Summary of 2006 Atlantic Seasonal Tropical Cyclone Activity and Verification of Author's Forecast
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Hurricane Ernesto (2006): Frontal Influence on Precipitation Distribution
Hurricane Ernesto (2006): Frontal Influence on Precipitation Distribution Jordan Dale and Gary Lackmann North Carolina State University Barrett Smith NOAA/National Weather Service Raleigh, North Carolina Motivation Observational Analysis Simulated Frontal Analysis • The distribution of precipitation associated with landfalling tropical 0600 UTC 1 September 0600 UTC 1 September cyclones remains a critical forecast problem and is dependent on several factors, including: . storm motion . intensity . areal extent . synoptic-scale forcing Surface observations RUC Theta and 2-D Frontogenesis 0.5° Reflectivity Theta and 2-D Frontogenesis 850mb Temperature Advection Simulated Total Reflectivity . topographical characteristics • A warm front is noted by a theta gradient strong frontogenesis along the • The locations of frontogenesis and theta gradients with respect to the TC . mesoscale boundaries center are similar to observations but displaced westward. Enhanced coast east of the TC center. A region of enhanced reflectivity is north of • Of these factors, mesoscale boundaries are a prominent forecasting the warm front near the TC center. reflectivities are present to the north of the frontal boundary in locations challenge due to the small spatial scales and complex origins. where 850mb warm advection is occurring. 1800 UTC 1 September • The purpose of this study is to isolate the physical processes at play 1800 UTC 1 September during the interaction of tropical cyclones (TC) and boundaries, and then investigate the predictability and impact -
Portugal – an Atlantic Extreme Weather Lab
Portugal – an Atlantic extreme weather lab Nuno Moreira ([email protected]) 6th HIGH-LEVEL INDUSTRY-SCIENCE-GOVERNMENT DIALOGUE ON ATLANTIC INTERACTIONS ALL-ATLANTIC SUMMIT ON INNOVATION FOR SUSTAINABLE MARINE DEVELOPMENT AND THE BLUE ECONOMY: FOSTERING ECONOMIC RECOVERY IN A POST-PANDEMIC WORLD 7th October 2020 Portugal in the track of extreme extra-tropical storms Spatial distribution of positions where rapid cyclogenesis reach their minimum central pressure ECMWF ERA 40 (1958-2000) Events per DJFM season: Source: Trigo, I., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dynamics volume 26, pages127–143. Portugal in the track of extreme extra-tropical storms Spatial distribution of positions where rapid cyclogenesis reach their minimum central pressure Azores and mainland Portugal On average: 1 rapid cyclogenesis every 1 or 2 wet seasons ECMWF ERA 40 (1958-2000) Events per DJFM season: Source: Trigo, I., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dynamics volume 26, pages127–143. … affected by sting jets of extra-tropical storms… Example of a rapid cyclogenesis with a sting jet over mainland 00:00 UTC, 23 Dec 2009 Source: Pinto, P. and Belo-Pereira, M., 2020: Damaging Convective and Non-Convective Winds in Southwestern Iberia during Windstorm Xola. Atmosphere, 11(7), 692. … affected by sting jets of extra-tropical storms… Example of a rapid cyclogenesis with a sting jet over mainland Maximum wind gusts: Official station 140 km/h Private station 00:00 UTC, 23 Dec 2009 203 km/h (in the most affected area) Source: Pinto, P. -
Investigation and Prediction of Hurricane Eyewall
INVESTIGATION AND PREDICTION OF HURRICANE EYEWALL REPLACEMENT CYCLES By Matthew Sitkowski A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN-MADISON 2012 Date of final oral examination: 4/9/12 The dissertation is approved by the following members of the Final Oral Committee: James P. Kossin, Affiliate Professor, Atmospheric and Oceanic Sciences Daniel J. Vimont, Professor, Atmospheric and Oceanic Sciences Steven A. Ackerman, Professor, Atmospheric and Oceanic Sciences Jonathan E. Martin, Professor, Atmospheric and Oceanic Sciences Gregory J. Tripoli, Professor, Atmospheric and Oceanic Sciences i Abstract Flight-level aircraft data and microwave imagery are analyzed to investigate hurricane secondary eyewall formation and eyewall replacement cycles (ERCs). This work is motivated to provide forecasters with new guidance for predicting and better understanding the impacts of ERCs. A Bayesian probabilistic model that determines the likelihood of secondary eyewall formation and a subsequent ERC is developed. The model is based on environmental and geostationary satellite features. A climatology of secondary eyewall formation is developed; a 13% chance of secondary eyewall formation exists when a hurricane is located over water, and is also utilized by the model. The model has been installed at the National Hurricane Center and has skill in forecasting secondary eyewall formation out to 48 h. Aircraft reconnaissance data from 24 ERCs are examined to develop a climatology of flight-level structure and intensity changes associated with ERCs. Three phases are identified based on the behavior of the maximum intensity of the hurricane: intensification, weakening and reintensification. -
Report of the Governor's Commission to Rebuild Texas
EYE OF THE STORM Report of the Governor’s Commission to Rebuild Texas John Sharp, Commissioner BOARD OF REGENTS Charles W. Schwartz, Chairman Elaine Mendoza, Vice Chairman Phil Adams Robert Albritton Anthony G. Buzbee Morris E. Foster Tim Leach William “Bill” Mahomes Cliff Thomas Ervin Bryant, Student Regent John Sharp, Chancellor NOVEMBER 2018 FOREWORD On September 1 of last year, as Hurricane Harvey began to break up, I traveled from College Station to Austin at the request of Governor Greg Abbott. The Governor asked me to become Commissioner of something he called the Governor’s Commission to Rebuild Texas. The Governor was direct about what he wanted from me and the new commission: “I want you to advocate for our communities, and make sure things get done without delay,” he said. I agreed to undertake this important assignment and set to work immediately. On September 7, the Governor issued a proclamation formally creating the commission, and soon after, the Governor and I began traveling throughout the affected areas seeing for ourselves the incredible destruction the storm inflicted Before the difficulties our communities faced on a swath of Texas larger than New Jersey. because of Harvey fade from memory, it is critical that Since then, my staff and I have worked alongside we examine what happened and how our preparation other state agencies, federal agencies and local for and response to future disasters can be improved. communities across the counties affected by Hurricane In this report, we try to create as clear a picture of Harvey to carry out the difficult process of recovery and Hurricane Harvey as possible. -
Ex-Hurricane Ophelia 16 October 2017
Ex-Hurricane Ophelia 16 October 2017 On 16 October 2017 ex-hurricane Ophelia brought very strong winds to western parts of the UK and Ireland. This date fell on the exact 30th anniversary of the Great Storm of 16 October 1987. Ex-hurricane Ophelia (named by the US National Hurricane Center) was the second storm of the 2017-2018 winter season, following Storm Aileen on 12 to 13 September. The strongest winds were around Irish Sea coasts, particularly west Wales, with gusts of 60 to 70 Kt or higher in exposed coastal locations. Impacts The most severe impacts were across the Republic of Ireland, where three people died from falling trees (still mostly in full leaf at this time of year). There was also significant disruption across western parts of the UK, with power cuts affecting thousands of homes and businesses in Wales and Northern Ireland, and damage reported to a stadium roof in Barrow, Cumbria. Flights from Manchester and Edinburgh to the Republic of Ireland and Northern Ireland were cancelled, and in Wales some roads and railway lines were closed. Ferry services between Wales and Ireland were also disrupted. Storm Ophelia brought heavy rain and very mild temperatures caused by a southerly airflow drawing air from the Iberian Peninsula. Weather data Ex-hurricane Ophelia moved on a northerly track to the west of Spain and then north along the west coast of Ireland, before sweeping north-eastwards across Scotland. The sequence of analysis charts from 12 UTC 15 to 12 UTC 17 October shows Ophelia approaching and tracking across Ireland and Scotland. -
Hurricane Florence CDBG-DR Action Plan North Carolina Office of Recovery and Resiliency
Hurricane Florence CDBG-DR Action Plan North Carolina Office of Recovery and Resiliency February 7, 2020 Hurricane Florence CDBG-DR Action Plan State of North Carolina For CDBG-DR Funds (Public Law 115-254, Public Law 116-20) Hurricane Florence CDBG-DR Action Plan North Carolina Office of Recovery and Resiliency This page intentionally left blank. Hurricane Florence CDBG-DR Action Plan North Carolina Office of Recovery and Resiliency Revision History Version Date Description 1.0 February 7, 2020 Initial Action Plan i Hurricane Florence CDBG-DR Action Plan North Carolina Office of Recovery and Resiliency This page intentionally left blank. ii Hurricane Florence CDBG-DR Action Plan North Carolina Office of Recovery and Resiliency Table of Contents 1.0 Executive Summary ....................................................................................... 1 2.0 Authority ...................................................................................................... 5 3.0 Recovery Needs Assessment ......................................................................... 7 3.1 Hurricane Florence ............................................................................................... 8 3.2 Summary of Immediate Disaster Impacts ............................................................ 13 3.3 Resilience Solutions and Mitigation Needs .......................................................... 20 3.4 Housing Impact Assessment ................................................................................ 21 3.5 HUD Designated -
On the Structure of Hurricane Daisy 1958
NATIONAL HURRICANE RESEARCH PROJECT REPORT NO. 48 On the Structure of Hurricane Daisy 1958 ^ 4 & U. S. DEPARTMENT OF COMMERCE Luther H. Hodges, Secretary WEATHER BUREAU F. W. Rolcheldorfoi, Chief NATIONAL HURRICANE RESEARCH PROJECT REPORT NO. 48 On the Structure of Hurricane Daisy (1958) by J6se A. Coltfn and Staff National Hurricane Research Project, Miami, Fla. Washington, D. C. October 1961 NATIONAL HURRICANE RESEARCH PROJECT REPORTS Reports by Weather Bureau units, contractors, and ccoperators working on the hurricane problem are preprinted in this series to facilitate immediate distribution of the information among the workers and other interested units. Aa this limited reproduction and distribution in this form do not constitute formal scientific publication, reference to a paper in the series should identify it as a preprinted report. Objectives and basic design of the NHRP. March 1956. No. 1. numerical weather prediction of hurricane motion. July 1956- No. 2. Supplement: Error analysis of prognostic 500-mb. maps made for numerical weather prediction of hurricane motion. March 1957. Rainfall associated with hurricanes. July 1956. No. 3. Some problems involved in the study of storm surges. December 1956. No. h. Survey of meteorological factors pertinent to reduction of loss of life and property in hurricane situations. No. 5. March 1937* A mean atmosphere for the West Indies area. May 1957. No. 6. An index of tide gages and tide gage records for the Atlantic and Gulf coasts of the United States, toy 1957. No. 7. No. 8. PartlT HurrlcaneVand the sea surface temperature field. Part II. The exchange of energy between the sea and the atmosphere in relation to hurricane behavior. -
Richmond, VA Hurricanes
Hurricanes Influencing the Richmond Area Why should residents of the Middle Atlantic states be concerned about hurricanes during the coming hurricane season, which officially begins on June 1 and ends November 30? After all, the big ones don't seem to affect the region anymore. Consider the following: The last Category 2 hurricane to make landfall along the U.S. East Coast, north of Florida, was Isabel in 2003. The last Category 3 was Fran in 1996, and the last Category 4 was Hugo in 1989. Meanwhile, ten Category 2 or stronger storms have made landfall along the Gulf Coast between 2004 and 2008. Hurricane history suggests that the Mid-Atlantic's seeming immunity will change as soon as 2009. Hurricane Alley shifts. Past active hurricane cycles, typically lasting 25 to 30 years, have brought many destructive storms to the region, particularly to shore areas. Never before have so many people and so much property been at risk. Extensive coastal development and a rising sea make for increased vulnerability. A storm like the Great Atlantic Hurricane of 1944, a powerful Category 3, would savage shorelines from North Carolina to New England. History suggests that such an event is due. Hurricane Hazel in 1954 came ashore in North Carolina as a Category 4 to directly slam the Mid-Atlantic region. It swirled hurricane-force winds along an interior track of 700 miles, through the Northeast and into Canada. More than 100 people died. Hazel-type wind events occur about every 50 years. Areas north of Florida are particularly susceptible to wind damage. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Hurricane Helene Information from NHC Advisory 13, 11:00 AM AST Mon Sep 10, 2018 Helene Is Moving Toward the West-Northwest Near 16 Mph (26 Km/H)
eVENT Hurricane Tracking Advisory Hurricane Helene Information from NHC Advisory 13, 11:00 AM AST Mon Sep 10, 2018 Helene is moving toward the west-northwest near 16 mph (26 km/h). A west-northwestward motion with a decrease in forward speed is expected through late Tuesday, followed by a turn toward the n orthwest and then toward the north-northwest on Wednesday and Thursday. Maximum sustained winds have increased to near 105 mph (165 km/h) with higher gusts. Some additional strengthening is expected today, and Helene is forecast to become a major hurricane by tonight. Intensity Measures Position & Heading U.S. Landfall (NHC) 105 mph Max Sustained Wind Position Relativ e to 375 mi W of the Southernmost Speed: (Cat 2 Land: Cabo Verde Islands Hurricane) Est. Time & Region: n/a Min Central Pressure: 974 mb Coordinates: 14.6 N, 30.0 W Trop. Storm Force 105 miles Bearing/Speed: WNW or 285 degrees at 16 mph Est. Max Sustained n/a Winds Ex tent: Wind Speed: Forecast Summary Ï!D Trop Dep ■ The NHC forecast map (below left) and the wind-field map (below right), which is based on the NHC’s forecast track, both show Helene moving west- northwestward followed by a turn toward the northwest and then toward the north-northwest on Wednesday or Thursday. To illustrate theÏ!S Trop uncertainty Storm in Ï!D Trop Dep !1 Helene’s forecast track, forecast tracks for all current models are shown on the wind -field map (below right) in pale gray. Ï Ca t 1 Ï!S Trop Storm 2 ■ Tropical-storm-force winds extend outward up to 105 miles from the center. -
Caribbean:Tropical Storm Ernesto
CARIBBEAN:TROPICAL Information Bulletin no. 2/2006 STORM ERNESTO 27 August 2006 The Federation’s mission is to improve the lives of vulnerable people by mobilizing the power of humanity. It is the world’s largest humanitarian organization and its millions of volunteers are active in over 183 countries. In Brief This Bulletin is being issued for information only, and reflects the situation and the information available at this time. The Federation is not seeking funding or other assistance from donors for this operation at this time. The International Federation undertakes activities that are aligned with its Global Agenda, which sets out four broad goals to achieve the Federation's mission to "improve the lives of vulnerable people by mobilizing the power of humanity". Global Agenda Goals: · Reduce the numbers of deaths, injuries and impact from disasters. · Reduce the number of deaths, illnesses and impact from diseases and public health emergencies. · Increase local community, civil society and Red Cross Red Crescent capacity to address the most urgent situations of vulnerability. · Reduce intolerance, discrimination and social exclusion and promote respect for diversity and human dignity. For further information specifically related to this operation please contact: · In Cuba: Dr Foyo Ceballos, Secretary General, Cuban Red Cross, [email protected] · In Haiti: Dr. Michaele Amedée Gédéon, President, Haitian National Red Cross Society e-mail: [email protected] phone (509) 222 55 54; Dr. Jean-Pierre Guiteau, Executive Officer, Haitian -
Modelling the 2012 Lahar in a Sector of Jamapa Gorge (Pico De Orizaba Volcano, Mexico) Using RAMMS and Tree-Ring Evidence
water Article Modelling the 2012 Lahar in a Sector of Jamapa Gorge (Pico de Orizaba Volcano, Mexico) Using RAMMS and Tree-Ring Evidence Osvaldo Franco-Ramos 1,* , Juan Antonio Ballesteros-Cánovas 2,3, José Ernesto Figueroa-García 4, Lorenzo Vázquez-Selem 1, Markus Stoffel 2,3,5 and Lizeth Caballero 6 1 Instituto de Geografía, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, México 04510, Mexico; [email protected] 2 Dendrolab.ch, Department of Earth Sciences, University of Geneva, 13 rue des Maraîchers, CH-1205 Geneva, Switzerland; [email protected] (J.A.B.-C.); [email protected] (M.S.) 3 Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland 4 Posgrado en Geografía Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, México 04510, Mexico; ernestfi[email protected] 5 Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland 6 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, México 04510, Mexico; [email protected] * Correspondence: [email protected] Received: 18 December 2019; Accepted: 21 January 2020; Published: 23 January 2020 Abstract: A good understanding of the frequency and magnitude of lahars is essential for the assessment of torrential hazards in volcanic terrains. In many instances, however, data on past events is scarce or incomplete, such that the evaluation of possible future risks and/or the planning of adequate countermeasures can only be done with rather limited certainty.