 und 2”, herausgegeben von Gerhard Kattner und Dieter Karl Futterer. Heft-Nr. 169/1995 - "Medizinische Untersuchung zur Circadianrhythmik und zum Verhalten bei Uberwinterern auf einer antarktischen Forschungsstation”, von Hans Wortmann. Heft-Nr. 170/1995 - DFG-Kolloquium: Terrestrische Geowissenschaften - Geologic und Geophysik der Antarktis. Heft-Nr. 171/1995 - "Strukturentwicklung und Petrogenese des metamorphen Grundgebirges der nordlichen Heimefrontfjella (westliches Dronning Maud Land/Anfarktika)”, von Wilfried Bauer. Heft-Nr. 172/1995 - "Die Struktur der Erdkruste im Bereich des Scoresby Sund, Ostgronland: Ergebnisse refraktionsseismischer und gravimetrischer Untersuchungen , von Flolger Mandler. Heft-Nr. 173/1995 - "Palaozoische Akkretion am palaopazifischen Kontinentalrand der Antarktis in Nordvictorialand - P-T-D-Geschichte und Deformationsmechanismen im Bowers Terrane”, von Stefan Matzer. Heft-Nr. 174/1995 - “The Expedition ARKTIS-X/2 of RV ‘Polarstern’ in 1994", edited by Hans-W. Hubberten. Heft-Nr. 175/1995 - “Russian-German Cooperation: The Expedition TAYMYR 1994", edited by Christine Siegert and Dmitry Bolshiyanov. Heft-Nr. 176/1995 - "Russian-German Cooperation: Laptev Sea System ”, edited by Heidemarie Kassens, Dieter Piepenburg, Jdm Thiede, Leonid Timokhov, Hans-Wolfgang Hubberten and Sergey M. Priamikov. Heft-Nr. 177/1995 - “Organischer Kohlenstoff in spatquartaren Sedimenten des Arktischen Ozeans: Terrigener Eintrag und marine Produktivitat”, von Carsten J. Schubert. Heft-Nr. 178/1995 - “Cruise ANTARKTIS XII/4 of RV ‘Polarstern’ in 1995: CTD-Report”, by Juri Sildam. Heft-Nr. 179/1995 - “Benthische Foraminiferenfaunen als Wassermassen-, Produktions- und Eisdriftanzeiger im Arkti­ schen Ozean”, von Jutta Wollenburg. Heft-Nr. 180/1995 - “Biogenopal und biogenes Barium als Indikatoren fur spatquartare Produktivitatsanderungen am antarktischen Kontinentaihang, atlantischer Sektor", von Wolfgang J. Bonn. Heft-Nr. 181/1995 - “Die Expedition ARKTIS X/1 des Forschungsschiffes .Polarstern11994“, herausgegeben von Eberhard Fahrbach. Heft-Nr. 182/1995 - “Laptev Sea System: Expeditions in 1994”, edited by Heidemarie Kassens. Heft-Nr. 183/1996 - “Interpretation digitaler Parasound Echolotaufzeichnungen im ostlichen Arktischen Ozean auf der Grundlage physikalischer Sedimenteigenschaften”, von Uwe Bergmann. Heft-Nr. 184/1996 - “Distribution and dynamics of inorganic nitrogen compounds in the troposphere of continental, coastal, marine and Arctic areas”, by Maria Dolores Andres Hernandez. Heft-Nr. 185/1996 - “Verbreitung und Lebensweise der Aphroditiden und Polynoiden (Polychaeta) im ostlichen Weddell- meer und im Lazarevmeer (Antarktis)’’, von Michael Stiller. Heft-Nr. 186/1996 - “Reconstruction of Late Quaternary environmental conditions applying the natural radionuclides ”°Th, "Be, “'Pa and 23aU: A study of deep-sea sediments from the eastern sector of the Antrctic Circumpolar Current System ”, by Martin Frank. Heft-Nr. 187/1996 - “The Meteorological Data of the Neumayer Station (Antarctica) for 1992,1993 and 1994”, by Gert Kdnig-Langlo and Andreas Herber. Heft-Nr. 188/1996 - “Die Expedition ANTARKTIS-XI/3 mit FS ‘Polarstern’ 1994”, herausgegeben von Heinz Miller und Hannes Grobe. Heft-Nr. 189/1996 - “Die Expedition ARKTIS-VII/3 mit FS ‘Polarstern’ 1990”, herausgegeben von Heinz Miller und Hannes Grobe. Heft-Nr. 190/1996 - “Cruise report of the Joint Chilean-German-ltalian Magellan 'Victor Hensen’ Campaign in 1994”, edited by Wolf Arntz and Matthias Gorny. Heft-Nr. 191/1996 - “Leitfahigkeits- und Dichtemessung an Eisbohrkernen”, von Frank Wilhelms. Heft-Nr. 192/1996 - “Photosynthese-Charakteristika und Lebensstrategie antarktischer Makroalgen”, von Gabriele Weykam. Heft-Nr. 193/1996 - “Heterogene Raktionen von NgO^ und HBr und ihr EinfluB auf den Ozonabbau in der polaren Stratosphere”, von Sabine Seisel. Heft-Nr. 194/1996 - “Okologie und Populationsdynamik antarktischer Ophiuroiden (Echinodermata)”, von Corinna Dahm. Heft-Nr. 195/1996 - “Die planktische Foraminifere Neogloboquadrina pachyderma (Ehrenberg) im Weddellmeer, Antarktis”, von Doris Berberich. Heft-Nr. 196/1996 - “Untersuchungen zum Beitrag chemischer und dynamischer Prozesse zur Variability des stratospharischen Ozons fiber der Arktis”, von Birgit Heese. Heft-Nr. 197/1996 - “The Expedition ARKTIS-XI/2 of ’Polarstern’ in 1995”, edited by Gunther Krause. Heft-Nr. 198/1996 - “Geodynamik des Westantarktischen Riftsystems basierend auf Apatit-Spaltspuranalysen", von Frank Lisker. Heft-Nr. 199/1996 - “The 1993 Northeast WaterExpedition. Data Report on CTD Measurements of RV ’Polarstern’ Cruises ARKTIS IX/2 and 3“, by Gereon Budeus and Wolfgang Schneider. Heft-Nr. 200/1996 - “Stability of the Thermohaline Circulation in analytical and numerical models", by Gerrit Lohmann. Heft-Nr. 201/1996 - “Trophische Beziehungen zwischen Makroalgen und Herbivoren in der Potter Cove (King George-lnsel, Antarktis)", von Katrin Iken. Heft-Nr. 202/1996 - “Zur Verbreitung und Respiration dkologisch wichtiger Bodentiere in den Gewassern um Svalbard (Arktis)", von Michael K. Schmid. Heft-Nr. 203/1996 - “Dynamik, Rauhigkeit und Alter des Meereises in der Arktis - Numerische Untersuchungen mit einem groBskaligen Modell", von Markus Harder. Heft-Nr. 204/1996 - “Zur Parametrisierung der stabilen atmospharischen Grenzschicht fiber einem antarktischen Schelfeis", von Ddrthe Handorf. Heft-Nr. 205/1996 - “Textures and fabrics in the GRIP ice core, in relation to climate history and ice deformation", by Thorsteinn Thorsteinsson. Heft-Nr. 206/1996 - “Der Ozean als Teil des gekoppelten Klimasystems: Versuch der Rekonstruktion der glazialen Zirkulation mit verschieden komplexen Atmospharenkomponenten”, von Kerstin Fieg. Heft-Nr. 207/1996 - “Lebensstrategien dominanter antarktischer Oithonidae (Cyclopoida, Copepoda) und Oncaeidae (Poecilostomatoida, Copepoda) im Bellingshausenmeer", von Cornelia Metz. Heft-Nr. 208/1996 - “AtmosphareneinfluB bei der Fernerkundung von Meereis mit passiven Mikrowellenradiometern", von Christoph Oelke. Heft-Nr. 209/1996 - “Klassifikation von Radarsatellitendaten zur Meereiserkennung mit Hilfe von Line-Scanner-Messun- gen“, von Axel Bochert. Heft-Nr. 210/1996 - “Die mit ausgewahlten Schwammen (Hexactinellida und Demospongiae) aus dem Weddellmeer, Antarktis, vergesellschaftete Fauna", von Kathrin Kunzmann. Heft-Nr. 211/1996 - “Russian-German Cooperation: The Expediton TAYMYR 1995 and the Expedition KOLYMA 1995“, by Dima Yu. Bolshiyanov and Hans-W. Hubberten. Heft-Nr. 212/1996 - “Surface-sediment composition and sedimentary processes in the central Arctic Ocean and along the Eurasian Continental Margin", by Ruediger Stein, Gennadi] I. Ivanov, Michael A. Levitan, and Kirsten Fahl. Heft-Nr. 213/1996 - “Gonadenentwicklung und Eiproduktion dreier Calanus-Arten (Copepoda): Freilandbeobachtungen, Histologie und Experimente", von Barbara Niehoff. Heft-Nr. 214/1996 - “Numerische Modellierung der Ubergangszone zwischen Eisschild und Eisschelf", von Christoph Mayer. Heft-Nr. 215/1996- “Arbeiten der AWI-Forschungsstelle Potsdam in Antarktika, 1994/95", herausgegeben von Ulrich Wand. Heft-Nr. 216/1996 - “Rekonstruktion quartarer Klimaanderungen im atlantischen Sektor des Sudpolarmeeres anhand von Radiolarien", von Uta Brathauer. Heft-Nr. 217/1996 - “Adaptive Semi-Lagrange-Finite-Elemente-Methode zur Losung der Flachwassergleichungen: Implementierung und Parallelisierung", von Jdrn Behrens. Heft-Nr. 218/1997 - “Radiation and Eddy Flux Experiment 1995 (REFLEX III)", by Jorg Hartmann, Axel Bochert, Dietmar Freese, Christoph Kottmeier, Dagmar Nagel and Andreas Reuter. Heft-Nr. 219/1997 - “Die Expedition ANTARKTIS-XII mit FS ’Polarstern’ 1995. Bericht vom Fahrtabschnitt ANT-XII/3”, herausgegeben von Wilfried Jokat und Hans Oerter. Heft-Nr. 220/1997 - “Ein Beitrag zum Schwerefeld im Bereich des Weddellmeeres, Antarktis. Nutzung von Altimetermessungen des GEOSAT und ERS-1”, von Tilo Schone. Heft-Nr. 221/1997 - “Die Expeditionen ANTARKTIS-Xlll/1-2 des Forschungsschiffes ’Polarstern’ 1995/96”, herausgegeben von Ulrich Bathmann, Mike Lucas und Victor Smetacek. Heft-Nr. 222/1997 - “Tectonic Structures and Glaciomarine Sedimentation in the South-Eastern Weddell Sea from Seismic Reflection Data”, by Laszlo Oszko. Heft-Nr. 223/1997 - “Bestimmung der Meereisdicke mit seismischen und elektromagnetisch-induktiven Verfahren”, von Christian Haas. Heft-Nr. 224/1997 - “Tropospharische Ozonvariationen in Polarregionen”, von Silke Wessel. Heft-Nr. 225/1997 - “Biologische und dkologische Untersuchungen zur kryopelagischen Amphipodenfauna des arktischen Meereises”, von Michael Poltermann. Heft-Nr. 226/1997 - “Scientific Cruise Report of the Arctic Expedition ARK-XI/1 of RV ’Polarstern’ in 1995”, edited by Eike Rachor. Heft-Nr. 227/1997 - “Der EinfluB kompatibler Substanzen und Kryoprotektoren auf die Enzyme Malatdehydrogenase (MDH) und Glucose-6-phosphat-Dehydrogenase (G6P-DH) aus Acrosiphonia arcta (Chlorophyta der Arktis”, von Katharina Kuck. Heft-Nr. 228/1997 - “Die Verbreitung epibenthischer Mollusken im chilenischen Beagle-Kanal”, von Katrin Linse. Heft-Nr. 229/1997 - “Das Mesozooplankton im Laptevmeer und ostlichen Nansen-Becken - Verteilung und Gemeinschaftsstrukturen im Spatsommer”, von Hinrich Hanssen. Heft-Nr. 230/1997 - “Modell eines adaptierbaren, rechnergestutzten, wissenschaftlichen Arbeitsplatzes am Alfred-Wegener-lnstitut fur Polar- und Meeresforschung”, von Lutz-Peter Kurdelski. Heft-Nr. 231/1997 - “Zur Okologie arktischer und antarktischer Fische: Aktivitat, Sinnesleistungen und Verhalten”, von Christopher Zimmermann. Heft-Nr. 232/1997 - “Persistente clororganische Verbindungen in hochantarktischen Fischen”, von Stephan Zimmermann. Heft-Nr. 233/1997 - “Zur Okologie des Dimethylsulfoniumpropionat (DMSP)-Gehaltes temperierter und polarer Phytoplanktongemeinschaften im Vergleich mit laborkulturen der Coccolithophoride Emiliania huxleyi und der antarktischen Diatomee Nitzschia lecointei”, von Doris Meyerdirks. Heft-Nr. 234/1997 - “Die Expedition ARCTIC ’96 des FS ’Polarstern’ (ARK XII) mit der Arctic Climate System Study (ACSYS)”, von Ernst Augstein und den Fahrtteilnehmern. ' vergnffen/out of print •• nur noch betm Autor/onty from the author