Urinary System Can Bring About the Course of Many Common Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Urinary System Can Bring About the Course of Many Common Diseases Urinary Histology N. Swailes, Ph.D. Department of Anatomy and Cell Biology Rm: B046A ML Tel: 5-7726 E-mail: [email protected] Required reading Mescher AL, Junqueira’s Basic Histology Text and Atlas, 12th Edition, Chapter 19: pp332-347 Ross MH and Pawlina W, Histology: A text and Atlas, 6th Edition, Chapter 20: pp698-723 Learning objectives 1) Describe the gross, visible organization of the kidney and relate this to its microanatomy. 2) Describe and identify histologically the path taken by blood and tubular fluid during urine formation in the kidneys. 3) Demonstrate the organization and briefly overview function of the juxtaglomerular apparatus. 4) Identify and discuss the functional significance of urinary epithelium. 5) Trace the flow of urine from renal papilla to external urethral meatus and comment on the histological properties of each region passed. 6) Think about how changes in the histological structure and function of the urinary system can bring about the course of many common diseases. Key terms cortex medullary ray medulla macula densa pyramid mesangial cells column ducts of Bellini nephron interlobar artery uriniferous tubule arcuate artery papilla intralobular artery major/minor calyx interlobular artery pelvis renin corpuscle urinary epithelium (transitional) glomerulus fenestrated capillaries Bowman’s capsule medullary ray proximal convoluted tubule juxtaglomerular cells distal convoluted tubule aldosterone collectung tubule/duct erythropoietin 1 | Page: Urinary Histology Swailes A1: Introduction & General Organization of the Urinary System During this lecture you will follow the entire length of the urinary system focusing in particular on the kidney and its tubular ultrastructure. You will discover some of the basic functions that the histological structure of the kidney is responsible for. The main function of the urinary system is to filter the blood and transport the resulting waste products, dissolved in water, to be temporarily stored and then excreted from the body. It also conserves salts, glucose, proteins and water to regulate blood pressure and influence the acid-base balance in the body. The regions of the organ system involved in these functions are: 1. Kidney and Nephron - filter the blood to remove waste products/toxins - conserve salts, glucose, proteins and water - help regulate blood pressure, hemodynamics and the acid-base balance of the body. 2. Ureters - transport urine created by the kidneys to the urinary bladder. 1 3. Bladder - a temporary storage organ for 2 urine. 4. Urethra - conveys urine from the bladder 3 out of the body during 4 micturition. 2 | Page: Urinary Histology Swailes A2: The Kidneys: An Overview The kidneys are glandular organs with both exocrine and endocrine properties. As a result they have two major functions: 1. Homeostasis: maintenance of a stable extracellular environment for normal cell function The kidneys play an important role in homeostasis. The byproduct of this function is the production of urine. The formation of urine is determined by three main processes that are controlled within specialized units of the kidney called nephrons. i. Filtration - blood plasma is selectively filtered at the glomerulus - the glomerular filtrate contains waste products of metabolism dissolved in water and enters the kidney tubules ii. Secretion - kidney tubules modify glomerular filtrate by secreting substances into it from surrounding capillaries. This helps maintain: + a. potassium balance in the body (by removing excess K from blood) + + b. acid-base balance (by removing H and NH4 from blood) iii. Reabsorption - kidney tubules reabsorb solutes and water. This helps maintain: a. extracellular fluid volume and blood pressure b. water conservation c. sodium balance in the body (by reabsorbing Na+ into the blood) 2. Secretion of hormones: regulate a range of processes around the body. i. Regulation of blood pressure - renin is produced in the kidneys - participates in regulation of blood pressure through renin-angiotensin- aldosterone system. ii. Stimulation of erythropoiesis - erythropoietin is produced in the kidneys - stimulates production of erythrocytes in the bone marrow 3 | Page: Urinary Histology Swailes A3: Gross Structure of the Kidney The kidneys are paired, Heinz baked bean-shaped organs located retroperitoneally on the posterior abdominal wall. The following structures exit/enter each kidney at the hilus: 1. Renal artery - branch of abdominal aorta - supply kidneys with ~22% of cardiac output 1 2. Renal vein - returns blood to inferior vena cava 3. Renal pelvis - funnel shaped region of ureter 2 4. Ureter - muscular tube that drains urine from 3 renal pelvis to the bladder Now examine the hemisected kidney and identify 4 the following internal structures: 5. Renal capsule - external CT layer of the kidney 5 6. Renal cortex 6 - outer part of the kidney 7 7. Renal medulla - inner ‘segmented’ part of the kidney. 8. Renal papilla 8 - region of the renal medulla that projects into a minor calyx. 9. Minor calyx - numerous narrow tributaries that drain 9 urine away from each renal papilla to a 10 major calyx. 10. Major calyx - formed when two or more minor calyces unite, they drain into the renal pelvis. 11. Vasculature (see later) 11 - a network of vessels branching from the renal artery and draining to the renal vein. 4 | Page: Urinary Histology Swailes A4. Renal Lobes The cortex and medulla of each kidney can be divided into 8-15 renal lobes composed of: 1. Renal cortex - forms the base of the renal lobe 2. Renal column - extensions of renal cortex into the 1 renal medulla - note that only half a column flanks a pyramid on each side 3. Renal pyramid - pyramidal shaped region of the 2 medulla deep to the renal cortex 3 4. Renal papilla - the apex of the renal lobe - contains numerous tiny holes known as area cribrosa The uriniferous tubule - is the functional unit of the kidney 4 - produces and modifies urine - is an epithelial lined tube 6 5 - originates in the renal cortex 4 - terminates at the renal papilla. - has two embryologically distinct components: i. The nephron 1 - derived from the metanephros 2 1. Bowman’s capsule 2. Proximal convoluted tubule (PCT) 3a 3. Loop of Henle a. Thick descending limb (TDL) 3b b. Thin descending limb (tDL) c. Thin ascending limb (tAL) 3c d. Thick ascending (TAL) 3d 4. Distal convoluted tubule (DCT) 5. Connecting tubule ii. The collecting duct - derived from the ureteric bud 6. Collecting duct 5 | Page: Urinary Histology Swailes A5. Renal Blood Supply The vessels within the kidney are often named according to their location within the kidney. Efferent arteriole Glomerulu Interlobular Arcuate Peritubular s a. a. capillaries (around convoluted Afferent arteriole Interlobar tubules) a. Segmental Vasa recta a. (around loop of Henle) Renal a. Interlobular v. Arcuate v. Interlobar v. Renal v. Clinical Correlation: Erythropoietin (EPO) Interstitial cells associated with the peritubular capillaries release the hormone EPO into the bloodstream. EPO targets red blood cell precursors in the bone marrow and is essential for their successful development into healthy erythrocytes. Recombinant EPO is a common blood-doping agent used by athletics cheats to increase efficiency of the oxygen delivery system by increasing circulating erythrocyte levels. 6 | Page: Urinary Histology Swailes 3 A6. Renal Lobules 1 The kidney can be further differentiated into lobules. A renal lobule is centered about a medullary ray and is flanked on each side by interlobular arteries. 1. Medullary ray - a series of collecting ducts that extend from the cortex into the medulla and 2 drain a collection of local nephrons. 2 2. Interlobular artery - branches of the arcuate arteries that supply the renal cortex. 3. Renal lobule - region of a renal lobe located between two interlobular arteries - contains nephrons that drain into the collecting ducts within a medullary ray. Follow the flow of blood through the kidney to the glomerulus: what happens next? A7. Renal Corpuscles (glomerulus + Bowman’s capsule) This arrangement creates the barrier for filtration of blood: 1. Vascular pole Efferent Vascular pole Blood reaches the vascular pole of the renal arteriole corpuscle and then travels into the: i. Afferent arteriole - supplies the glomerulus - is wider than the efferent arteriole ii. Efferent arteriole - after passing through the glomerulus blood leaves via the efferent arteriole - goes on to supply the peritubular and/or vasa recta capillaries that run in close proximity to the kidney tubules. iii. Mesangial cells Afferent - specialized extra- and intra-glomerular cells Extraglomerular arteriole - phagocytic to keep the glomerulus clean mesangial cells - contractile to control blood flow through the glomerulus 7 | Page: Urinary Histology Swailes Podocyte 2. Glomerulus The glomerulus forms the surface across which filtration occurs. It is composed of: i. Fenestrated endothelial cells - contain pores 70-90nm wide. - form a barrier to blood cells and macromolecules whose diameter exceeds this. Primary ii. Basal lamina Pedicel process - lamina rara interna (closest to endothelial cells) - lamina densa (middle and thickest layer) - lamina rara externa (closest to podocytes) iii. Visceral layer of the Bowman’s capsule - aka “podocytes” - highly modified epithelial cells - primary processes run along the long axis of Slit the capillary diaphragm iv. Pedicels - foot-like processes branching from the primary processes of podocytes - interdigitate with neighboring
Recommended publications
  • Calcium Phosphate Microcrystals in the Renal Tubular Fluid Accelerate Chronic Kidney Disease Progression
    The Journal of Clinical Investigation RESEARCH ARTICLE Calcium phosphate microcrystals in the renal tubular fluid accelerate chronic kidney disease progression Kazuhiro Shiizaki,1,2 Asako Tsubouchi,3 Yutaka Miura,1 Kinya Seo,4 Takahiro Kuchimaru,5 Hirosaka Hayashi,1 Yoshitaka Iwazu,1,6,7 Marina Miura,1,6 Batpurev Battulga,8 Nobuhiko Ohno,8,9 Toru Hara,10 Rina Kunishige,3 Mamiko Masutani,11 Keita Negishi,12 Kazuomi Kario,12 Kazuhiko Kotani,7 Toshiyuki Yamada,7 Daisuke Nagata,6 Issei Komuro,13 Hiroshi Itoh,14 Hiroshi Kurosu,1 Masayuki Murata,3 and Makoto Kuro-o1 1Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan. 2Yurina Medical Park, Shimotsuga, Japan. 3Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan. 4Division of Cell and Molecular Medicine, 5Division of Cardiology and Metabolism, Center for Molecular Medicine, 6Division of Nephrology, Department of Internal Medicine, 7Department of Clinical Laboratory Medicine, and 8Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke, Japan. 9Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan. 10Electron Microscopy Analysis Station, Research Network and Facility Service Division, National Institute for Materials Science, Tsukuba, Japan. 11Healthcare Business Unit, Nikon Corporation, Yokohama, Japan. 12Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan. 13Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan. 14Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan. The Western pattern diet is rich not only in fat and calories but also in phosphate.
    [Show full text]
  • « Glomerulogenesis and Renal Tubular Differentiation : Role of Hnf1β »
    THESE DE DOCTORAT DE L’UNIVERSITE PARIS DESCARTES Ecole doctorale « Bio Sorbonne Paris Cité », ED 562 Département Développement, Génétique, Reproduction, Neurobiologie et Vieillissement (DGRNV) Spécialité : Développement Présentée pour obtenir le titre de DOCTEUR de l’Université Paris Descartes « Glomerulogenesis and renal tubular differentiation : Role of HNF1 β » Par Mlle Arianna FIORENTINO Soutenance le 13 décembre 2016 Composition du jury : Mme. Evelyne Fischer Directrice de thèse M. Marco Pontoglio Examinateur M. Jean-Jacques Boffa Rapporteur M. Yves Allory Rapporteur M Rémi Salomon Examinateur M Jean-Claude Dussaule Examinateur Equipe "Expression Génique, Développement et Maladies" (EGDM) INSERM U1016/ CNRS UMR 8104 / Université Paris-Descartes Institut Cochin, Dpt. Développement, Reproduction et Cancer 24, Rue du Faubourg Saint Jacques, 75014 Paris, France A. Fiorentino HNF1beta in kidney development “Connaître ce n'est pas démontrer, ni expliquer. C'est accéder à la vision.” (Le Petit Prince- Antoine de Saint-Exupéry) 2 A. Fiorentino HNF1beta in kidney development Aknowledgments - Remerciements – Ringraziamenti During this long adventure of the PhD, I was surrounded by many people that I will try to thank to in these pages. In first place, I would like to thank the members of the jury that have kindly accepted to evaluate my work: Jean-Jacques Boffa, Yves Allory, Jean-Claude Dussaule and Rémi Salomon. For the supervision and the precious advices, I would like to thank Evelyne Fischer and Marco Pontoglio that overviewed all my work. I thank Evelyne, my thesis director, for the scientific exchanges of ideas, for the guidance to complete my project and for her help in difficult moments. I thank Marco for the discussions, even for the heated ones, because the pressure in the environment not only helped me to work harder on science but more importantly on my character, to face the problems and solve them.
    [Show full text]
  • Urinary System
    URINARY SYSTEM Ján Líška DVM, PhD Institut of Histology and Embryology, Faculty of Medicine, Comenius University Urinary system • The kidneys are the organ with multiple functions: • filtration of the blood • excretion of metabolic waste products and related removal of toxins • maintenance blood volume • regulation of acid-base balance • regulation of fluid and electrolyte balance • production of the hormones The other components of urinary system are accessory. Their function is essentially in order to eliminate urine. Urinary system - anatomy • Kidney are located in the retroperitoneal space • The surface of the kidney is covered by a fibrous capsule of dense connective tissue. • This capsule is coated with adipose capsule. • Each kidney is attached to a ureter, which carries urine to the bladder and urine is discharged out through the urethra. ANATOMIC STRUCTURE OF THE KIDNEY RENAL LOBES CORTEX outer shell columns Excretory portion medullary rays MEDULLA medullary pyramids HILUM Collecting system blood vessels lymph vessels major calyces nerves RENAL PELVIS minor calyces ureter Cortex is the outer layer surrounding the internal medulla. The cortex contains renal corpuscles, convoluted parts of prox. and dist. tubules. Renal column: the renal tissue projection between two medullary pyramids which supports the cortex. Renal pyramids: the conical segments within the medulla. They contain the ductal apparatus and stright parts of the tubules. They posses papilla - having openings through which urine passes into the calyces. Each pyramid together with the associated overlying cortex forms a renal lobe. renal pyramid papilla minor calix minor calyx Medullary rays: are in the middle of cortical part of the renal lobe, consisting of a group of the straight portiones of nephrons and the collec- medullary rays ting tubules (only straight tubules).
    [Show full text]
  • Urinary System
    OUTLINE 27.1 General Structure and Functions of the Urinary System 818 27.2 Kidneys 820 27 27.2a Gross and Sectional Anatomy of the Kidney 820 27.2b Blood Supply to the Kidney 821 27.2c Nephrons 824 27.2d How Tubular Fluid Becomes Urine 828 27.2e Juxtaglomerular Apparatus 828 Urinary 27.2f Innervation of the Kidney 828 27.3 Urinary Tract 829 27.3a Ureters 829 27.3b Urinary Bladder 830 System 27.3c Urethra 833 27.4 Aging and the Urinary System 834 27.5 Development of the Urinary System 835 27.5a Kidney and Ureter Development 835 27.5b Urinary Bladder and Urethra Development 835 MODULE 13: URINARY SYSTEM mck78097_ch27_817-841.indd 817 2/25/11 2:24 PM 818 Chapter Twenty-Seven Urinary System n the course of carrying out their specific functions, the cells Besides removing waste products from the bloodstream, the uri- I of all body systems produce waste products, and these waste nary system performs many other functions, including the following: products end up in the bloodstream. In this case, the bloodstream is ■ Storage of urine. Urine is produced continuously, but analogous to a river that supplies drinking water to a nearby town. it would be quite inconvenient if we were constantly The river water may become polluted with sediment, animal waste, excreting urine. The urinary bladder is an expandable, and motorboat fuel—but the town has a water treatment plant that muscular sac that can store as much as 1 liter of urine. removes these waste products and makes the water safe to drink.
    [Show full text]
  • L8-Urine Conc. [PDF]
    The loop of Henle is referred to as countercurrent multiplier and vasa recta as countercurrent exchange systems in concentrating and diluting urine. Explain what happens to osmolarity of tubular fluid in the various segments of the loop of Henle when concentrated urine is being produced. Explain the factors that determine the ability of loop of Henle to make a concentrated medullary gradient. Differentiate between water diuresis and osmotic diuresis. Appreciate clinical correlates of diabetes mellitus and diabetes insipidus. Fluid intake The total body water Antidiuretic hormone is controled by : Renal excretion of water Hyperosmolar medullary Changes in the osmolarity of tubular fluid : interstitium 1 2 3 Low osmolarity The osmolarity High osmolarity because of active decrease as it goes up because of the transport of Na+ and because of the reabsorbation of water co-transport of K+ and reabsorption of NaCl Cl- 4 5 Low osmolarity because of High osmolarity because of reabsorption of NaCl , also reabsorption of water in reabsorption of water in present of ADH , present of ADH reabsorption of urea Mechanisms responsible for creation of hyperosmolar medulla: Active Co- Facilitated diffusion transport : transport : diffusion : of : Na+ ions out of the Only of small thick portion of the K+ , Cl- and other amounts of water ascending limb of ions out of the thick from the medullary the loop of henle portion of the Of urea from the tubules into the into the medullary ascending limb of inner medullary medullary interstitium the loop of henle collecting
    [Show full text]
  • General Functions of the Kidney
    General Functions of the Kidney Major Functions of the Kidney 1. Regulation of: body fluid osmolality and volume electrolyte balance acid-base balance blood pressure 2. Excretion of: metabolic products (urea, creatinine, uric acid) foreign substances (pesticides, chemicals, toxins etc.) excess substance (water, etc) 3. Biosynthesis of: Erythropoietin 1,25-dihydroxy vitamin D3 (vitamin D activation) Renin Prostaglandin Glucose (gluconeogenesis) Angiotensinogen Ammonia Renal effects on other systems Vasoconstriction Renin Angiotensin II Sodium Aldosterone EPO reabsorption Gut Vitamin Bone D Calcium, Calcium phosphate absorption reabsorption Phosphate absorption Bone Ca release Red blood cells marrow PO4 release KIDNEY STRUCTURE Urinary system consists of: Kidneys – The functional unit of the system Ureters Urinary Conducting & Bladder Storage components Urethra Divided into an outer cortex And an inner medulla renal The functional unit of this pelvis kidney is the nephron which is located in both the cortex and medullary areas Macroscopic Structure of the Kidney Internally, the human kidney is composed of three distinct regions: the renal cortex, medulla, and pelvis. Cortical nephron Renal cortex Renal pyramid Renal pelvis Renal column Renal sinus Renal medulla Ureter Juxtamedullary nephron Nephrons in the cortex are cortical nephrons; those in both the cortex and the medulla are juxtamedullary nephrons. Microscopic structure The basic unit of the kidney is the nephron Nephron consists of the: * Glomerulus * Proximal convoluted tubule *
    [Show full text]
  • Urinary System Organs Kidney Functions Kidney Functions
    2/29/2016 Figure 26.4 Major sources of water intake and output. Learning Objectives Renal System 100 ml Feces 4% • Blood filtration through the glomerulus Metabolism 10% 250 ml Sweat 8% 200 ml Insensible loss • How Glomerular filtration rate is regulated Foods 30% 750 ml 700 ml via skin and – Intrinsic and extrinsic mechanisms lungs 28% • Formation of urine 2500 ml • Control of urine concentration Urine 60% Beverages 60% 1500 ml 1500 ml Average intake Average output © 2013 Pearson Education, Inc.per day per day Urinary System Organs Hepatic veins (cut) Esophagus (cut) Inferior vena cava Renal artery • Kidneys are major excretory organs Adrenal gland Renal hilum • Urinary bladder is the temporary storage Aorta Renal vein reservoir for urine Kidney Iliac crest • Ureters transport urine from the kidneys to Ureter the bladder • Urethra transports urine out of the body Rectum (cut) Uterus (part of female reproductive Urinary system) bladder Urethra Figure 25.1 Kidney Functions Kidney Functions • Removal of toxins, metabolic wastes, and • Gluconeogenesis during prolonged fasting excess ions from the blood • Endocrine (hormone) functions • Regulation of blood volume, chemical – Renin: regulation of blood pressure and kidney composition, and pH function • Activation of vitamin D (metabolism) 1 2/29/2016 Kidney Anatomy Kidney Anatomy • Retroperitoneal, in the superior lumbar region • Layers of supportive tissue • Right kidney is lower than the left 1. Renal fascia • The anchoring outer layer of dense fibrous connective • Convex lateral surface, concave medial surface tissue • Ureters, renal blood vessels, lymphatics, and 2. Perirenal fat capsule nerves enter and exit at the hilum • A fatty cushion 3.
    [Show full text]
  • A Study of the Effect of Protein in Tubular Fluid in Proximal Tubular Reabsorption Robert Lee Mitchell Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1964 A study of the effect of protein in tubular fluid in proximal tubular reabsorption Robert Lee Mitchell Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Mitchell, Robert Lee, "A study of the effect of protein in tubular fluid in proximal tubular reabsorption" (1964). Yale Medicine Thesis Digital Library. 2943. http://elischolar.library.yale.edu/ymtdl/2943 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. YALE UNIVERSITY LIBRARY 3 9002 06679 0909 A STUDY OF THE EFFECT OF PROTEIN IN TUBULAR FLUID IN OXIMAL TUBULAR REABSORPTION ROBERT L. MITCHELL 19 6 4 YALE MEDICAL LIBRARY Digitized by the Internet Archive in 2017 with funding from The National Endowment for the Humanities and the Arcadia Fund https://archive.org/details/studyofeffectofpOOmitc A STUDY OF THE EFFECT OF PROTEIN IN TUBULAR FLUID IN PROXIMAL TUBULAR REABSORPTION by Robert L, Mitchell (B.A. DePauw I960) A Thesis Presented to the Faculty of the Yale University School of Medicine in Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine Yale University School of Medicine 196U ACKNOWLEDGMENT With sincere appreciation* I wish to express my gratitude to Dr.
    [Show full text]
  • (A) Adrenal Gland Inferior Vena Cava Iliac Crest Ureter Urinary Bladder
    Hepatic veins (cut) Inferior vena cava Adrenal gland Renal artery Renal hilum Aorta Renal vein Kidney Iliac crest Ureter Rectum (cut) Uterus (part of female Urinary reproductive bladder system) Urethra (a) © 2018 Pearson Education, Inc. 1 12th rib (b) © 2018 Pearson Education, Inc. 2 Renal cortex Renal column Major calyx Minor calyx Renal pyramid (a) © 2018 Pearson Education, Inc. 3 Cortical radiate vein Cortical radiate artery Renal cortex Arcuate vein Arcuate artery Renal column Interlobar vein Interlobar artery Segmental arteries Renal vein Renal artery Minor calyx Renal pelvis Major calyx Renal Ureter pyramid Fibrous capsule (b) © 2018 Pearson Education, Inc. 4 Cortical nephron Fibrous capsule Renal cortex Collecting duct Renal medulla Renal Proximal Renal pelvis cortex convoluted tubule Glomerulus Juxtamedullary Ureter Distal convoluted tubule nephron Nephron loop Renal medulla (a) © 2018 Pearson Education, Inc. 5 Proximal convoluted Peritubular tubule (PCT) Glomerular capillaries capillaries Distal convoluted tubule Glomerular (DCT) (Bowman’s) capsule Efferent arteriole Afferent arteriole Cells of the juxtaglomerular apparatus Cortical radiate artery Arcuate artery Arcuate vein Cortical radiate vein Collecting duct Nephron loop (b) © 2018 Pearson Education, Inc. 6 Glomerular PCT capsular space Glomerular capillary covered by podocytes Efferent arteriole Afferent arteriole (c) © 2018 Pearson Education, Inc. 7 Filtration slits Podocyte cell body Foot processes (d) © 2018 Pearson Education, Inc. 8 Afferent arteriole Glomerular capillaries Efferent Cortical arteriole radiate artery Glomerular 1 capsule Three major renal processes: Rest of renal tubule 11 Glomerular filtration: Water and solutes containing smaller than proteins are forced through the filtrate capillary walls and pores of the glomerular capsule into the renal tubule. Peritubular 2 capillary 2 Tubular reabsorption: Water, glucose, amino acids, and needed ions are 3 transported out of the filtrate into the tubule cells and then enter the capillary blood.
    [Show full text]
  • The Distal Convoluted Tubule and Collecting Duct
    Chapter 23 *Lecture PowerPoint The Urinary System *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • Urinary system rids the body of waste products. • The urinary system is closely associated with the reproductive system – Shared embryonic development and adult anatomical relationship – Collectively called the urogenital (UG) system 23-2 Functions of the Urinary System • Expected Learning Outcomes – Name and locate the organs of the urinary system. – List several functions of the kidneys in addition to urine formation. – Name the major nitrogenous wastes and identify their sources. – Define excretion and identify the systems that excrete wastes. 23-3 Functions of the Urinary System Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Diaphragm 11th and 12th ribs Adrenal gland Renal artery Renal vein Kidney Vertebra L2 Aorta Inferior vena cava Ureter Urinary bladder Urethra Figure 23.1a,b (a) Anterior view (b) Posterior view • Urinary system consists of six organs: two kidneys, two ureters, urinary bladder, and urethra 23-4 Functions of the Kidneys • Filters blood plasma, separates waste from useful chemicals, returns useful substances to blood, eliminates wastes • Regulate blood volume and pressure by eliminating or conserving water • Regulate the osmolarity of the body fluids by controlling the relative amounts of water and solutes
    [Show full text]
  • Filtration of Protein in the Anti-Glomerular Basement Membrane Nephritic Rat: a Micropuncture Study
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 10 (1976) p. 425—437 Filtration of protein in the anti-glomerular basement membrane nephritic rat: A micropuncture study HANS VON BAEYER, JUDITH B. VAN LIEW, JOHN KLASSEN and JOHN W. BOYLAN with the technical assistance of NANCY MANZ and PATRICIA MUIR Departments of Medicine, Physiology and Microbiology, State University of New York at Buffalo and Veterans Administration Hospital, Buffalo, New York Filtration of protein in the anti-glomerular basement membrane (GBM). We have used this animal model to examine, nephritic rat: A micropuncture study. Production on an anti-gb- with micropuncture techniques, changes in the filtra- merular basement membrane (anti-GBM) nephritis in the rat re- sults in a 30-fold increase in glomerular membrane permeability to tion and reabsorption of protein during the first to albumin. The concentration of albumin in glomerular filtrate, esti- third weeks of the disease (days 2 to 17) and to mated from proximal tubular fluid samples, is ten times the normal correlate some of the renal functional deficits ob- value. Tubular reabsorption of albumin is not enhanced so that essentially the filtered load is excreted. A nephrotic syndrome served with pathological findings. The period of develops rapidly. Total kidney gbomerular filtration rate (GFR) is study therefore complements the work of Baldamus reduced to 40% of normal with a proportional reduction in filtra- et al [1] on changes in protein excretion during the tion fraction. Glomerulo-tubular balance is maintained since prox- imal fractional reabsorption remains constant near control levels.
    [Show full text]
  • NOTES: Urinary System
    NOTES: Urinary System - Processes (Ch 15, part 2) *Recall: the primary function of the urinary system is to filter the blood of ions and nitrogenous wastes; when combined with water, these wastes make up URINE. • Kidneys receive about 20-25% of total cardiac output – ~1200mL of blood goes through the kidneys per minute Blood Supply to Kidneys • Descending aorta Renal artery interlobar arcuate cortical afferent arterioles • The afferent arterioles deliver blood to nephrons NEPHRONS • NEPHRONS: the functional units of the kidneys -each kidney contains about a million nephrons! Parts of a NEPHRON: • GLOMERULUS: tangled cluster of blood capillaries • GLOMERULAR CAPSULE (a.k.a. Bowman’s capsule): thin-walled structure surrounding glomerulus Parts of a NEPHRON: • PROXIMAL CONVOLUTED TUBULE • LOOP OF HENLE -descending limb -ascending limb • DISTAL CONVOLUTED TUBULE Parts of a NEPHRON: • COLLECTING DUCT (where distal tubules from several nephrons converge and drain into; from here, urine empties into the RENAL PELVIS) Blood Supply of a Nephron: -blood is brought to a nephron from an afferent arteriole; -from here, it is passed to an efferent arteriole; -this gives rise to a system of peritubular capillaries that surround the renal tubules URINE FORMATION *nephrons remove wastes from blood and regulate water and electrolyte concentrations. URINE IS THE END PRODUCT! Three Organic Wastes Products of Urine 1) Urea: most abundant, from breakdown of amino acids 2) Creatinine: generated in skeletal muscle when creatine phosphate is broken down (creatine
    [Show full text]