And Better Science in Antarctica Through Increased Logistical Effectiveness

Total Page:16

File Type:pdf, Size:1020Kb

And Better Science in Antarctica Through Increased Logistical Effectiveness MORE AND BETTER SCIENCE IN ANTARCTICA THROUGH INCREASED LOGISTICAL EFFECTIVENESS Report of the U.S. Antarctic Program Blue Ribbon Panel Washington, D.C. July 2012 This report of the U.S. Antarctic Program Blue Ribbon Panel, More and Better Science in Antarctica Through Increased Logistical Effectiveness, was completed at the request of the White House Office of Science and Technology Policy and the National Science Foundation. Copies may be obtained from David Friscic at [email protected] (phone: 703-292-8030). An electronic copy of the report may be downloaded from http://www.nsf.gov/od/ opp/usap_special_review/usap_brp/rpt/index.jsp. Cover art by Zina Deretsky. MORE AND BETTER SCIENCE IN AntarctICA THROUGH INCREASED LOGISTICAL EFFECTIVENESS REport OF THE U.S. AntarctIC PROGRAM BLUE RIBBON PANEL AT THE REQUEST OF THE WHITE HOUSE OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND THE NatIONAL SCIENCE FoundatION WASHINGTON, D.C. JULY 2012 U.S. AntarctIC PROGRAM BLUE RIBBON PANEL WASHINGTON, D.C. July 23, 2012 Dr. John P. Holdren Dr. Subra Suresh Assistant to the President for Science and Technology Director & Director, Office of Science and Technology Policy National Science Foundation Executive Office of the President of the United States 4201 Wilson Boulevard Washington, DC 20305 Arlington, VA 22230 Dear Dr. Holdren and Dr. Suresh: The members of the U.S. Antarctic Program Blue Ribbon Panel are pleased to submit herewith our final report entitled More and Better Science in Antarctica through Increased Logistical Effectiveness. Not only is the U.S. logistics system supporting our nation’s activities in Antarctica and the Southern Ocean the essential enabler for our presence and scientific accomplish- ments in that region, it is also the dominant consumer of the funds allocated to those endeavors. It is our unanimous conclusion that substantial cost savings can be realized and more science therefore accomplished, some through rather straightforward operating changes and others requiring initial investment. The latter offer long-term gains that are justified on a discounted cash-flow basis, from safety considerations, or from science returns. The essence of our findings is that the lack of capital budgeting has placed operations at McMurdo, and to a somewhat lesser extent at Palmer Station, in unnecessary jeopardy—at least in terms of prolonged inefficiency due to deteriorating or otherwise inadequate physical assets. In this report we have sought to identify areas where increases in logistical effectiveness are particularly promising in comparison with their cost. We are honored to have been asked to conduct this review and have been privileged to work with the many remarkable and dedicated individuals associated with the United States Antarctic Program. Very truly yours, Norman R. Augustine, Chair Thad Allen Craig E. Dorman Hugh W. Ducklow Bart Gordon* R. Keith Harrison Don Hartill Gérard Jugie Louis J. Lanzerotti Duncan J. McNabb Robert E. Spearing Diana H. Wall * Mr. Gordon’s membership on the Panel spanned from the Panel’s creation (October 12, 2011) until May 11, 2012, when a change of his employment activities necessitated his withdrawal. CONTENTS PREfacE ............................................................................................................................... 1 ACKNOWLEDGEMENTS ........................................................................................................ 2 EXECUTIVE SUMMARY ........................................................................................................... 4 1. INTRODUCTION ............................................................................................................. 32 2. THE AUSTRAL ENVIRONMENT ......................................................................................... 34 2.1. The Continent ......................................................................................................... 36 2.2. The Environment at USAP Research Stations ............................................................... 37 2.3. The Southern Ocean ............................................................................................... 38 2.4. Logistics for Research in the Antarctic Region ............................................................. 39 2.4.1. Indirect Research Support ............................................................................... 39 2.4.2. Direct Research Support ................................................................................. 48 3. FORECAST OF FUTURE SCIENCE NEEDS ........................................................................... 50 3.1. Science at the South Pole ......................................................................................... 52 3.2. Science on the Peninsula and West Antarctica ............................................................ 54 3.3. Science in McMurdo and the Dry Valleys .................................................................. 57 3.4. Science in the Continental Interior ............................................................................. 59 3.5. Science in the Southern Ocean................................................................................. 60 3.6. Science Using an Integrated Observation System ....................................................... 62 4. FINDINGS AND IMPLEMENTING ACTIONS ....................................................................... 64 4.1. Research Support: Research Facilities and Equipment .................................................. 64 4.2. People ................................................................................................................... 71 4.3. Technology ............................................................................................................. 76 4.4. Transportation ........................................................................................................ 81 4.4.1. Alterntatives to McMurdo Station .................................................................... 81 4.4.2. Air and Land ................................................................................................ 84 4.4.3. Sea ............................................................................................................. 95 4.5. Supply Chain ....................................................................................................... 109 4.5.1. Maintenance .............................................................................................. 113 4.5.2. Warehousing/Storage ................................................................................. 117 4.5.3. Purchasing ................................................................................................. 121 4.5.4. Inventory .................................................................................................... 122 4.6. Energy and Utilities ............................................................................................... 125 4.7. Communications and Information Technology ........................................................... 129 4.7.1. Examples of C&IT Demands Within the USAP ................................................. 129 4.7.2. Implementation of USAP C&IT ....................................................................... 132 4.7.3. Summary of Key C&IT Issues ........................................................................ 133 4.7.4. Information Assurance/Security .................................................................... 139 4.8. Human Care ........................................................................................................ 140 4.8.1. Housing ..................................................................................................... 140 4.8.2. Food ......................................................................................................... 142 4.8.3. Recreation and Morale ................................................................................ 143 4.8.4. Safety and Health ....................................................................................... 144 4.8.5. Personal Equipment ..................................................................................... 149 4.9. Environmental Stewardship .................................................................................... 151 4.9.1. Introduction ................................................................................................ 151 4.9.2. The USAP as an Environmental Leader ........................................................... 151 4.9.3. Environmental Planning ................................................................................ 152 4.9.4. Other Environmental Issues ........................................................................... 153 4.10. International Considerations ................................................................................. 154 4.10.1. Governance ............................................................................................. 154 4.10.2. Logistics Collaboration ............................................................................... 154 4.10.3. Scientific Collaboration .............................................................................. 156 4.10.4. Coordination of International Collaboration.................................................. 161 4.11. Governance of U.S. Program ............................................................................... 163 5.
Recommended publications
  • University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
    This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi­ tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre­ paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript.
    [Show full text]
  • Osl Dating of High-Elevation Alluvial Sediments: Mcmurdo Dry
    OSL DATING OF HIGH-ELEVATION ALLUVIAL SEDIMENTS: MCMURDO DRY VALLEYS, ANTARCTICA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Meridith Ann Ramsey In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Program: Environmental and Conservation Science November 2014 Fargo, North Dakota North Dakota State University Graduate School Title OSL DATING OF HIGH-ELEVATION ALLUVIAL SEDIMENTS: MCMURDO DRY VALLEYS, ANTARCTICA By Meridith Ann Ramsey The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Kenneth Lepper Chair Adam Lewis Lisa Montplaisir Approved: 04/16/2015 Eakalak Khan Date Department Chair ABSTRACT High-elevation alluvial fans in the McMurdo Dry Valleys are a record of short-term, occasional melting events along the margins of the East Antarctic Ice Sheet. Sediment samples were dated from five fans using Optically Stimulated Luminescence (OSL) dating. OSL dates the time since quartz grains were last exposed to sunlight; all sample preparation takes place in a dark room. Thirteen samples were dated for this thesis, the ages were stratigraphically consistent and ranged from 1.1 ka to 105.9 ka. Clusters of fan activity occurred between 1.1 and 3.1 ka and 8.1 and 11.1 ka. The melting events appear to be linked to insolation, with periods of fan activity occurring usually at times of increased mean annual insolation. The alluvial fans show promise as a possible archive for climate proxies in this region of Antarctica.
    [Show full text]
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Weather and Climate in the Amundsen Sea Embayment
    WEATHER AND CLIMATE IN THE AMUNDSEN SEA EMBAYMENT,WEST ANTARCTICA:OBSERVATIONS, REANALYSES AND HIGH RESOLUTION MODELLING A thesis submitted to the School of Environmental Sciences of the University of East Anglia in partial fulfilment of the requirements for the degree of Doctor of Philosophy RICHARD JONES JANUARY 2018 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. © Copyright 2018 Richard Jones iii ABSTRACT Glaciers within the Amundsen Sea Embayment (ASE) are rapidly retreating and so contributing 10% of current global sea level rise, primarily through basal melting. » Here the focus is atmospheric features that influence the mass balance of these glaciers and their representation in atmospheric models. New radiosondes and surface-based observations show that global reanalysis products contain relatively large biases in the vicinity of Pine Island Glacier (PIG), e.g. near-surface temperatures 1.8 ±C (ERA-I) to 6.8 ±C (MERRA) lower than observed. The reanalyses all underestimate wind speed during orographically-forced strong wind events and struggle to reproduce low-level jets. These biases would contribute to errors in surface heat fluxes and thus the simulated supply of ocean heat leading to PIG melting. Ten new ice cores show that there is no significant trend in accumulation on PIG between 1979 and 2013. RACMO2.3 and four global reanalysis products broadly reproduce the observed time series and the lack of any significant trend.
    [Show full text]
  • Baby, It's Cold Outside!
    Baby, It’s Cold Outside! A Tau Bate reports from the bottom of the planet on a winter of life in the long, dark night of Antarctica By Robert W. Streeter, Wyoming Alpha ’11 HE JOB TODAY IS to in. No way was I going to The United States Antarctic Program is managed by the National go check on a radar give this chance up: I’d Science Foundation. The author is employed by the Antarctic that detects auroras. actually gotten a call to Support Contract to perform work at Amundsen-Scott South t The remote interface Pole Station. He is shown outside the station during the three- work at the South Pole! from my desk in the B2 month summer season when temperatures are around -20 to -30F. I’ll never know what Pod of the elevated sta- exactly qualified me, tion indicates things are above other certainly top- probably just fine, but it’s notch applicants. I started Thursday, and an on-site my application with a check needs to be done. story about my family Were it only a couple caretaking a ranch in win- months ago in December, ter in the remote Wyo- it would be a nice ski with ming Rockies. The ranch a light jacket, tempera- (an active dude ranch in tures in the single-digit the summer season) is negatives Fahrenheit, to situated on the edge of the traverse the 750 meters Gros Ventre Wilderness, to the small elevated not far from Jackson Hole. outbuilding housing the It’s 22 miles from where electronics that power the they stop plowing the array.
    [Show full text]
  • Mcmurdo STATION MODERNIZATION STUDY Building Shell & Fenestration Study
    McMURDO STATION MODERNIZATION STUDY Building Shell & Fenestration Study April 29, 2016 Final Submittal MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 2 TABLE OF CONTENTS Section 1: Overview PG. 7-51 Team Directory PG. 8 Project Description PG. 9 Methodology PG. 10-11 Design Criteria/Environmental Conditions PG. 12-20 (a) General Description (b) Environmental Conditions a. Wind b. Temp c. RH d. UV e. Duration of sunlight f. Air Contaminants (c) Graphic (d) Design Criteria a. Thermal b. Air Infiltration c. Moisture d. Structural e. Fire Safety f. Environmental Impact g. Corrosion/Degradation h. Durability i. Constructability j. Maintainability k. Aesthetics l. Mechanical System, Ventilation Performance and Indoor Air Quality implications m. Structural implications PG. 21-51 Benchmarking 3 Section 2: Technical Investigation and Research PG. 53-111 Envelope Components and Assemblies PG. 54-102 (a) Components a. Cladding b. Air Barrier c. Insulation d. Vapor Barrier e. Structural f. Interior Assembly (b) Assemblies a. Roofs b. Walls c. Floors Fenestration PG. 103-111 (a) Methodology (b) Window Components Research a. Window Frame b. Glazing c. Integration to skin (c) Door Components Research a. Door i. Types b. Glazing Section 3: Overall Recommendation PG. 113-141 Total Configured Assemblies PG. 114-141 (a) Roofs a. Good i. Description of priorities ii. Graphic b. Better i. Description of priorities ii. Graphic c. Best i. Description of priorities ii. Graphic 4 (b) Walls a. Good i. Description of priorities ii. Graphic b. Better i. Description of priorities ii. Graphic c. Best i. Description of priorities ii.
    [Show full text]
  • A NEWS BULLETIN Published Quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC)
    A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) An English-born Post Office technician, Robin Hodgson, wearing a borrowed kilt, plays his pipes to huskies on the sea ice below Scott Base. So far he has had a cool response to his music from his New Zealand colleagues, and a noisy reception f r o m a l l 2 0 h u s k i e s . , „ _ . Antarctic Division photo Registered at Post Ollice Headquarters. Wellington. New Zealand, as a magazine. II '1.7 ^ I -!^I*"JTr -.*><\\>! »7^7 mm SOUTH GEORGIA, SOUTH SANDWICH Is- . C I R C L E / SOUTH ORKNEY Is x \ /o Orcadas arg Sanae s a Noydiazarevskaya ussr FALKLAND Is /6Signyl.uK , .60"W / SOUTH AMERICA tf Borga / S A A - S O U T H « A WEDDELL SHETLAND^fU / I s / Halley Bav3 MINING MAU0 LAN0 ENOERBY J /SEA uk'/COATS Ld / LAND T> ANTARCTIC ••?l\W Dr^hnaya^^General Belgrano arg / V ^ M a w s o n \ MAC ROBERTSON LAND\ '■ aust \ /PENINSULA' *\4- (see map betowi jrV^ Sobldl ARG 90-w {■ — Siple USA j. Amundsen-Scott / queen MARY LAND {Mirny ELLSWORTH" LAND 1, 1 1 °Vostok ussr MARIE BYRD L LAND WILKES LAND ouiiiv_. , ROSS|NZJ Y/lnda^Z / SEA I#V/VICTORIA .TERRE , **•»./ LAND \ /"AOELIE-V Leningradskaya .V USSR,-'' \ --- — -"'BALLENYIj ANTARCTIC PENINSULA 1 Tenitnte Matianzo arg 2 Esptrarua arg 3 Almirarrta Brown arc 4PttrtlAHG 5 Otcipcion arg 6 Vtcecomodoro Marambio arg * ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Prasid«fTtB Frei chile s 1000 Kilometres 10 Stonington I.
    [Show full text]
  • Polarforschungsagenda Status Und Perspektiven Der Deutschen
    Polarforschungsagenda 2030 Status und Perspektiven der deutschen Polarforschung DFG-Statusbericht des Deutschen Nationalkomitees SCAR/IASC Polarforschungsagenda 2030 Status und Perspektiven der deutschen Polarforschung DFG-Statusbericht des Deutschen Nationalkomitees für Scientific Committee on Antarctic Research (SCAR) und International Arctic Science Committee (IASC) Deutsches Nationalkomitee SCAR/IASC Prof. G. Heinemann (Vorsitzender) Universität Trier, Fachbereich Raum- und Umweltwissenschaften Postanschrift: Behringstr. 21, 54296 Trier Telefon: +49/651/201-4630 Telefax: +49/651/201-3817 E-Mail: [email protected] www.scar-iasc.de Juli 2017 Das vorliegende Werk wurde sorgfältig erarbeitet. Dennoch übernehmen Autoren, Herausgeber und Verlag für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler keine Haftung. Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieser Publikation darf ohne schrift- liche Genehmigung des Verlages in irgendeiner Form – durch Photokopie, Mikroverfilmung oder irgendein anderes Verfahren – reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertra- gen oder übersetzt werden. Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen in diesem Buch berechtigt nicht zu der Annahme, dass diese von jedermann frei benutzt werden dürfen. Vielmehr kann es sich auch dann um eingetragene Warenzeichen oder sonstige gesetzlich geschützte Kennzeichen handeln, wenn sie nicht eigens als solche markiert sind. All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
    [Show full text]
  • Microbial Dispersal Limitation to Isolated Soil Habitats in the Mcmurdo Dry Valleys
    bioRxiv preprint doi: https://doi.org/10.1101/493411; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Microbial dispersal limitation to isolated soil habitats in the McMurdo Dry Valleys 2 of Antarctica 3 4 Stephen D.J. Archer1,2, Kevin C. Lee2, Tancredi Caruso3, Teruya Maki4, Charles K. Lee5, 5 Don A. Cowan6, Fernando T. Maestre7, Stephen B. Pointing1,8 6 7 1 Yale-NUS College, National University of Singapore, Singapore 138527 8 2 Institute for Applied Ecology New Zealand, Auckland University of Technology, Auckland 9 1142, New Zealand 10 3 School of Biological Sciences and Global Institute for Food Security, Queen's University 11 Belfast, Belfast BT9 7BL, Northern Ireland, UK 12 4 Department of Chemical Engineering, Kanazawa University, Kanazawa 920-1192, Japan 13 5 International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton 14 3240, New Zealand 15 6 Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria 0002, South 16 Africa 17 7 Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de 18 Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 19 Móstoles, Spain 20 8 Department of Biological Sciences, National University of Singapore, Singapore 117558 21 1 bioRxiv preprint doi: https://doi.org/10.1101/493411; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • Station Sharing in Antarctica
    IP 94 Agenda Item: ATCM 7, ATCM 10, ATCM 11, ATCM 14, CEP 5, CEP 6b, CEP 9 Presented by: ASOC Original: English Station Sharing in Antarctica 1 IP 94 Station Sharing in Antarctica Information Paper Submitted by ASOC to the XXIX ATCM (CEP Agenda Items 5, 6 and 9, ATCM Agenda Items 7, 10, 11 and 14) I. Introduction and overview As of 2005 there were at least 45 permanent stations in the Antarctic being operated by 18 countries, of which 37 were used as year-round stations.i Although there are a few examples of states sharing scientific facilities (see Appendix 1), for the most part the practice of individual states building and operating their own facilities, under their own flags, persists. This seems to be rooted in the idea that in order to become a full Antarctic Treaty Consultative Party (ATCP), one has to build a station to show seriousness of scientific purpose, although formally the ATCPs have clarified that this is not the case. The scientific mission and international scientific cooperation is nominally at the heart of the ATS,ii and through SCAR the region has a long-established scientific coordination body. It therefore seems surprising that half a century after the adoption of this remarkable Antarctic regime, we still see no truly international stations. The ‘national sovereign approach’ continues to be the principal driver of new stations. Because new stations are likely to involve relatively large impacts in areas that most likely to be near pristine, ASOC submits that this approach should be changed. In considering environmental impact analyses of proposed new station construction, the Committee on Environmental Protection (CEP) presently does not have a mandate to take into account opportunities for sharing facilities (as an alternative that would reduce impacts).
    [Show full text]
  • China's Expanding Antarctic Interests
    CHINA’S EXPANDING ANTARCTIC INTERESTS: IMPLICATIONS FOR NEW ZEALAND Professor Anne-Marie Brady1 | University of Canterbury | [email protected] Policy brief no. 2 | June 3, 2017 Presented at the conference: ‘Small States and the Changing Global Order: New Zealand Faces the Future’ at University of Canterbury, Christchurch, New Zealand, 3-4 June 2017 China is rapidly expanding its activities in Antarctica and some of its behaviour appears to breach the terms of the Antarctic Treaty. New Zealand must rethink its assessment of risk in Antarctica and devise a strategy to protect its interests there. Key findings • Some of China's interests and activities in Antarctica, which include undeclared military activities and mineral exploration, may be at odds with New Zealand strategic interests and they potentially breach international law. • China is rapidly expanding its presence in a triangle-shaped area it calls the "East Antarctic Sector" and has stated in policy documents that it reserves the right to make a claim in Antarctica. • New Zealand must rethink its assessment of risk in Antarctica and devise a strategy to protect its interests there. Executive summary China has rapidly expanded its activities in Antarctica and the Southern Ocean in recent years. The 2016 White Paper on Defence defines China as a "key strategic partner" for New Zealand.2 New Zealand has strong and expanding relations with China; while our top trading partners also have China as their major market. New Zealand benefits hugely from the economic opportunities associated with China's economic growth. At the same time, China's economic growth has funded a dramatic expansion in military capabilities and is challenging the longstanding strategic order in Northeast Asia and the Indo-Asia-Pacific.
    [Show full text]
  • 6560-50-P Environmental Protection Agency [Epa-Hq
    This document is scheduled to be published in the Federal Register on 04/28/2021 and available online at federalregister.gov/d/2021-08842, and on govinfo.gov 6560-50-P ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OW-2013-0262; FRL-10022-98-OW] Re-Issuance of a General Permit to the National Science Foundation for the Ocean Disposal of Man-Made Ice Piers from its Station at McMurdo Sound in Antarctica AGENCY: Environmental Protection Agency (EPA). ACTION: Notice; proposed permit. SUMMARY: The Environmental Protection Agency (EPA) proposes to re-issue a general permit under the Marine Protection, Research and Sanctuaries Act (MPRSA) authorizing the National Science Foundation (NSF) to dispose of ice piers in ocean waters. Permit re-issuance is necessary because the current permit is due to expire on May 21, 2021. EPA does not propose substantive changes to the content of the current permit. DATES: Written comments on this proposed general permit will be accepted until [INSERT DATE 30 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER]. ADDRESSES: This proposed permit is identified as Docket No. EPA-HQ-OW-2013-0262. Submit your comments to the public docket for this proposed permit at https://www.regulations.gov. Follow the online instructions for submitting comments. All submissions received must include the Docket ID No., and comments received may be posted without change to https://www.regulations.gov, including any personal information provided. Out of an abundance of caution for members of the public and our staff, the EPA Docket Center and Reading Room are closed to the public, with limited exceptions, to reduce the risk of transmitting COVID-19.
    [Show full text]