Name Dates Max Wind Est. Minimum Pressure Hurricane Daniel Jul 24

Total Page:16

File Type:pdf, Size:1020Kb

Name Dates Max Wind Est. Minimum Pressure Hurricane Daniel Jul 24 NOAA Technical Memorandum NWSTM PR-54 2006 Tropical Cyclones Central North Pacific Andy Nash Tim Craig Sam Houston Roy Matsuda Jeff Powell Ray Tanabe Jim Weyman Central Pacific Hurricane Center Honolulu, Hawaii July 2007 TABLE OF CONTENTS Overview Hurricane Daniel Hurricane Ioke Tropical Depression 02-C Tropical Depression 03-C Tropical Depression 04-C Overview of the 2006 Central North Pacific Tropical Cyclone Season The central Pacific tropical cyclone season had near normal activity despite the development of a relatively weak El Nino in September 2006. A total of five tropical cyclones occurred during the season, including two hurricanes. One of the hurricanes, Ioke, reached category 5 intensity and set several central Pacific tropical cyclone records. The other three systems only reached tropical depression intensity. Two signals of El Nino was that 4 of the 5 systems developed within the central Pacific basin where ocean waters were warmer than normal and the three depressions occurred from mid-September to mid- October. Based on long-term averages, the typical season has 4.4 total tropical cyclones, 1.6 being hurricanes, 1.3 tropical storms and 1.5 tropical depressions. Ioke struck Johnston Island with peak winds estimated to be in the 95 to 115 knots range. This resulted in significant damage to vegetation and coastal erosion. The native bird population was also affected, however no injuries occurred despite a survey crew being on the otherwise uninhabited island at the time. Remnants of both Hurricane Daniel and TD-04C helped fuel locally heavy rains across the Big Island. Table 1. Summary table (Daniel and Ioke data only for the Central Pacific) Name Dates Max Wind Est. Minimum Pressure Hurricane Daniel Jul 24-26 80 kt/ 90 mph 980 mb/28.94 in Hurricane Ioke Aug 19-26 140 kt/160 mph 915 mb/27.02 in TD two-c Sep 18-20 30 kt/ 35 mph 1007 mb/29.74 in TD three-c Sep 26 30 kt/ 35 mph 1008 mb/29.77 in TD four-c Oct 13-14 30 kt/ 35 mph 1007 mb/29.74 in Table 2. Overall Track Verification. Table entries are track forecast errors, measured in nautical miles. Values in parentheses indicate the number of forecasts. Values in bold represent guidance forecast errors equal to or less than the official CPHC forecast. Forecast 12 hr 24 hr 36 hr 48 hr 72 hr 96 hr 120 hr CPHC 32.6 51.5 73.0 89.6 111.9 157.3 227.5 CLP5 45.3 86.0 135.5 198.0 290.0 317.9 367.2 BAMD 34.6 54.1 73.4 83.7 73.5 98.1 132.7 BAMM 31.6 49.1 65.5 81.8 75.1 100.9 135.2 BAMS 43.1 75.6 115.9 162.5 240.0 313.5 377.2 GFDL 29.1 45.7 64.2 82.2 101.5 140.3 202.3 AVNO 42.5 63.8 84.7 94.7 109.9 143.0 176.8 GUNS 28.4 55.5 86.0 105.5 131.1 182.8 253.8 GUNA 28.6 50.9 75.4 91.3 109.9 158.0 223.1 CONU 27.1 48.3 70.9 88.0 112.1 155.1 221.4 UKMET 45.3 98.9 91.5 103.8 118.0 149.2 204.3 NOGAPS 33.2 55.8 88.7 109.7 140.4 185.1 253.4 Table 3. Overall Wind Verification. Table entries are errors in maximum sustained wind speed forecasts, measured in knots. Values in the parentheses indicate the number of forecasts. Values in bold represent guidance forecast errors equal to or less than the official CPHC forecast. Forecast 12 hr 24 hr 36 hr 48 hr 72 hr 96 hr 120 hr CPHC 9.7 17.5 22.8 23.5 25.0 34.3 43.4 GFDL 9.2 14.4 17.0 18.4 16.9 20.4 19.4 AVNO 52.2 62.3 72.4 83.2 94.4 99.6 100.7 SHF5 12.9 22.8 31.7 39.3 88.8 106.9 93.7 SHIP 11.5 26.6 38.5 50.3 65.0 81.4 90.2 ICON 9.2 19.7 26.4 32.8 34.8 44.0 51.6 NOGAPS 46.4 52.8 58.2 62.6 69.7 74.8 76.1 HURRICANE DANIEL 24-26 July 2006 OVERVIEW. Tropical Depression (TD) 5-E formed south of Baja California near 12.4N 109.9W at 0000 UTC 17 July then quickly intensified and became Tropical Storm Daniel 12 hours later near 12.4N 112.2W. Development continued unabated until Daniel became a hurricane at 1800 UTC 18 July near 11.9N 117.6W. Thanks to favorable SSTs and low shear environment, Hurricane Daniel continued to strengthen as it moved west, reaching its peak of 130 knots on 22 July. Hurricane Daniel exhibited a relatively rare structure, with very little convection outside of a nearly perfectly symmetrical eye wall. This type of hurricane, known as an annular hurricane, has been shown to maintain its intensity longer than the average hurricane, and Daniel was no exception. However as it moved westward, Daniel began to slowly weaken and CPHC estimated the mean sustained winds to be 80 knots when it crossed 140W and moved into CPHC area of responsibility shortly before 1200 UTC 24 July. Although initially forecasted to maintain its intensity, Hurricane Daniel became a tropical storm within 18 hours of crossing 140W and a tropical depression within 36 hours. By the time it reached 16.2N 144.4W, CPHC classified it as a remnant low. SYNOPTIC HISTORY. On 24 July when Daniel crossed 140W, most track and intensity guidance suggested that Daniel would continue to slowly weaken and reach the main Hawaiian Islands as a strong tropical storm in roughly 96 hours. At that time, the vertical wind shear in the vicinity of Daniel remained relatively low (9 knots from the east). The upper level easterlies south of a ridge to the north were projected to spread eastward. The strong southwesterly upper level flow across the Hawaiian Islands associated with an upper trough to the northwest was forecast to decrease as the trough receded northwestward. This would have resulted in reduced vertical shear as Daniel approached the Hawaiian Islands. However by 25 July at 0000 UTC, satellite loops showed Daniel was suffering the effects of unfavorable easterly shear estimated at 25 knots from the strong high to the north. Much of the cumulonimbus (convection) activity was pushed west of the low level circulation center (LLCC) and cloud tops had warmed. In addition, Daniel moved over 25 degrees C sea-surface temperatures and the low level northeast flow advected cooler and drier boundary layer air into Daniel’s circulation. By 25 July 0600 UTC, Daniel became a tropical storm located near 16.2N 143.1W and by 1200 UTC Daniel became nearly stationary in response to the weak environmental steering. The combination of the weak easterly shear and the ingestion of relatively cool and dry air at low levels caused Daniel to weaken to a tropical depression by 0000 UTC 26 July with the LLCC exposed and well defined and no active convection near the center. CPHC issued the last bulletin on Daniel at 2100 UTC 26 July and classified it as a dissipating remnant low with maximum sustained winds of 30 knots located about 800 miles east southeast of Hilo, Hawaii. IMPACTS: The remnant circulation of Daniel passed just south of the island of the Big Island of Hawaii on 28 July. Radar and rain gages recorded two to five inches of rainfall across windward areas of the Big Island and Maui on 28 and 29 July. The remnants also brought gusty easterly winds to the main Hawaiian Islands. For a brief period during the afternoon on 28 July, a wind gage at South Point on the Big Island recorded sustained winds of approximately 30 knots with gusts to 40 knots. Table 4. Best Track Data Date/Time Latitude Longitude Pressure Wind Speed Stage/Notes (UTC) (°N) (°W) (mb) (kt) 24 / 1200 16.2 140.4 980 80 Hurricane 24 / 1800 16.2 141.3 985 75 " 25 / 0000 16.2 141.8 994 65 " 25 / 0600 16.2 142.3 999 55 Tropical Storm 25 / 1200 16.2 142.4 1003 45 " 25 / 1800 16.2 142.6 1004 35 " 26 / 0000 16.2 142.8 1006 30 Tropical Depression 26 / 0600 16.2 142.9 1008 30 " 26 / 1200 16.2 143.1 1009 25 " 26 / 1800 16.1 143.6 1009 25 " 27 / 0000 16.2 144.4 1009 25 remnant low 27 / 0600 16.3 145.1 1009 25 " 27 / 1200 16.9 146.6 1009 25 " 27 / 1800 17.2 147.4 1009 25 " 28 / 0000 17.4 148.8 1010 25 " 28 / 0600 17.6 150.1 1010 25 " 28 / 1200 17.8 151.8 1010 25 " Table 5. Overall Track Verification. Table entries are track forecast errors, measured in nautical miles. Values in parentheses indicate the number of forecasts. Values in bold represent guidance forecast errors equal to or less than the official CPHC forecast. Forecast 12-hr 24-hr 36-hr 48-hr 72-hr 96-hr 120-hr CPHC 42 (8) 103 (6) 201 (4) 283 (2) n/a n/a n/a CLP5 45 (8) 114 (6) 218 (4) 354 (2) n/a n/a n/a BAMD 44 (8) 96 (6) 195 (4) 308 (2) n/a n/a n/a BAMM 38 (8) 65 (6) 109 (4) 176 (2) n/a n/a n/a BAMS 25 (8) 39 (6) 66 (4) 110 (2) n/a n/a n/a GFDL 36 (8) 37 (6) 49 (4) 136 (2) n/a n/a n/a AVNO 34 (8) 51 (6) 65 (4) 76 (2) n/a n/a n/a GUNS 41 (8) 97 (6) 177 (4) 267 (2) n/a n/a n/a GUNA 36 (8) 79 (6) 139 (4) 216 (2) n/a n/a n/a CONU 34 (8) 78 (6) 142 (4) 231 (2) n/a n/a n/a UKMET 61 (4) 149 (3) 211 (2) 348 (1) n/a n/a n/a NOGAPS 35 (8) 90 (6) 177 (4) 286 (2) n/a n/a n/a Table 6.
Recommended publications
  • Investigation and Prediction of Hurricane Eyewall
    INVESTIGATION AND PREDICTION OF HURRICANE EYEWALL REPLACEMENT CYCLES By Matthew Sitkowski A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN-MADISON 2012 Date of final oral examination: 4/9/12 The dissertation is approved by the following members of the Final Oral Committee: James P. Kossin, Affiliate Professor, Atmospheric and Oceanic Sciences Daniel J. Vimont, Professor, Atmospheric and Oceanic Sciences Steven A. Ackerman, Professor, Atmospheric and Oceanic Sciences Jonathan E. Martin, Professor, Atmospheric and Oceanic Sciences Gregory J. Tripoli, Professor, Atmospheric and Oceanic Sciences i Abstract Flight-level aircraft data and microwave imagery are analyzed to investigate hurricane secondary eyewall formation and eyewall replacement cycles (ERCs). This work is motivated to provide forecasters with new guidance for predicting and better understanding the impacts of ERCs. A Bayesian probabilistic model that determines the likelihood of secondary eyewall formation and a subsequent ERC is developed. The model is based on environmental and geostationary satellite features. A climatology of secondary eyewall formation is developed; a 13% chance of secondary eyewall formation exists when a hurricane is located over water, and is also utilized by the model. The model has been installed at the National Hurricane Center and has skill in forecasting secondary eyewall formation out to 48 h. Aircraft reconnaissance data from 24 ERCs are examined to develop a climatology of flight-level structure and intensity changes associated with ERCs. Three phases are identified based on the behavior of the maximum intensity of the hurricane: intensification, weakening and reintensification.
    [Show full text]
  • Big Early Voting Turnout
    SPORTS POW WOW FRIDAY FOOTBALL WACCAMAW SIOUAN MATCHES YIELD WINS FOR POW WOW WAS SCHS, ECHS SATURDAY uu SPORTS 3B uu POW WOW 10A The News Reporter Published since 1890 every Monday and Thursday for the County of Columbus and her people. WWW.NRCOLUMBUS.COM Monday, November 7, 2016 75 CENTS Big early voting turnout By Allen Turner [email protected] Early voting ended Saturday af- ter two weeks of heavy turnout as other voters prepared to go to the polls on the official Election Day Tuesday. Polls will open at 6:30 a.m. on Tuesday at all 26 Columbus County voting precincts and remain open until 7:30 p.m. One voting location, the Fair Bluff precinct, has been moved from its usual location of Fair Bluff Fire and Rescue to Johnny’s Sandwich Shop at 899 Main St., due to damage from Hurricane Matthew at the fire department. Complete numbers are not available on how many Columbus Countians cast early ballots be- uu VOTING 6A Photo by Grant Merritt Festival Queen Rachel McPherson and her six Belles on their float were escorted by cadets from Camden Military Academy. Bridge NCFS fills gaps during response, recovery could be By Jefferson Weaver lands, Malcolm said the agency’s mis- [email protected] sion includes emergency response. complete “It was a natural outgrowth of fire- Among the red, blue, yellow and fighting,” he explained. “It really isn’t white vehicles helping Columbus that unusual for Forest Service crews County residents during Hurricane to be deployed in a natural disaster.” in spring Matthew, there were a lot of green Malcolm said NCFS crews have trucks as well.
    [Show full text]
  • MASARYK UNIVERSITY BRNO Diploma Thesis
    MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories.
    [Show full text]
  • ANNUAL SUMMARIES Eastern North Pacific Hurricane Season of 2000
    3004 MONTHLY WEATHER REVIEW VOLUME 129 ANNUAL SUMMARIES Eastern North Paci®c Hurricane Season of 2000 MILES B. LAWRENCE,LIXION A. AVILA,JACK L. BEVEN,JAMES L. FRANKLIN,RICHARD J. PASCH, AND STACY R. STEWART National Hurricane Center, Tropical Prediction Center, NCEP, NOAA/NWS, Miami, Florida (Manuscript received 16 May 2001, in ®nal form 29 June 2001) ABSTRACT There were 11 tropical storms, 6 hurricanes, and 2 tropical depressions during the 2000 eastern North Paci®c hurricane season. Two tropical storms made landfall in Mexico. 1. Introduction teorological analyses. After each cyclone has ended, a There were 11 tropical storms and 6 hurricanes in the ``best track'' is determined using all available data. The eastern Paci®c basin in the year 2000, totaling 17 named best track is a table of 6-hourly estimates of the cy- tropical cyclones. This is two more than the 1966±99 clone's center position, maximum 1-min wind speed (10 m above the surface), and minimum sea level pressure.2 average of 15 named tropical cyclones.1 In contrast, the total of six hurricanes is three less than the long-term With the exception of a few aerial reconnaissance average of nine. There were also two tropical depres- ¯ights, all of this season's best track data were derived sions that did not reach tropical storm strength. The from satellite data and occasional land and ship reports. named tropical cyclones are listed in Table 1, along with The method for estimating the maximum 1-min wind their dates, maximum 1-min surface wind speed, min- speed from satellite imagery is the Dvorak technique imum sea level pressure, and directly attributable deaths.
    [Show full text]
  • Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts
    Madden/Julian Oscillation: Recent Evolution, Current Status and Forecasts Update prepared by Climate Prediction Center / NCEP August 21, 2006 Outline • Overview • Recent Evolution and Current Conditions • Madden Julian Oscillation Forecast • Summary Overview • The MJO remains weak. Based on the latest observations and model forecasts, continued weak MJO activity is expected during the next 1-2 weeks. • During week 1, there is an increased chance for above normal rainfall for sections of the eastern Indian Ocean, the Bay of Bengal, Southeast Asia, the central and eastern Pacific Ocean, northern South America, Central America, Mexico and the southwest US. Also, favorable conditions for tropical cyclogenesis are expected in the eastern Pacific. • Hurricane Ioke will impact shipping in the north-central Pacific Ocean and tropical depression 10E is expected to strengthen to hurricane status during week 1. • Also, there is evidence that conditions are becoming more favorable for tropical cyclone development for areas in the Atlantic Basin. These include the Gulf of Mexico and the eastern Atlantic especially at lower latitudes. • No definitive statements can be made regarding potential hazards/benefits during week 2. 850-hPa Vector Wind Anomalies (m s-1) Note that shading denotes the magnitude of the anomalous wind vectors Slightly enhanced southwesterly Couplet of westerly / easterly anomalies across the eastern flow into South Asia. Westerly anomalies have Pacific. strengthened and shifted eastward during the past five days. Low-level (850-hPa) Zonal (east- west) Wind Anomalies (m s-1) Weaker-than-average easterlies or westerlies (orange/red shading) Stronger-than-average easterlies (blue shading) Time Westerly anomalies are evident across a large area in the western and central Pacific.
    [Show full text]
  • Port of Manzanillo: Climate Risk Management
    FINAL REPORT Port of Manzanillo: Climate Risk Management September 2015 Mejorando vidas Copyright © 2015 Inter-American Development Bank. This work is licensed under a Creative Commons IGO 3.0 Attribution-NonCommercial-NoDerivatives (CC-IGO BY-NC- ND 3.0 IGO) license (http://creativecommons.org/licenses/ by-nc-nd/3.0/igo/legalcode) and may be reproduced with attribution to the IDB and for any non-commercial purpose. No derivative work is allowed. Any dispute related to the use of the works of the IDB that cannot be settled amicably shall be submitted to arbitration pursuant to the UNCITRAL rules. The use of the IDB’s name for any purpose other than for attribution, and the use of IDB’s logo shall be subject to a separate written license agreement between the IDB and the user and is not authorized as part of this CC-IGO license. Note that link provided above includes additional terms and conditions of the license. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the Inter- American Development Bank, its Board of Directors, or the countries they represent. 2 FINAL REPORT Port of Manzanillo: Climate Risk Management September 2015 Manzanillo, Mexico Mejorando vidas © 2015, Inter-American Development Bank State of Colima: Instituto para el Medio Ambiente y Desarrollo Sustentable del Estado de Colima (IMADES), Centro Universitario de Gestión Ambiental (CEUGEA, AUTHORED BY Universidad de Colima), Secretaría de Desarrollo Urbano del Estado de Colima. Richenda Connell and Laura Canevari, Acclimatise Group Limited; Chris Coleby, Stewart Wright, John N.
    [Show full text]
  • Proceedings of the 24Th TELEMAC
    The Earth by TELEMAC Sébastien E. Bourban, Michael S. Turnbull and Alan J. Cooper HR Wallingford, Coasts and Oceans, Howbery Park, Wallingford, OX10 8BA, UK [email protected] Abstract—This article describes the development of a B. Objectives highly detailed model of the Earth, based on the In order to anticipate and meet the needs of its TELEMAC system, applied to modelling various consultancy activities, it was essential for HR Wallingford to physical processes including tides, storms, tsunamis and bridge the gap between environmental hydraulics and waves. Comparisons against known global datasets oceanography. The first of two objectives of the work demonstrate the capability of the TELEMAC system to presented here is to deliver the most comprehensive and bridge the gap between environmental hydraulics and detailed global modelling resources yet to support all sorts of oceanography. Preliminary results in forecasting internal shallow- and deep-water environmental hydraulics studies, tides and 3D ocean currents are also presented. providing hind-casts and forecasts at local, national or global scales. I. INTRODUCTION The solution identified was to start a phased internal A. Mind the gap research project to demonstrate the capability of the Numerical modelling for environmental hydraulics TELEMAC system to model all physical processes present in studies, whether for research or consultancy, has been these waters, whether independently or combined, and to historically focused on inland and coastal areas. It has been develop a world leading global modelling resource: The financed over decades by human activities as water affects, is Earth by TELEMAC. sourced and is somewhat tamed by growing populations.
    [Show full text]
  • Handling Storms at Sea : the Five Secrets of Heavy Weather Sailing
    HANDLING STORMS AT SEA Overleaf: What is blue-water sailing really like when it’s stormy and big seas are running? Here’s my Santa Cruz 50 hurrying eastward near Marion Island in the Southern Ocean. The ever-faithful windvane is steering nicely while I play with the mainsail reefs and adjust the sails as the boat races through the water and makes great whooshing sounds as she surfs forward on a wave. You know that the yacht will rise up as the next crest comes, but sometimes you wonder if she is buoyant enough. You take a deep breath and say a silent prayer. ALSO BY HAL ROTH Pathway in the Sky (1965) Two on a Big Ocean (1972) After 50,000 Miles (1977) Two Against Cape Horn (1978) The Longest Race (1983) Always a Distant Anchorage (1988) Chasing the Long Rainbow (1990) Chasing the Wind (1994) We Followed Odysseus (1999) How to Sail Around the World (2004) The Hal Roth Seafaring Trilogy (2006) HANDLING STORMS AT SEA The 5 Secrets of Heavy Weather Sailing Hal Roth INTERNATIONAL MARINE / MCGRAW-HILL CAMDEN, MAINE • NEW YORK • CHICAGO • SAN FRANCISCO • LISBON • LONDON • MADRID • MEXICO CITY • MILAN • NEW DELHI • SAN JUAN • SEOUL • SINGAPORE • SYDNEY • TORONTO Copyright © 2009 by Hal Roth. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. ISBN: 978-0-07-164345-0 MHID: 0-07-164345-1 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-149648-3, MHID: 0-07-149648-3.
    [Show full text]
  • Objective Identification of Annular Hurricanes
    FEBRUARY 2008 KNAFFETAL. 17 Objective Identification of Annular Hurricanes JOHN A. KNAFF NOAA/NESDIS/Center for Satellite Applications and Research, Fort Collins, Colorado THOMAS A. CRAM Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado ANDREA B. SCHUMACHER Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado JAMES P. KOSSIN Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin MARK DEMARIA NOAA/NESDIS/Center for Satellite Applications and Research, Fort Collins, Colorado (Manuscript received 26 March 2006, in final form 21 June 2007) ABSTRACT Annular hurricanes are a subset of intense tropical cyclones that have been shown in previous work to be significantly stronger, to maintain their peak intensities longer, and to weaken more slowly than average tropical cyclones. Because of these characteristics, they represent a significant forecasting challenge. This paper updates the list of annular hurricanes to encompass the years 1995–2006 in both the North Atlantic and eastern–central North Pacific tropical cyclone basins. Because annular hurricanes have a unique ap- pearance in infrared satellite imagery, and form in a specific set of environmental conditions, an objective real-time method of identifying these hurricanes is developed. However, since the occurrence of annular hurricanes is rare (ϳ4% of all hurricanes), a special algorithm to detect annular hurricanes is developed that employs two steps to identify the candidates: 1) prescreening the data and 2) applying a linear discriminant analysis. This algorithm is trained using a dependent dataset (1995–2003) that includes 11 annular hurri- canes. The resulting algorithm is then independently tested using datasets from the years 2004–06, which contained an additional three annular hurricanes.
    [Show full text]
  • A Global Climatology of Tropical Cyclone Eyes
    JULY 2018 K N A P P E T A L . 2089 A Global Climatology of Tropical Cyclone Eyes KENNETH R. KNAPP NOAA/National Centers for Environmental Information, Asheville, North Carolina CHRISTOPHER S. VELDEN AND ANTHONY J. WIMMERS Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin (Manuscript received 13 November 2017, in final form 4 May 2018) ABSTRACT Intense tropical cyclones (TCs) generally produce a cloud-free center with calm winds, called the eye. The Automated Rotational Center Hurricane Eye Retrieval (ARCHER) algorithm is used to analyze Hurricane Satellite (HURSAT) B1 infrared satellite imagery data for storms occurring globally from 1982 to 2015. HURSAT B1 data provide 3-hourly observations of TCs. The result is a 34-yr climatology of eye location and size. During that time period, eyes are identified in about 13% of all infrared images and slightly more than half of all storms produced an eye. Those that produce an eye have (on average) 30 h of eye scenes. Hurricane Ioke (1992) had the most eye images (98, which is 12 complete days with an eye). The median wind speed of a 2 2 system with an eye is 97 kt (50 m s 1) [cf. 35 kt (18 m s 1) for those without an eye]. Eyes are much more frequent in the Northern Hemisphere (particularly in the western Pacific) but eyes are larger in the Southern Hemisphere. The regions where eyes occur are expanding poleward, thus expanding the area at risk of TC-related damage. Also, eye scene occurrence can provide an objective measure of TC activity in place of those based on maximum wind speeds, which can be affected by available observations and forecast agency practices.
    [Show full text]
  • Tropical Cyclone Report Hurricane Daniel (EP052006) 16-26 July 2006
    Tropical Cyclone Report Hurricane Daniel (EP052006) 16-26 July 2006 Jack Beven National Hurricane Center 30 November 2006 (updated 4 January 2007 for best track intensities and verification) Daniel reached category 4 intensity on the Saffir-Simpson Hurricane Scale over the open eastern North Pacific. a. Synoptic History Daniel formed from a tropical wave that moved westward from the coast of Africa on 2 July. The wave crossed the Atlantic Ocean and Caribbean Sea with little associated convection and reached the eastern North Pacific Ocean on 12 July. As the wave moved westward, convection increased beginning on 13 July, and the system showed signs of convective organization starting on 15 July. It is estimated that the wave spawned a tropical depression near 1800 UTC 16 July about 455 n mi south-southwest of Manzanillo, Mexico. The “best track” chart of the tropical cyclone’s path is given in Fig. 1, with the wind and pressure histories shown in Figs. 2 and 3, respectively. The best track positions and intensities are listed in Table 1. The cyclone moved westward in a light vertical shear environment to the south of a large subtropical ridge. It strengthened into a tropical storm on 17 July and into a hurricane on 18 July. Daniel turned west-northwestward on 20 July, when intensification was briefly halted by an eyewall replacement cycle. Strengthening resumed after the cycle, and it is estimated that Daniel became a category 4 hurricane later that day about 965 n mi southwest of Cabo San Lucas, Mexico. Daniel turned westward on 21 July during a second eyewall replacement cycle.
    [Show full text]
  • Eastern North Pacific Hurricane Season of 2006
    VOLUME 137 MONTHLY WEATHER REVIEW JANUARY 2009 Eastern North Pacific Hurricane Season of 2006 RICHARD J. PASCH,ERIC S. BLAKE,LIXION A. AVILA,JOHN L. BEVEN,DANIEL P. BROWN, JAMES L. FRANKLIN,RICHARD D. KNABB,MICHELLE M. MAINELLI,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center/National Hurricane Center, NOAA/NWS/NCEP, Miami, Florida (Manuscript received 20 December 2007, in final form 20 May 2008) ABSTRACT The hurricane season of 2006 in the eastern North Pacific basin is summarized, and the individual tropical cyclones are described. Also, the official track and intensity forecasts of these cyclones are verified and evaluated. The 2006 eastern North Pacific season was an active one, in which 18 tropical storms formed. Of these, 10 became hurricanes and 5 became major hurricanes. A total of 2 hurricanes and 1 tropical depres- sion made landfall in Mexico, causing 13 direct deaths in that country along with significant property damage. On average, the official track forecasts in the eastern Pacific for 2006 were quite skillful. No appreciable improvement in mean intensity forecasts was noted, however. 1. Overview speeds in knots every 6 h for all tropical and subtropical cyclones while at or above tropical storm strength. The After three consecutive below-average hurricane ACE for 2006 in the eastern North Pacific was 120 ϫ seasons, tropical cyclone activity in the eastern North 104 kt2, or about 107% of the long-term (1971–2005) Pacific basin was above average in 2006. A total of 18 mean. Although the ACE value for 2006 was just tropical storms developed, and 10 of these strengthened slightly above average, it was the highest observed since into hurricanes (Table 1; Fig.
    [Show full text]