The Primate Brain: Evolutionary History & Genetics

Total Page:16

File Type:pdf, Size:1020Kb

The Primate Brain: Evolutionary History & Genetics The primate brain: Evolutionary history & genetics Stephen H. Montgomery Darwin College, University of Cambridge 2011 This dissertation is submitted for the degree of Doctor of Philosophy Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text and acknowledgments. This dissertation does not exceed the 60,000 word limit excluding figure legends, referencing and appendices. Stephen H. Montgomery, BA Cambridge, 2011 Page | i The primate brain: Evolutionary history & genetics Summary The expansion of the brain is a major hallmark of primate evolution. However, the fossil record of temporal changes in primate brain size is incomplete and often difficult to interpret. As such, whether brain expansion was limited to a few lineages or was a ubiquitous trend across the primate phylogeny, and how frequently brain size has decreased, are not clear. Using phylogenetic methods and published datasets of brain size I have reconstructed the evolutionary trajectories of brain and body size in primates. The results show that, from a small-bodied and small-brained ancestor, both absolute and relative brain size have shown strong temporal trends to increase and have done so multiple times independently across primate lineages. However, despite a general trend to expand, brain size does decrease in some lineages. Major episodes of brain mass reduction occurred in the Callitrichidae and Cheirogaleidae and are associated with episodes of body size dwarfism. Relative brain size decreased less frequently and can generally be attributed to increased body mass rather than decreased brain mass. I subsequently explored whether the parallel evolution of increased brain size is due to parallelism at the molecular level by studying the molecular evolution of candidate genes across a broad selection of species representing all major clades of anthropoids. These genes were selected as their proposed roles in neurogenesis are associated with cell fate switches highlighted by The Radial Unit Hypothesis, which offers a developmental model of how mammalian brain size evolves. Using molecular tests for positive selection, I show that many of these genes have been under pervasive positive selection across anthropoids. Furthermore, it is demonstrated that the molecular evolution of several key genes is associated with neonatal brain size, suggesting a role in prenatal development that is consistent with a direct effect on neuronal proliferation, and with other structures which provide insights into the role of these genes in brain evolution. This study demonstrates that brain expansion has occurred in parallel across primates and that the genetic basis of brain size evolution may be conserved. It highlights the potential use of adopting comparative methods, and the benefits of utilising primate diversity, when studying the genetic basis of brain evolution. Page | ii Acknowledgements I am very grateful to my supervisor Dr. Nick Mundy whose guidance and tolerance of tangents has made my PhD enjoyable to do and hopefully relatively successful. I thank Drs. Isabella Capellini, Chris Venditti and Prof. Rob Barton for many helpful and stimulating discussions and for contributing to some of the ideas presented in chapters 3 and 5 (any bad ideas are mine of course). Thanks also to my advisors, Dr. Chris Jiggins and Prof. Barry Keverne, and Dr. Adrian Friday for their constructive criticism and advice at key stages of the project. Drs. Brenda Bradley and Marie Pointer were invaluable sources of advice (practical and otherwise) and together with Dr. Neil Walsh, Dr. Tim O’Connor, Oscar Brusa and Philipp Kappell made life in the lab more enjoyable than it would otherwise have been. A big thank you to Linda Wheatley for sorting out more things than I am probably aware of. The Zoology department is a friendly and helpful place and I have greatly enjoyed my time here. As well as those mentioned above the company of Dr. Marta Costa, Rich Merrill, Rich Wallbank, Vera Warmuth, late arrivals Nick Grumpton and Kelly Richards and many others helped make the more tedious days more tolerable. Thanks also to Drs. George Speller and Simon Baxter for enticing me into the Zootallurgy Cricket team; captaining the side was surely my greatest. This project could not have been completed without the help of those who donate tissue samples. We are grateful Andrew Kitchner and Drew Bain (National Museums Scotland), Mike Bruford (Zoological Society London) Leona Chemnick (Center for Reproduction of Endangered Species, San Diego Zoo), Jackie Hooley (Twycross Zoo), Kellie Wyatt (Bristol Zoo) and Christian Roos (Gene Bank of Primates, German Primate Center) for providing samples. I am greatly indebted to Charlotte BB Skelly who has kept me (mostly) sane and (overly) well fed throughout my PhD. Her patience, support and unwavering faith in my ability to muddle through has been a great help. Thanks to my brother Michael for his passionate interest in monkey brains and for his continual demand for proof that I am not a dumbass. Finally I’ve dedicated this thesis to Dr. Mum and Prof. Dad who have supported me through 21 years of education. They’ve always stressed the importance of hard work and a good education, hopefully this is proof I was listening at least some of the time. I thank the BBSRC for a 4-year studentship and the Leverhulme Trust for additional funding. Page | iii Dedication For Mum and Dad, two great apes. “I take a jealous pride in my Simian ancestry. I like to think that I was once a magnificent hairy fellow living in the trees, and that my frame has come down through geological time via sea jelly and worms and Amphioxus, Fish, Amphibians, Reptiles, and Apes. Who would exchange these for the pallid couple in the Garden of Eden?" Wilhelm N. P. Barbellion, The Journal of a Disappointed Man, 1919 Page | iv Contents Declaration i Summary ii Acknowledgements iii Dedication iv Contents v Abbreviations viii Chapter 1. Introduction 1 1.1 Primate diversity 2 1.2 The fossil record & evolutionary history of primate brains 2 1.3 The costs of brain expansion 4 1.4 The cognitive significance of brain size 6 1.5 The evolutionary ecology of primate brain architecture 7 1.6 Evolution and the development of primate brains 9 1.7 How can genetics contribute to understanding brain evolution? 12 1.8 Quantitative genetics of primate brains 13 1.9 Evolutionary genetics of primate brains 15 1.9.1 Comparative genomics & transcriptomics 16 1.9.2 Candidate genes 21 1.10 Aims & approach of this thesis 27 1:11 Thesis outline 28 Chapter 2. Materials & Methods 29 2.1 Phenotypic data 30 2.2 Phylogeny 31 2.3 Comparative methods 32 2.3.1 The comparative approach 32 2.3.2 Phylogenetically controlled regressions 33 2.3.3 Ancestral state reconstructions: Weighted Square-Change Parsimony 34 2.3.4 Ancestral state reconstructions: Maximum-Likelihood 35 2.3.5 Ancestral state reconstructions: Bayes Traits 35 2.4 Laboratory methods 37 2.5 Analysis of molecular evolution 37 2.5.1 Protein coding gene evolution & dN/dS 38 2.5.2 Site models 39 2.5.3 Branch models 39 2.5.4 Branch-Site models 40 2.5.5 Caveats with dN/dS 40 2.6 Methods of detecting evolutionary associations between genes and phenotypes 41 3. Trajectories of primate brain evolution 45 3.0 Summary 46 3.1 Introduction 47 3.2 Methods summary 51 3.3 Results & discussion 56 Page | v 3.3.1 Ancestral reconstructions: congruence & inconsistencies between estimates 56 3.3.2 Evolutionary trends in body and brain mass evolution 60 3.3.3 Brain:body allometry 63 3.3.4 Primate origins 66 3.3.5 Increases in brain mass in particular lineages 68 3.3.6 Decreases in brain mass and evolutionary scenarios for H. floresiensis 74 3.4 Conclusions 83 4. A curious case of convergence: Dwarfism, life history & brain size reductions in the callitrichids & cheirogalids 85 4.0 Summary 86 4.1 Introduction 87 4.2 Methods Summary 91 4.3 Results & Discussion 96 4.3.1 The evolution of body mass in callitrichids 96 4.3.2 The evolution of gestation length in callitrichids 102 4.3.3 The evolution of life history and reproductive strategies in callitrichids 109 4.3.4 The evolution of body mass in cheirogaleids 112 4.3.5 Effects of body mass reduction on brain size evolution 120 4.3.6 Homo floresiensis revisited & the impossibility of the pygmy marmoset 129 4.4 Conclusions 131 5. Evolutionary genetics of neural progenitor proliferation & the expansion of radial units 133 5.0 Summary 134 5.1 Introduction 135 5.2 Methods summary 139 5.3 Results & discussion 141 5.3.1 Sequence dataset 141 5.3.2 Pervasive adaptive evolution of microcephaly genes in anthropoid primates 142 5.3.3 Associations between gene evolution and anthropoid brain size expansion 147 5.3.4 Controls for specificity of gene-phenotype associations 153 5.3.5 Branch-site models to detect gene-phenotype associations 154 5.3.6 Gene-phenotype associations within the callitrichids and brain size reduction 162 5.3.7 Do microcephaly genes contribute to sexual dimorphism in brain size? 166 5.4 Conclusions 171 5.4.1 Molecular evolution of microcephaly genes and brain evolution 171 5.4.2 Why do ASPM and CDK5RAP2 differ? 173 5.4.4 Summary 174 6. Evolutionary genetics of neural progenitor proliferation & the expansion of radial growth 175 6.0 Summary 175 6.1 Introduction 176 6.2 Materials summary 181 6.3 Results & discussion 182 6.3.1 NIN evolved under positive selection during anthropoid evolution 182 6.3.2 Associations between evolutionary rate & brain mass 185 6.3.3 Associations between evolutionary rate & radial expansion 187 6.3.4 Independent genetic mechanisms for different aspects of brain evolution 191 Page | vi 6.3.5 The effects of variation in minicolumn spacing 191 6.4 Conclusion 193 7.
Recommended publications
  • The Island Rule Explains Consistent Patterns of Body Size 2 Evolution Across Terrestrial Vertebrates 3
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114835; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The island rule explains consistent patterns of body size 2 evolution across terrestrial vertebrates 3 4 Ana Benítez-López1,2*, Luca Santini1,3, Juan Gallego-Zamorano1, Borja Milá4, Patrick 5 Walkden5, Mark A.J. Huijbregts1,†, Joseph A. Tobias5,† 6 7 1Department of Environmental Science, Institute for Wetland and Water Research, Radboud 8 University, P.O. Box 9010, NL-6500 GL, Nijmegen, the Netherlands. 9 2Integrative Ecology Group, Estación Biológica de Doñana, CSIC, 41092, Sevilla, Spain 10 3National Research Council, Institute of Research on Terrestrial Ecosystems (CNR-IRET), Via 11 Salaria km 29.300, 00015, Monterotondo (Rome), Italy 12 4Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), 13 Madrid 28006, Spain 14 5Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, 15 Berkshire SL5 7PY, United Kingdom 16 *Correspondence to: [email protected]; [email protected] 17 †These two authors contributed equally 18 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114835; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Dome-Headed, Small-Brained Island Mammal from the Late Cretaceous of Romania
    Dome-headed, small-brained island mammal from the Late Cretaceous of Romania Zoltán Csiki-Savaa,1, Mátyás Vremirb, Jin Mengc, Stephen L. Brusatted, and Mark A. Norellc aLaboratory of Paleontology, Faculty of Geology and Geophysics, University of Bucharest, 010041 Bucharest, Romania; bDepartment of Natural Sciences, Transylvanian Museum Society, 400009 Cluj-Napoca, Romania; cDivision of Paleontology, American Museum of Natural History, New York, NY 10024; and dSchool of GeoSciences, Grant Institute, University of Edinburgh, EH9 3FE Edinburgh, United Kingdom Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved March 26, 2018 (received for review January 20, 2018) The island effect is a well-known evolutionary phenomenon, in describe the anatomy of kogaionids in detail, include them in a which island-dwelling species isolated in a resource-limited envi- comprehensive phylogenetic analysis, estimate their body sizes, ronment often modify their size, anatomy, and behaviors compared and present a reconstruction of their brain and sense organs. with mainland relatives. This has been well documented in modern This species exhibits several features that we interpret as re- and Cenozoic mammals, but it remains unclear whether older, more lated to its insular habitat, most notably a brain that is sub- primitive Mesozoic mammals responded in similar ways to island stantially reduced in size compared with close relatives and habitats. We describe a reasonably complete and well-preserved skeleton of a kogaionid, an enigmatic radiation of Cretaceous island- mainland contemporaries, demonstrating that some Mesozoic dwelling multituberculate mammals previously represented by frag- mammals were susceptible to the island effect like in more mentary fossils.
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • Reconstructing the Late Cretaceous Haţeg Palaeoecosystem
    Palaeogeography, Palaeoclimatology, Palaeoecology 293 (2010) 265–270 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Preface An island of dwarfs — Reconstructing the Late Cretaceous Haţeg palaeoecosystem Zoltan Csiki a,⁎, Michael J. Benton b a Department of Geology and Geophysics, University of Bucharest, Bd. N. Bălcescu 1, RO-010041 Bucharest, Romania b Department of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK article info abstract Article history: The Cretaceous was a special time in the evolution of terrestrial ecosystems, and yet the record from Europe Received 3 February 2010 in particular is patchy. This special issue brings together results of multidisciplinary investigations on the Received in revised form 4 May 2010 Late Cretaceous Haţeg area in southwestern Romania, and its continental fossil assemblage, with the aim of Accepted 25 May 2010 exploring an exceptional palaeoecosystem from the European Late Cretaceous. The Haţeg dinosaurs, which Available online 1 June 2010 seem unusually small, have become especially well known as some of the few latest Cretaceous dinosaurs from Europe, comparable with faunas from the south of France and Spain, and preserved at a time when Keywords: Cretaceous most of Europe was under the Chalk Seas. Eastern Europe then, at a time of exceptionally high sea level, was Tetrapods an archipelago of islands, some of them inhabited, but none so extraordinary as Haţeg. If Haţeg truly was an Dinosaurs island (and this is debated), the apparently small dinosaurs might well be dwarfs, as enunciated over Island dwarfing 100 years ago by the colourful Baron Franz Nopcsa, discoverer of the faunas.
    [Show full text]
  • Generality and Antiquity of the Island Rule Mark V
    Journal of Biogeography (J. Biogeogr.) (2013) 40, 1427–1439 SYNTHESIS Of mice and mammoths: generality and antiquity of the island rule Mark V. Lomolino1*, Alexandra A. van der Geer2, George A. Lyras2, Maria Rita Palombo3, Dov F. Sax4 and Roberto Rozzi3 1College of Environmental Science and ABSTRACT Forestry, State University of New York, Aim We assessed the generality of the island rule in a database comprising Syracuse, NY, 13210, USA, 2Netherlands 1593 populations of insular mammals (439 species, including 63 species of fos- Naturalis Biodiversity Center, Leiden, The Netherlands, 3Dipartimento di Scienze sil mammals), and tested whether observed patterns differed among taxonomic della Terra, Istituto di Geologia ambientale e and functional groups. Geoingegneria, Universita di Roma ‘La Location Islands world-wide. Sapienza’ and CNR, 00185, Rome, Italy, 4Department of Ecology and Evolutionary Methods We measured museum specimens (fossil mammals) and reviewed = Biology, Brown University, Providence, RI, the literature to compile a database of insular animal body size (Si mean 02912, USA mass of individuals from an insular population divided by that of individuals from an ancestral or mainland population, M). We used linear regressions to investigate the relationship between Si and M, and ANCOVA to compare trends among taxonomic and functional groups. Results Si was significantly and negatively related to the mass of the ancestral or mainland population across all mammals and within all orders of extant mammals analysed, and across palaeo-insular (considered separately) mammals as well. Insular body size was significantly smaller for bats and insectivores than for the other orders studied here, but significantly larger for mammals that utilized aquatic prey than for those restricted to terrestrial prey.
    [Show full text]
  • New Paleocene Skeletons and the Relationship of Plesiadapiforms to Crown-Clade Primates
    New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates Jonathan I. Bloch*†, Mary T. Silcox‡, Doug M. Boyer§, and Eric J. Sargis¶ʈ *Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL 32611; ‡Department of Anthropology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, Canada, R3B 2E9; §Department of Anatomical Science, Stony Brook University, Stony Brook, NY 11794-8081; ¶Department of Anthropology, Yale University, P. O. Box 208277, New Haven, CT 06520; and ʈDivision of Vertebrate Zoology, Peabody Museum of Natural History, Yale University, New Haven, CT 06520 Communicated by Alan Walker, Pennsylvania State University, University Park, PA, November 30, 2006 (received for review December 6, 2005) Plesiadapiforms are central to studies of the origin and evolution preserved cranium of a paromomyid (10) seemed to independently of primates and other euarchontan mammals (tree shrews and support a plesiadapiform–dermopteran link, leading to the wide- flying lemurs). We report results from a comprehensive cladistic spread acceptance of this phylogenetic hypothesis. The evidence analysis using cranial, postcranial, and dental evidence including supporting this interpretation has been questioned (7, 9, 13, 15, 16, data from recently discovered Paleocene plesiadapiform skeletons 19, 20), but no previous study has evaluated the plesiadapiform– (Ignacius clarkforkensis sp. nov.; Dryomomys szalayi, gen. et sp. dermopteran link by using cranial, postcranial, and dental evidence,
    [Show full text]
  • Boletín Antártico Chileno, Edición Especial
    EL CONTINENTE DONDE EMPIEZA EL FUTURO Índice DIRECTOR Y REPRESENTANTE LEGAL Presentación José Retamales Espinoza 5 Prólogo 7 EDITOR Reiner Canales La relación entre Sudamérica y la Antártica 11 (E-mail: [email protected]) El pasado de la Antártica… ¿una incógnita develada? 13 COMITÉ EDITORIAL Marcelo Leppe Cartes Edgardo Vega Separación de la fauna marina antártica y sudamericana desde una aproximación molecular 21 Marcelo González Elie Poulin, Claudio González-Wevar, Mathias Hüne, Angie Díaz Marcelo Leppe Conexiones geológicas entre Sudamérica y Antártica 27 Francisco Hervé Allamand DIRECCIÓN DE ARTE Pablo Ruiz Teneb Adaptaciones al Medio Antártico y Biorrecursos 33 El interés por esudiar la biodiversidad microbiológica en la Antártica 35 DISEÑO / DIAGRAMACIÓN Jenny M. Blamey Oscar Giordano / Menssage Producciones El capital celular y molecular para vivir a temperaturas bajo cero en aguas antárticas 39 Víctor Bugueño / Menssage Producciones Marcelo González Aravena Las esrategias de las plantas antárticas para sobrevivir en ambientes extremos y su rol como biorrecursos 45 PORTADA Marco A. Molina-Montenegro, Ian S. Acuña-Rodríguez, Jorge Gallardo-Cerda, Rasme Hereme y Crisian Torres-Díaz EL CONTINENTE Arnaldo Gómez / Menssage Producciones DONDE EMPIEZA EL FUTURO Biodiversidad 53 A más de medio siglo IMPRESIÓN de la fundación del Menssage Producciones Las aves marinas de la península Antártica 55 Instituto Antártico Chileno Santiago de Chile Javier A. Arata El desafío de esudiar y comprender la biodiversidad de los mamíferos marinos antárticos 59 Elías Barticevic Cornejo y FOTOGRAFÍA Anelio Aguayo Lobo Óscar Barrientos Bradasic (Eds.) La desconocida vida y diversidad de los invertebrados terresres antárticos 67 Agradecemos a los autores citados en los créditos Daniel González Acuña fotográficos por su aporte en imágenes al regisro Autores Caracterísicas de la fauna que habita los fondos coseros profundos de la Antártica 75 hisórico de la ciencia antártica nacional.
    [Show full text]
  • Haplogroup Relationships Between Domestic and Wild Sheep Resolved Using a Mitogenome Panel
    Heredity (2011) 106, 700–706 & 2011 Macmillan Publishers Limited All rights reserved 0018-067X/11 www.nature.com/hdy ORIGINAL ARTICLE Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel JRS Meadows1,3, S Hiendleder2 and JW Kijas1 1CSIRO Livestock Industries, St Lucia, Queensland, Australia and 2School of Agriculture, Food and Wine & Research Centre for Reproductive Health, School of Animal and Veterinary Science, University of Adelaide, Roseworthy, South Australia, Australia Five haplogroups have been identified in domestic sheep 920 000±190 000 years ago based on protein coding through global surveys of mitochondrial (mt) sequence sequence. The utility of various mtDNA components to inform variation, however these group classifications are often the true relationship between sheep was also examined with based on small fragments of the complete mtDNA sequence; Bayesian, maximum likelihood and partitioned Bremmer sup- partial control region or the cytochrome B gene. This study port analyses. The control region was found to be the mtDNA presents the complete mitogenome from representatives of component, which contributed the highest amount of support to each haplogroup identified in domestic sheep, plus a sample the tree generated using the complete data set. This study of their wild relatives. Comparison of the sequence success- provides the nucleus of a mtDNA mitogenome panel, which can fully resolved the relationships between each haplogroup be used to assess additional mitogenomes and serve as a and provided insight into the relationship with wild sheep. reference set to evaluate small fragments of the mtDNA. The five haplogroups were characterised as branching Heredity (2011) 106, 700–706; doi:10.1038/hdy.2010.122; independently, a radiation that shared a common ancestor published online 13 October 2010 Keywords: Ovis aries; domestication; mitochondria; genome; diversity Introduction Pedrosa et al., 2005; Pereira et al., 2006; Tapio et al., 2006; Meadows et al., 2007).
    [Show full text]
  • The Evolution of Neogene Terrestrial Ecosystems in Europe Edited by Jorge Agusti, Lorenzo Rook and Peter Andrews Index More Information
    Cambridge University Press 0521640970 - The Evolution of Neogene Terrestrial Ecosystems in Europe Edited by Jorge Agusti, Lorenzo Rook and Peter Andrews Index More information Index Abies, 382, 383 Albanensia grimmi, 157, 158 Abruzzi-Apulia palaeobioprovince, 191–3, Albanohyus, 403 197 Albanohyus pygmaeus, 119 Aceraceae, 184 Alcelaphini, 444 Aceratherium, 217, 221, 223 algal symbionts, 282–3, 311, 315 Aceratherium incivisum, 167, 170 Alicornops alfambrense, 119, 173 Aceratherium kiliasi, 212 Alicornops simorrense, 114, 119 Aceritherium incisivum, 119 Alilepus, 145, 198–9 Aceritherium tetradactylum, 119 Allohyaena kadici, 173 Acerorhinus, 253, 261 Allosoricinae, 392, 394 Acteocemas, 96, 98 Allospalax, 152 Adcrocuta, 104, 114, 209, 212 alluvial sediments Adcrocuta eximia, 118, 167, 173, 209, 211, NE Spain, 398–9 214, 215, 218, 220, 222, 230, 449 Sinap, 243–7 Aden, Gulf of, Pliocene tephra correlation, Tuscany, 365–8 24, 31, 31–51 Alpine foredeep, 13, 15 Aegean, rodent faunas, 17 altitudinal position, 89–90 aeolian deposits, Upper Valdarno basin, altitudinal trees, 379, 383 363–5 Altomiramys,96 Aepycerotini, 444 Alveolinella, 291 Afghanistan, Miocene primate taxa, 458 Amblycoptus, 267, 268, 270, 393 Africa American mammal immigration to Europe climate, 62–4 9, 13, 17, 446;, see also Bering climate/vegetation relationship, 64–8, landbridge 290, 292 American shrews, 392, 393, 394–5 correspondence analysis, recent faunas, Ammonia, 291 419–29 Amphechinus, 265 palaeoenvironment reconstruction, 290, amphibians, Italy, 191 292 Amphicyon, 14, 103
    [Show full text]
  • Additional Fossil Evidence on the Differentiation of the Earliest Euprimates (Omomyidae/Adapidae/Steinius/Primate Evolution) KENNETH D
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 98-101, January 1991 Evolution Additional fossil evidence on the differentiation of the earliest euprimates (Omomyidae/Adapidae/Steinius/primate evolution) KENNETH D. ROSE* AND THOMAS M. BOWNt *Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; and tU.S. Geological Survey, Paleontology and Stratigraphy Branch, Denver, CO 80225 Communicated by Elwyn L. Simons, October 1. 1990 ABSTRACT Several well-preservedjaws ofthe rare North Table 1. U.S. Geological Survey (USGS) samples American omomyid primate Steinius vespertinus, including the Finder of first known antemolar dentitions, have been discovered in 1989 USGS no. Description sample and 1990 in the early Eocene Willwood Formation of the Bighorn Basin, Wyoming. They indicate that its dental formula 25026 Right dentary with P4-M3 S. J. Senturia is as primitive as those in early Eocene Donrussellia (Adapidae) and anterior alveoli and Teilhardina (Omomyidae)-widely considered to be the 25027 Right dentary with P3-M3 M. Shekelle most primitive known euprimates-and that in various dental 25028 Left dentary with P3-P4 J. J. Rose characters Steinius is as primitive or more so than Teilhardina. 28325 Left dentary with P3-P4 H. H. Covert Therefore, despite its occurrence at least 2 million years later and anterior alveoli than Teilhardina, S. vespertinus is the most primitive known 28326 Left dentary with P3-M1 T. M. Bown omomyid and one of the most primitive known euprimates. Its 28466 Isolated right M2 primitive morphology further diminishes the dental distinc- 28472 Isolated left M1 tions between Omomyidae and Adapidae at the beginning ofthe 28473 Isolated right P4 euprimate radiation.
    [Show full text]
  • Stem Members of Platyrrhini Are Distinct from Catarrhines in at Least One Derived Cranial Feature
    Journal of Human Evolution 100 (2016) 16e24 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Stem members of Platyrrhini are distinct from catarrhines in at least one derived cranial feature * Ethan L. Fulwood a, , Doug M. Boyer a, Richard F. Kay a, b a Department of Evolutionary Anthropology, Duke University, Box 90383, Durham, NC 27708, USA b Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA article info abstract Article history: The pterion, on the lateral aspect of the cranium, is where the zygomatic, frontal, sphenoid, squamosal, Received 3 August 2015 and parietal bones approach and contact. The configuration of these bones distinguishes New and Old Accepted 2 August 2016 World anthropoids: most extant platyrrhines exhibit contact between the parietal and zygomatic bones, while all known catarrhines exhibit frontal-alisphenoid contact. However, it is thought that early stem- platyrrhines retained the apparently primitive catarrhine condition. Here we re-evaluate the condition of Keywords: key fossil taxa using mCT (micro-computed tomography) imaging. The single known specimen of New World monkeys Tremacebus and an adult cranium of Antillothrix exhibit the typical platyrrhine condition of parietal- Pterion Homunculus zygomatic contact. The same is true of one specimen of Homunculus, while a second specimen has the ‘ ’ Tremacebus catarrhine condition. When these new data are incorporated into an ancestral state reconstruction, they MicroCT support the conclusion that pterion frontal-alisphenoid contact characterized the last common ancestor of crown anthropoids and that contact between the parietal and zygomatic is a synapomorphy of Platyrrhini.
    [Show full text]
  • Early Eocene Primates from Gujarat, India
    ARTICLE IN PRESS Journal of Human Evolution xxx (2009) 1–39 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Early Eocene Primates from Gujarat, India Kenneth D. Rose a,*, Rajendra S. Rana b, Ashok Sahni c, Kishor Kumar d, Pieter Missiaen e, Lachham Singh b, Thierry Smith f a Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA b H.N.B. Garhwal University, Srinagar 246175, Uttarakhand, India c Panjab University, Chandigarh 160014, India d Wadia Institute of Himalayan Geology, Dehradun 248001, Uttarakhand, India e University of Ghent, B-9000 Ghent, Belgium f Royal Belgian Institute of Natural Sciences, B-1000 Brussels, Belgium article info abstract Article history: The oldest euprimates known from India come from the Early Eocene Cambay Formation at Vastan Mine Received 24 June 2008 in Gujarat. An Ypresian (early Cuisian) age of w53 Ma (based on foraminifera) indicates that these Accepted 8 January 2009 primates were roughly contemporary with, or perhaps predated, the India-Asia collision. Here we present new euprimate fossils from Vastan Mine, including teeth, jaws, and referred postcrania of the Keywords: adapoids Marcgodinotius indicus and Asiadapis cambayensis. They are placed in the new subfamily Eocene Asiadapinae (family Notharctidae), which is most similar to primitive European Cercamoniinae such as India Donrussellia and Protoadapis. Asiadapines were small primates in the size range of extant smaller Notharctidae Adapoidea bushbabies. Despite their generally very plesiomorphic morphology, asiadapines also share a few derived Omomyidae dental traits with sivaladapids, suggesting a possible relationship to these endemic Asian adapoids. In Eosimiidae addition to the adapoids, a new species of the omomyid Vastanomys is described.
    [Show full text]