Land Report Number 107, Fall 2013 · the Land Institute About the Land Institute

Total Page:16

File Type:pdf, Size:1020Kb

Land Report Number 107, Fall 2013 · the Land Institute About the Land Institute Land Report Number 107, Fall 2013 · The Land Institute About The Land Institute MISSION STATEMENT DIRECTORS When people, land and community are as one, all three members Anne Simpson Byrne Brian Donahue prosper; when they relate not as members but as competing inter- Vivian Donnelley ests, all three are exploited. By consulting nature as the source and Sam Evans measure of that membership, The Land Institute seeks to develop an Terry Evans (emeritus) Pete Ferrell agriculture that will save soil from being lost or poisoned, while pro- Jan Flora moting a community life at once prosperous and enduring. Eric Gimon Wes Jackson Michelle Mack OUR WORK Patrick McLarney Thousands of new perennial grain plants live year-round at The Land Leigh Merinof Institute, prototypes we developed in pursuit of a new agriculture Conn Nugent Victoria Ranney (emeritus) that mimics natural ecosystems. Grown in polycultures, perennial Lloyd Schermer (emeritus) crops require less fertilizer, herbicide and pesticide. Their root sys- John Simpson tems are massive. They manage water better, exchange nutrients Ken Warren Donald Worster more e∞ciently and hold soil against the erosion of water and wind. Angus Wright This strengthens the plants’ resilience to weather extremes, and re- STAFF stores the soil’s capacity to hold carbon. Our aim is to make conser- Kris Boele vation a consequence, not a casualty, of agricultural production. Carrie Carpenter Marty Christians LAND REPORT Sheila Cox Stan Cox Land Report is published three times a year. issn 1093-1171. The edi- Tim Crews tor is Scott Bontz. To use material from the magazine, reach him at Lee DeHaan [email protected], or the address or phone number below. Ti≠any Durr Ron Fent Adam Gorrell ELECTRONIC MEDIA Stephanie Hutchinson For e-mail news about The Land Institute, write to Carrie Carpenter Wes Jackson Patricia Johnson at [email protected], or call. Web site: landinstitute.org. Laura Kemp Ron Kinkelaar John Mai SUPPORT Pheonah Nabukalu To help The Land Institute, see the contribution form on page 30, or Jayne Norlin go to landinstitute.org. Funders receive the Land Report. Tom Reid Steve Renich John Schmidt TO REACH US Duane Schrag The Land Institute Scott Seirer Freddie Smith 2440 E. Water Well Road, Salina, KS 67401 Josh Svaty phone 785-823-5376 David Van Tassel fax 785-823-8728 Cindy Thompson Shuwen Wang [email protected] Darlene Wolf 2 LAND REPORT Land Report Number 107, Fall 2013 · The Land Institute 4 Sorghum work for Africa A new Land Institute scientist seeks genes to make grain sorghum a perennial. We also will send sorghum to be bred with local varieties and tested in Ethiopia, Mali, and South Africa, where it is a major food crop. 6 Land Institute shorts Study of whether cereal crops might fix nitrogen. Gifts of land. Talking about perennial grains to the UN’s food and agriculture arm. New board members. Attention from national media. 10 Nn A history of the most important invention of the 20th century, including how it changed the human popula- tion and ecosystems, and how its disruptions can be countered with perennial grains. 25 Doubt and hope People attending the Prairie Festival’s address of destructive economic growth share their fears that humanity won’t stop the consumption until forced, and their inspiration from festival ideas and cohorts. 28 Thanks to our contributors 29 Prairie Festival 2013 recordings 30 Donation form Cover Greenhouse manager Tifany Durr waters seedlings of Kernza, a perennial grass that The Land Institute is develop- ing as a grain crop. These progeny are from crosses of select plants. The approximately 15,000 seedlings were moved to the field in mid-November. Scott Bontz photo. THE LAND INSTITUTE 3 Pheonah Nabukalu seeks the genes for perenniality in sorghum-johnsongrass hybrids. Scott Seirer photo. 4 LAND REPORT Sorghum work for Africa $650,000 to isolate genes and breed Kansas plants with sub-Saharan varieties he Land Institute and collabora- ating more than a dozen traits observed in tors won grants to help make plants and grain with the genetic markers grain sorghum both a perennial being deciphered by Andrew Paterson, head and a better crop in Africa, where of the Plant Genome Mapping Laboratory at Tthe plant is a major human food grown by Georgia. small farmers in often marginal soils and Paterson also will lead the use of a tough climate. Improved sorghum should $5 million grant from the US Agency for help conserve that soil, along with the richer International Development, with $500,000 but eroding soil of the American Plains. It coming to The Land Institute over five years, also will make up for the Green Revolution, to get its sorghum strains to Africa, breed which dramatically boosted corn, wheat, them with locally adapted varieties, and and rice yields, but overlooked sorghum, test how the ofspring perform. Winter- which naturally better handles drought and hardiness will not be a problem in Africa, so has untapped genetic potential. Cox can send plants selected solely for traits A USDA grant for $150,000 will fund a like grain production and development of new Land Institute scientist, Pheonah Na- the underground stems called rhizomes. bukalu, who comes from Uganda by way of The rest of the USAID money will pay for a doctorate from Louisiana State University, the work in Ethiopia, Mali, and South Af- to connect results in the field with genetic rica. The collaborator in Ethiopia is Jimma mapping at the University of Georgia. This University. Overseeing the other locations is two-year project uses 500 sorghum lines the International Crops Research Institute developed over the past four years at The for the Semi-Arid Tropics, which is based in Land Institute by crossing annual grain India, and where Cox once worked. crop plants with a wild perennial relative, The diverse but dry and fragile Sahel johnsongrass. It should help resolve how region between the Sahara and the more to precisely breed into the annual crop the humid savannas and woodlands of central overwintering ability of johnsongrass, but Africa is pressured by a population of more exclude unwanted traits. For more than than 100 million and annually growing by 2.8 a decade institute breeder Stan Cox has percent. Some get nearly 40 percent of their worked with these crosses and selection, calories from sorghum. Based on tonnage, developing plants with bigger seed that are sorghum is the fifth most important grain increasingly able to survive Kansas win- crop, grown in India, China, Brazil, and the ters. But the hybrids are years away from US southern Plains. Here it is almost entirely being ready for the farm, and the genes for livestock. Climate change plus increasing responsible for perenniality remain hidden. population and demand for water will make Nabukalu will work to find them by associ- it more important as human food. THE LAND INSTITUTE 5 Land Institute shorts Study to see whether cereal which gives perenniality to our sorghum, so crops can fix nitrogen far are not clear. The Land Institute seeks to know if The Land Institute has hired a scientist any of the plants it is developing as peren- from India, Sivi Damaraju, to study whether nial grain crops already fix nitrogen, and bacteria living in some grain crops or wild whether the trait can be added or improved grasses can pull nitrogen from the air to through selection and breeding. support their growth. As crops, such plants could help farmers avoid costly synthesized The Land receives farm nitrogen, and reduce water pollution and near University of Kansas greenhouse gases. (See the feature story about nitrogen on page 10.) Damaraju had A former energy executive and his wife been working as a post-doctoral researcher donated to The Land Institute their 19th- at Kansas State University. He will start here century stone house and 65 acres of pasture on December 1. Private grants will fund a and woodland, valued at $1.2 million and study expected to last 12 to 18 months. 10 minutes from the University of Kansas. Farmers long have known that for- The unexpected gift from Jim and Cindy age legumes such as alfalfa and clover help Haines does not just expand the institute’s boost production by crops that follow them research space, but also is a boon for col- in rotations. Bacteria in nodules on legume laboration: in recent months, Land Institute roots convert atmospheric nitrogen to a researchers have been laying the ground- form that plants can use to build tissue. In work for a consortium with KU and Kansas return, plants feed sugars to the bacteria. State University to advance perennial-grain Scientists recently have explored whether breeding and companion ecological study. plants other than legumes have similar The aim is more opportunities for study and nitrogen-fixing ability, only in a looser as- work, around the world, in this new agricul- sociation with the bacteria, which either live ture. The donated property includes 50 acres between the plants’ cells, not at committed of brome grass cropped for hay, which could nodules, or live free in soil near the roots. be devoted to ecology studies and perennial- This kind of arrangement might explain how grain trials. for centuries Hopi farmers in Arizona got Jim Haines directed Westar Energy, more protein-building nitrogen from their one of the largest utilities in Kansas. Cindy corn than was contributed by legumes or Haines reviews films for National Public manure – none – or by lightning – only a Radio afliate KCUR in Kansas City and little. Sugarcane has been shown to clearly teaches film courses at the University of have this ability.
Recommended publications
  • Die Nationalsozialistische Rezeption Julius Robert Mayers: Alwin Mittasch Und Das Konzept Der Auslösung
    Die nationalsozialistische Rezeption Julius Robert Mayers: Alwin Mittasch und das Konzept der Auslösung M aria Osietzki, Ruhr-Universität Bochum, Fakultät für Geschichtswissenschaft, W irtschafts- und Technikgeschichte, Universitätsstr. 150, 4630 Bochum 1 Im Jahre 1942 erschien eine vom Reichsforschungsrat in Auftrag gegebene "Gedenkpublikation zur 100. W iederkehr der Entdeckung des Energieerhal­ tungssatzes".1 In ihr kamen Vertreter unterschiedlicher Disziplinen zu W ort, für die der Energieerhaltungssatz von Relevanz war. Im Stil schloß sich die Gedenkschrift weitgehend an die üblicherweise zur Identitätsstiftung der W issenschaft beitragenden Heroisierungen von W issenschaftlern und den zur Aufwertung der eigenen Disziplin bestimmten Rekonstruktionen ihrer Leistun­ gen an. Die meisten Beiträge lagen in einer Linie mit der Rezeptionsgeschichte Mayers vor 1933 und nach 1945. Stellenweise wiesen sie allerdings Passagen auf, die man als bewußte Verbeugung vor den Ambitionen der Nationalsozia­ listen oder als unbewußte Anpassung an ihre Denkweisen interpretieren kann. Im Unterschied dazu stand eine Publikation in der Gedenkschrift für einen Rezeptionsstrang M ayers, der als typisch nationalsozialistisch zu kennzeichnen ist. Er stammt von dem Chemiker Alwin M ittasch (1869-1953), dem erfolgrei­ chen Katalyseforscher und langjährigem Laboratoriumsleiter bei der BASF, der sich im Ruhestand mit philosophischen Fragen befaßte. Er stieß dabei auf eine kurze Schrift von Mayer aus dem Jahre 1876, in der dieser skizzenhaft das Konzept der Auslösung entwickelt hatte.2 Die Faszination, die M ittasch für die­ ses Konzept empfand, bestand in dessen Ergänzung des Energieerhaltungs­ satzes, der auf dem Prinzip "causa aequat effectum" basierte, während die Auslösung vom Grundsatz "kleine Ursache große W irkung" ausging. In dieser dualen Kausalitätsvorstellung sah M ittasch eine Brücke zwischen M aterie und Geist sowie zwischen Leib und Seele.
    [Show full text]
  • CARL BOSCH and HIS MUSEUM Fathi Habashi, Laval University
    Bull. Hist. Chem., VOLUME 35, Number 2 (2010) 111 CARL BOSCH AND HIS MUSEUM Fathi Habashi, Laval University Carl Bosch (1874-1940) (Fig. 1) was for the development of the catalysts. born in Cologne, studied metallurgy Further problems which had to be and mechanical engineering at the Tech- solved were the construction of safe nische Hochschule in Berlin (1894-96), high-pressurized reactors and a cheap then chemistry at Leipzig University, way of producing and cleaning the graduating in 1898. In 1899 he entered gases necessary for the synthesis of the employ of the Badische Anilin- und ammonia. Step by step Bosch went Sodafabrik in Ludwigshafen (Fig. 2) on to using increasingly larger manu- and participated in the development facturing units. In order to solve the of the then new industry of synthetic growing problems posed by materials indigo. and related safety problems, BASF set up the chemical industry’s first When in 1908 the Badische ac- Materials Testing Laboratory in 1912 quired the process of high-pressure to identify and control problems in synthesis of ammonia, which had been materials for instrumentation and developed by Fritz Haber (1868-1934) process engineering. at the Technische Hochschule in Karl- sruhe, Bosch was given the task of The plant in Oppau for the pro- developing this process on an industrial duction of ammonia and nitrogen Figure 1. Carl Bosch (1874-1940) scale. This involved the construction of fertilizers was opened in 1913. Bosch plant and apparatus which would stand up wanted fertilizers to be tested thorough- to working at high gas pressure and high-reaction tem- ly, so that customers were to be given proper instructions peratures.
    [Show full text]
  • Milestones and Personalities in Science and Technology
    History of Science Stories and anecdotes about famous – and not-so-famous – milestones and personalities in science and technology BUILDING BETTER SCIENCE AGILENT AND YOU For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 1 Agilent Technologies is committed to the educational community and is willing to provide access to company-owned material contained herein. This slide set is created by Agilent Technologies. The usage of the slides is limited to teaching purpose only. These materials and the information contained herein are accepted “as is” and Agilent makes no representations or warranties of any kind with respect to the materials and disclaims any responsibility for them as may be used or reproduced by you. Agilent will not be liable for any damages resulting from or in connection with your use, copying or disclosure of the materials contained herein. You agree to indemnify and hold Agilent harmless for any claims incurred by Agilent as a result of your use or reproduction of these materials. In case pictures, sketches or drawings should be used for any other purpose please contact Agilent Technologies a priori. For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 2 Table of Contents The Father of Modern Chemistry The Man Who Discovered Vitamin C Tags: Antoine-Laurent de Lavoisier, chemical nomenclature Tags: Albert Szent-Györgyi, L-ascorbic acid He Discovered an Entire Area of the Periodic Table The Discovery of Insulin Tags: Sir William Ramsay, noble gas Tags: Frederick Banting,
    [Show full text]
  • Great Moments in Science and Technology English, Spanish, French: 103 X 15 Min
    SCIENCE TECHNOLOGY MEDICINE DOCUMENTARY 15 MIN. VERSIONS Great Moments in Science and Technology English, Spanish, French: 103 x 15 min. Arabic: 89 x 15 min. The viewer gains an insight into both the scientific and the socio-political background to an Portuguese: 33 x 15 min. invention or discovery. Pioneers of science are portrayed, and the nature of their research and its further development through to the present are reconstructed. RIGHTS Not available worldwide. Computer animations are used to make certain processes easier to understand and to show Please contact your regional how various systems function. Re-enacted scenes illustrate the conditions under which the distribution partner. scientists worked and the approach they took. Particularly impressive are the historical film sequences, some of which date back to the early days of cinematography. ORDER NUMBER 24 4110 | 01 – 103 01 Wilhelm C. Röntgen: X-rays 30 Louis Pasteur, Robert Koch: English, Spanish, French 02 The Lumière Brothers: Bacteriology Cinematography 31 Edward Jenner, Paul Ehrlich, 24 4110 | 01 – 89 03 Otto Lilienthal: The Glider Emil von Behring: Vaccination Arabic 04 Werner von Siemens: 32 Alexander Fleming, Howard Florey, The Electric Dynamo Ernst Chain: Penicillin 24 4110 | 01 – 32, 47 05 Nikolaus August Otto: 33 Horace Wells, William Morton, Portuguese The Four-stroke Engine John Warren: Anaesthesia 06 Louis Daguerre: The Camera 34 Joseph Lister, Ignaz Semmelweis: 07 Karl Friedrich Drais: The Bicycle Antisepsis 08 Heinrich Hertz: Electromagnetic Waves 35 Ramón y Cajal: Neuron Theory 09 The Wright brothers: The Aeroplane 36 Frederick Banting, Charles Best, 10 Thomas Alva Edison: The Light Bulb John Macleod, James Collip: Insulin 11 Johann Philipp Reis, 37 Karl Landsteiner: Alexander Graham Bell: The Telephone The AB0 Blood Group System 12 Samuel F.
    [Show full text]
  • Unit / Unidad 9
    UNIT / UNIDAD 9 GRAMMAR PRACTICE / PRÁCTICA DE GRAMÁTICA Actividad 1 1. My name is Michael. I __was born__ in Liverpool but at the moment I __am living__ in London. Sometimes I __work__ inside and sometimes outside. I often __drive__ a car or a motorbike. I __wear__ a uniform. At the moment I __am walking__ down the street because there __was__ a phone call a quarter of an hour ago about some people who __were__ in a bar making a lot of trouble. I __don’t earn__ a lot of money but I __like__ my job. 2. What is his job? He is a policeman Actividad 2 Nefertiti / artist? Was Nefertiti an artist? No, she wasn’t. She was a queen Beethoven / Germany? Was Beethoven born in Germany? Yes, he was 1. Picasso/composer? Was Picasso a composer? No, he wasn’t. He was a painter 2. Paul Newman/writer? Was Paul Newman a writer? No, he wasn’t. He was an actor 3. Nelson Mandela/Gandhi/politicians? Were Nelson Mandela and Gandhi politicians? Yes, they were 4. The Beatles/actors? Were The Beatles actors? No, they weren’t. They were singers 5. Pele/Argentina? Was Pele from Argentina? No, he wasn’t. He was from brazil Actividad 3 1. Where were you born? I was born … in Lisbon 2. What is your job? I am a … teacher 3. How old were you on your last birthday? I was … forty-three 4. What would you like to do at the weekend? I would like to … go to the beach 1 5.
    [Show full text]
  • Conference Report of the 47Th Jahrestreffen Deutscher
    CHEMCATCHEM CONFERENCE REPORTS DOI: 10.1002/cctc.201402266 German Catalysis on an International Scale in Weimar Juliane Titus,[a] Stefan Kaluza,[b] and Roland Marschall*[c] Dedicated to the memory of Professor Helmut Knçzinger. To Weimar and Beyond In Remembrance of Helmut Knçzinger Over the years, the Annual Meeting of the German Catalysis This year’s conference started with a minute’s silence to honor Society (GeCatS), which traditionally takes place in Weimar, has Prof. Helmut Knçzinger, who died on January 12th, 2014 at the become a constant in the conference calendar of every age of 78. He was a leading scientist in the in situ characteriza- German catalysis researcher. This year’s meeting (March 12th– tion of heterogeneous catalysts. Amongst other roles, he 14th) covered a huge range of catalysis, including recent re- served as chairman of the DECHEMA catalysis section and par- search topics such as thermal, bio-, and photocatalysis. The ticipated in the DECHEMA catalysis working committee. In latter was even put into practice, with the sunshine catalyzing 1998, he was awarded the Alwin Mittasch Medal for his out- scientific discussion and collaborative initiatives in the adjacent standing scientific work. His memory and the resonance of his Weimarhalle park! scientific contributions will remain with us. This year’s conference was not only record-breaking with re- spect to the high temperatures but the scientific program Highlights in Catalysis itself. 582 participants joined this year’s conference (in compar- ison to 519 the year before), in which 38 oral presentations, in- The scientific program began with a plenary lecture by Prof.
    [Show full text]
  • Setsuro Tamaru and Fritz Haber: Links Between Japan and Germany In
    Essay DOI: 10.1002/tcr.201402086 Setsuro Tamaru and Fritz Haber: Links THE CHEMICAL between Japan and Germany in Science RECORD and Technology Hideko Tamaru Oyama Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501 (Japan), Tel./Fax: (+81) 3-3985-2363, E-mail: [email protected] ABSTRACT: Setsuro Tamaru was my grandfather. He worked with Fritz Haber in Germany on researching the ammonia synthesis process and contributed substantially to the development of scientific research and education in Japan. Although I had never met him, I felt his existence while I grew up, since our house was built by him and had many artifacts brought back from Germany by my grandfather; e.g., a Bechstein upright piano upon which I practiced piano every day and Fritz Haber’s portrait with his handwritten message hung on the wall. This is an account of my grandfather’s life, concentrating on his relationship with Fritz Haber. This story goes back to a time more than a century ago. 1. Early Years in Japan (1879∼1908) Setsuro Tamaru (1879∼1944), shown in Figure 1, was born on November 1, 1879, in Morioka, a region in the northern part of the main island, Honshu, Japan. He was the fourth son of a former clansman of the Nambu clan, Juro (father, 1848∼1892), and Shin (mother, 1850∼1941). His father died when he was 12 years old so his eldest brother, Kinya,[1] sup- ported the big family (his mother, grandmother Koto, and six siblings)[2] by working as a schoolteacher.
    [Show full text]
  • Friedrich Bergius – Chemist, Pioneering Researcher and Nobel Prize Laureate
    Friedrich Bergius – chemist, pioneering researcher and Nobel Prize laureate Friedrich Bergius (born 1884 in Goldschmieden, Silesia; died 1949 in Buenos Aires) was a chemist and Nobel Prize laureate. He worked for one of the predecessor companies of Evonik from 1914 to 1918, including as a member of the executive board of Th. Goldschmidt AG from 1916 to 1918. In 1931, Friedrich Bergius received the Nobel Prize for Chemistry jointly with Carl Bosch "in recognition of their contributions to the invention and development of chemical high- Friedrich Bergius pressure methods." Thanks to his pioneering basic research, Friedrich Bergius is now considered one of the most important German chemists of the 20th century. His research continues to influence some of the chemicals produced at Evonik to this day. Bergius began his studies of chemistry in Breslau in 1903 and completed his doctoral studies in Leipzig in 1907. Reflecting the influence of Nobel laureate Fritz Haber, his professorial thesis was entitled "Application of high pressure in chemical processes and simulation of the genesis of coal." Written at the dawn of the automotive and aerospace age, Bergius’ work turned out to be prescient. He believed to have found a way to "liquidize" the rich coal deposits in Germany under high pressure to turn them into gasoline. Since Karl Goldschmidt, the chairman of the Th. Goldschmidt AG executive board, shared the conviction that gasoline would dominate the future, he provided Bergius with the means to implement his findings on an industrial scale. In 1913, Bergius therefore came to Essen, where he was appointed the head of research in a new, specially built laboratory and advanced to deputy member of the executive board of Th.
    [Show full text]
  • 1 Evolution of Catalysts Design and Synthesis
    3 1 Evolution of Catalysts Design and Synthesis: From Bulk Metal Catalysts to Fine Wires and Gauzes, and that to Nanoparticle Deposits, Metal Clusters, and Single Atoms Wey Yang Teoh 1,2 1University of Malaya, Centre for Separation Science and Technology, Department of Chemical Engineering, 50603 Kuala Lumpur, Malaysia 2The University of New South Wales, School of Chemical Engineering, Sydney 2052, Australia 1.1 The Cradle of Modern Heterogeneous Catalysts The modern discovery of heterogeneous catalysts stretches as far back as 1800 when Joseph Priestley and Martinus van Marum reported the dehydrogenation of alcohol over a heated metal catalyst, although not too much was thought about the role of the metal catalyst at that time except as a heating source. Then in 1813, Louis Jacques Thénard of École Polytechnique in Paris discovered the decomposi- tion of ammonia to nitrogen and hydrogen over “red-hot metals” and recognized that the phenomenon was due to some catalytic reaction [1, 2]. The concept was followed up by Humphry Davy and Michael Faraday at the Royal Institution of London who, in 1817, reported the flameless catalytic combustion of coal gas and air over heated platinum wire producing bright white ignition. Their results were reproducible when using palladium, but not on copper, silver, iron, gold, and zinc [1, 3]. These experiments made clear that there was some form of cat- alytic role associated with the different metals. The discovery soon became the basisfortheinventionofthecoalminesafetylamp,alsoknownastheDavy lamp – although mysteriously but rather practically, the use of inefficient steel iron rather than platinum gauze became the standard for Davy lamps.
    [Show full text]
  • Ranks Among the Most Significant Scientists of the 20Th Century
    Berlin, Jerusalem, and Karlsruhe mark Fritz Haber’s 150th birthday The German physical chemist Fritz Haber (1868-1934) ranks among the most significant scientists of the 20th century. In 1909, through his discovery of a method for synthesizing ammonia from its elements, he laid the scientific foundations for what was soon to be known as the Haber-Bosch process. This technology would overcome the overwhelming reliance of industrial countries on naturally occurring, and ever-more depleted, Chilean nitrate as fertilizer. By the mid-1920s, the Haber-Bosch process had become the dominant means of nitrogen fixation – and thus a cornerstone of food production for the growing world population. The importance of Haber’s work on the ammonia synthesis was recognized early on by the 1918 Nobel Prize in Chemistry (Carl Bosch, who scaled up Haber's method, shared the 1931 Nobel Prize in chemistry with Friedrich Bergius for the invention of high-pressure methods in industrial chemistry). The scope of Haber’s work was unusually wide-ranging, from physical organic chemistry through electrochemistry to thermodynamics. In 1911, Haber became the founding director of Berlin's Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry (KWI; it was renamed after Haber in 1952). Haber’s patriotic fervor during World War One led to his involvement in the development of chemical warfare (soon duplicated by the Allied nations) as well as in securing war materials for the German military, most especially nitrogen compounds for the production of strategic chemicals and explosives. During 1915-1918, Haber’s KWI served as the German center for the development of chemical weapons – and of protective measures against them.
    [Show full text]
  • One Hundred Years of Chemical Warfare: Research
    Bretislav Friedrich · Dieter Hoffmann Jürgen Renn · Florian Schmaltz · Martin Wolf Editors One Hundred Years of Chemical Warfare: Research, Deployment, Consequences One Hundred Years of Chemical Warfare: Research, Deployment, Consequences Bretislav Friedrich • Dieter Hoffmann Jürgen Renn • Florian Schmaltz Martin Wolf Editors One Hundred Years of Chemical Warfare: Research, Deployment, Consequences Editors Bretislav Friedrich Florian Schmaltz Fritz Haber Institute of the Max Planck Max Planck Institute for the History of Society Science Berlin Berlin Germany Germany Dieter Hoffmann Martin Wolf Max Planck Institute for the History of Fritz Haber Institute of the Max Planck Science Society Berlin Berlin Germany Germany Jürgen Renn Max Planck Institute for the History of Science Berlin Germany ISBN 978-3-319-51663-9 ISBN 978-3-319-51664-6 (eBook) DOI 10.1007/978-3-319-51664-6 Library of Congress Control Number: 2017941064 © The Editor(s) (if applicable) and The Author(s) 2017. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncom- mercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
    [Show full text]
  • Creating the Twentieth Century: Technical Innovations of 1867-1914
    Creating the Twentieth Century: Technical Innovations of 1867–1914 and Their Lasting Impact Vaclav Smil OXFORD UNIVERSITY PRESS Creating the Twentieth Century This page intentionally left blank Creating the Twentieth Century Technical Innovations of 1867–1914 and Their Lasting Impact Vaclav Smil 1 2005 1 Oxford University Press, Inc., publishes works that further Oxford University’s objective of excellence in research, scholarship, and education. Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright ᭧ 2005 by Oxford University Press, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data Smil, Vaclav. Creating the twentieth century : technical innovations of 1867–1914 and their lasting impact / Vaclav Smil. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-19-516874-4 ISBN: 0-19-516874-7 1. Technological innovations—History—19th century. 2. Technological innovations—History—20th century. I. Title. T173.8.S615 2004 609'.034—dc22 2004054757 987654321 Printed in the United States of America on acid-free paper Preface This book has been on my mind for more than three decades.
    [Show full text]