Kyrpidia Tusciae Comb. Nov. and Emendation of the Family Alicyclobacillaceae Da Costa And

Total Page:16

File Type:pdf, Size:1020Kb

Kyrpidia Tusciae Comb. Nov. and Emendation of the Family Alicyclobacillaceae Da Costa And Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and... Permalink https://escholarship.org/uc/item/3m89z7ps Journal Standards in genomic sciences, 5(1) ISSN 1944-3277 Authors Klenk, Hans-Peter Lapidus, Alla Chertkov, Olga et al. Publication Date 2011-10-01 DOI 10.4056/sigs.2144922 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2011) 5:121-134 DOI:10.4056/sigs.2144922 Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2T) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and Rainey, 2010 Hans-Peter Klenk1*, Alla Lapidus2, Olga Chertkov2,3, Alex Copeland2, Tijana Glavina Del Rio2, Matt Nolan2, Susan Lucas2, Feng Chen2, Hope Tice2, Jan-Fang Cheng2, Cliff Han2,3, David Bruce2,3, Lynne Goodwin2,3, Sam Pitluck2, Amrita Pati2, Natalia Ivanova2, Konstantinos Mavromatis2, Chris Daum2, Amy Chen4, Krishna Palaniappan4, Yun-juan Chang2,5, Miriam Land2,5, Loren Hauser2,5, Cynthia D. Jeffries2,5, John C. Detter2,3, Manfred Rohde6, Birte Abt1, Rüdiger Pukall1, Markus Göker1, James Bristow2, Victor Markowitz4, Philip Hugenholtz2,7, and Jonathan A. Eisen2,8 1 DSMZ – German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 7 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: hydrogen-oxidizing, aerobe, facultative chemolithoautotroph, thermoacidophile, free-living, solfatara, spore-forming, Bacillaceae, GEBA Bacillus tusciae Bonjour & Aragno 1994 is a hydrogen-oxidizing, thermoacidophilic spore former that lives as a facultative chemolithoautotroph in solfataras. Although 16S rRNA gene sequencing was well established at the time of the initial description of the organism, 16S se- quence data were not available and the strain was placed into the genus Bacillus based on limited chemotaxonomic information. Despite the now obvious misplacement of strain T2T as a member of the genus Bacillus in 16S rRNA-based phylogenetic trees, the misclassification remained uncorrected for many years, which was likely due to the extremely difficult, analy- sis-hampering cultivation conditions and poor growth rate of the strain. Here we provide a taxonomic re-evaluation of strain T2T (= DSM 2912 = NBRC 15312) and propose its reclassi- fication as the type strain of a new species, Kyrpidia tusciae, and the type species of the new genus Kyrpidia, which is a sister-group of Alicyclobacillus. The family Alicyclobacillaceae da Costa and Rainey, 2010 is emended. The 3,384,766 bp genome with its 3,323 protein-coding and 78 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. Introduction Strain T2T (= DSM 2912 = NBRC 15312) is the type [1]. In the original study of Bonjour and Aragno strain of the Bacillus tusciae [1]. Both strain T2T [1], DNA:DNA reassociation studies of strains T2T, and strain T201 were isolated from ponds in the Bacillus schlegelii (also autotrophic) and the ther- solfatara of San Federigo, a geothermal area near moacidophilic Bacillus acidocaldarius (later on Lago, Tuscany, Italy [1,Table 1], as indicated in the reclassified as Alicyclobacillus acidocaldarius) Latin species epithet tusciae, meaning from Tuscia from another hot spring were carried out. Because The Genomic Standards Consortium Kyrpidia tusciae comb. nov. of the low levels of hybridization observed, the The most frequently occurring keywords within authors proposed that strains T2T and T201 the labels of all environmental samples that were formed a distinct taxonomic unit [1]. However, hits were 'microbi' (13.3%), 'thermophil' (12.5%), only limited chemotaxonomic data was available 'cell, fuel' (12.4%), 'ecolog, firmicut, identifi, role' at the time and 16S rRNA sequence data was not (6.2%) and 'experi' (6.1%) (151 hits in total). The available, which led the authors to place the spe- most frequently occurring keywords within the cies into the genus Bacillus [1]. Rather difficult cul- labels of those environmental samples which tivation conditions and the poor growth rate of yielded hits of a higher score than the highest strain T2T likely delayed an earlier re- scoring species were 'microbi' (13.9%), 'cell, fuel, classification although Rainey et al. previously thermophil' (13.1%), 'ecolog, firmicut, identifi, noted the link to the genus Alicyclobacillus [19]. role' (6.5%), 'experi' (6.4%) and 'acetate-f' (4.7%) This was recently corroborated by the observation (124 hits in total). These keywords corroborate that strain T2T as well as A. acidocaldarius lack the the features of the environment from which strain sspE gene for acid-soluble spore proteins fre- T2T was isolated. quently found in members of the Bacillales [20]. Figure 1 shows the phylogenetic neighborhood of Here we present a summary classification and a B. tusciae in a 16S rRNA tree. The sequences of the set of features for B. tusciae strain T2T, a descrip- five 16S rRNA gene copies in the genome differ tion of the complete genome sequencing and an- from each other by up to eight nucleotides, and notation and a proposal to reclassify B. tusciae as a differ by up to six nucleotides from the previously member of the new genus Kyrpidia as Kyrpidia published 16S rRNA sequence AB042062. tuscae comb. nov. B. tusciae cells are straight rods measuring 0.8 x 4- Figure 2) with single laterally in- Classification and features serted flagella [1]. In young cultures, cells stain A representative genomic 16S rRNA sequence of Gram5 μm- positivelength ( and exhibit oval, subterminal B. tusciae T2T was compared using NCBI BLAST spores that swell the sporangium [1]. Cultures [21] under default settings (e.g., considering only grow at 55°C at a pH ranging from 4.2 to 4.8 [1]. the high-scoring segment pairs (HSPs) from the Although cells grow best under autotrophic condi- best 250 hits) with the most recent release of the tions via hydrogen oxidation, they can also grow Greengenes database [22] and the relative fre- heterotrophic on alcohols, amino acids and short quencies of taxa and keywords (reduced to their chain fatty acids, but not with sugars [1]. Sub- stems [23]) were determined, weighted by BLAST strate usage was described in detail by Bonjour scores. The most frequently occurring genera and Aragno [1]. Cells contain a soluble malate- were Alicyclobacillus (67.8%), Bacillus (18.2%), dehydrogenase activity, which cannot reduce py- Thermoactinomyces (6.0%), Paenibacillus (5.6%) ridine (NAD+/NAD(P)+) [1], nor NADH oxidation and Exiguobacterium (1.6%) (99 hits in total). Re- was observed [1]. Hydrogenase activity was re- garding the seven hits to sequences from mem- ported as being inducible [1]. An operational Cal- bers of the species, the average identity within vin cycle was reported based on the presence of HSPs was 99.6%, whereas the average coverage ribulose-1,5-bisphosphate carboxylase activity in by HSPs was 99.5%. Among all other species, the autotrophically-grown cells [1]. Autotrophically one yielding the highest score was A. acidiphilus grown cells show inclusions of poly- - NR_028637, which corresponds to an identity of hydroxybutyric acid [1]. 92.4% and an HSP coverage of 57.7%. (Note that β the Greengenes database uses the INSDC (= Chemotaxonomy EMBL/NCBI/DDBJ) annotation, which is not an The structure of the cell wall of strain T2T was re- authoritative source for nomenclature or classifi- ported as typically Gram-positive, without a pro- cation.) The highest-scoring environmental se- tein coat [1 -alicyclic fatty acids are lacking and quence was EU638396 ('Ecological Role Firmi- menaquinone MK-7 was identified as the main cutes Identified Thermophilic Microbial Fuel Cells quinone (personal]. ω communication Brian J. Tin- thermophilic microbial fuel cell acetate-fed expe- dall). riment clone SHBZ1905')), which showed an iden- tity of 99.4% and an HSP coverage of 90.0%. 122 Standards in Genomic Sciences Klenk et al. Table 1. Classification and general features of Kyrpidia tusciae strain T2T according to the MIGS recommenda- tions [2] and the NamesforLife database [3]. MIGS ID Property Term Evidence code Domain Bacteria TAS [4] Phylum Firmicutes TAS [5-7] Class Bacilli TAS [8,9] Current classification Order Bacillales TAS [10,11] Family Bacillaceae TAS [10,12] Genus Bacillus TAS [10,13,14] Species Bacillus tusciae TAS[1,15] Type strain T2 TAS [1] Family Alicyclobacillaceae TAS [9,16] Revised classification Genus Kyrpidia NAS Species Kyrpidia tusciae NAS Gram stain positive TAS [1] Cell shape straight rods TAS [1] Motility not reported, but lateral flagella visible TAS [1] Sporulation sporulating TAS [1] Temperature range
Recommended publications
  • Microbial Diversity of Molasses Containing Tobacco (Maassel) Unveils Contamination with Many Human Pathogens
    European Review for Medical and Pharmacological Sciences 2021; 25: 4919-4929 Microbial diversity of molasses containing tobacco (Maassel) unveils contamination with many human pathogens M.A.A. ALQUMBER Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Saudi Arabia Abstract. – OBJECTIVE: Tobacco smoking drugs in today’s modern world. Different meth- remains a worldwide health issue, and the use of ods are currently used to consume tobacco, in- flavored varieties (maassel) embedded in glyc- cluding cigarettes, cigars and waterpipes1. Water- erine, molasses, and fruit essence via shisha pipe (shisha) smoking continues to rise globally2. paraphernalia (waterpipe) is growing globally. Smoking flavored tobacco (maassel), through the 16S rRNA gene pyrosequencing was conduct- shisha, is becoming a global preventable cause of ed on 18 different varieties representing 16 fla- 3,4 vors and three brands in order to study the mi- morbidity and mortality . crobiota of maassel and find whether it contains Scientists studied the chemical composition of pathogenic bacteria. tobacco for many years and illustrated the total MATERIALS AND METHODS: The samples number of chemicals identified in tobacco during were selected randomly from the most utilized the years from 1954 to 20055. In addition, a com- brands within Albaha, Saudi Arabia as deter- prehensive review of these chemicals’ classifica- mined through a questionnaire of 253 smok- ers. In addition, ten-fold serially diluted sam- tion, concentration and changes with time due ples were inoculated on blood agar, MacConkey to changes in the shape, design and composition agar, half-strength trypticase soy agar and malt of cigarettes was reported almost a decade ago6.
    [Show full text]
  • Aerosol Microbiome Over the Mediterranean Sea Diversity and Abundance
    atmosphere Article Aerosol Microbiome over the Mediterranean Sea Diversity and Abundance Esra Mescioglu 1,* , Eyal Rahav 2, Natalia Belkin 2, Peng Xian 3, Jordan M. Eigenza 4 , Ania Vichik 2, Barak Herut 2 and Adina Paytan 5 1 Earth and Planetary Science, University of California, Santa Cruz, CA 95060, USA 2 Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 3108000, Israel 3 Marine Meteorology Division, Naval Research Laboratory, 7 Grace Hopper Avenue, Monterey, CA 93940, USA 4 Biomolecular Engineering, University of California, Santa Cruz, CA 95060, USA 5 Institute of Marine Science, University of California, Santa Cruz, CA 95060, USA * Correspondence: [email protected] Received: 18 June 2019; Accepted: 24 July 2019; Published: 1 August 2019 Abstract: Prokaryotic microbes can become aerosolized and deposited into new environments located thousands of kilometers away from their place of origin. The Mediterranean Sea is an oligotrophic to ultra-oligotrophic marginal sea, which neighbors northern Africa (a major source of natural aerosols) and Europe (a source of mostly anthropogenic aerosols). Previous studies demonstrated that airborne bacteria deposited during dust events over the Mediterranean Sea may significantly alter the ecology and function of the surface seawater layer, yet little is known about their abundance and diversity during ‘background’ non-storm conditions. Here, we describe the abundance and genetic diversity of airborne bacteria in 16 air samples collected over an East-West transect of the entire Mediterranean Sea during non-storm conditions in April 2011. The results show that airborne bacteria represent diverse groups with the most abundant bacteria from the Firmicutes (Bacilli and Clostridia) and Proteobacteria (Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) phyla.
    [Show full text]
  • Food Waste Composting and Microbial Community Structure Profiling
    processes Review Food Waste Composting and Microbial Community Structure Profiling Kishneth Palaniveloo 1,* , Muhammad Azri Amran 1, Nur Azeyanti Norhashim 1 , Nuradilla Mohamad-Fauzi 1,2, Fang Peng-Hui 3, Low Hui-Wen 3, Yap Kai-Lin 3, Looi Jiale 3, Melissa Goh Chian-Yee 3, Lai Jing-Yi 3, Baskaran Gunasekaran 3,* and Shariza Abdul Razak 4,* 1 Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, University of Malaya, Wilayah Persekutuan Kuala Lumpur 50603, Malaysia; [email protected] (M.A.A.); [email protected] (N.A.N.) 2 Institute of Biological Sciences, Faculty of Science, University of Malaya, Wilayah Persekutuan Kuala Lumpur 50603, Malaysia; [email protected] 3 Faculty of Applied Science, UCSI University (South Wing), Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia; [email protected] (F.P.-H.); [email protected] (L.H.-W.); [email protected] (Y.K.-L.); [email protected] (L.J.); [email protected] (M.G.C.-Y.); [email protected] (L.J.-Y.) 4 Nutrition and Dietetics Program, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia * Correspondence: [email protected] (K.P.); [email protected] (B.G.); [email protected] (S.A.R.); Tel.: +60-3-7967-4640 (K.P.); +60-16-323-4159 (B.G.); +60-19-964-4043 (S.A.R.) Received: 20 May 2020; Accepted: 16 June 2020; Published: 22 June 2020 Abstract: Over the last decade, food waste has been one of the major issues globally as it brings a negative impact on the environment and health.
    [Show full text]
  • Resuscitation of Soil Microbiota After > 70-Years of Desiccation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.06.371641; this version posted November 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Resuscitation of soil microbiota after > 70-years of desiccation 2 Jun Zhao1‡, Dongfeng Chen1‡*, Wei Gao1,2, Zhiying Guo1,2, Zhongjun Jia1, 3 Marcela Hernández3* 4 1State Key Laboratory of Soil and Sustainable Agriculture. Institute of Soil Science, 5 Chinese Academy of Sciences. Nanjing, 210008, Jiangsu Province, China 6 2University of Chinese Academy of Sciences, Beijing 100049, China 7 3School of Environmental Sciences, Norwich Research Park, University of East 8 Anglia, Norwich, UK 9 10 ‡These authors contribute equally to this work 11 12 * Correspondence: 13 Dongfeng Chen: [email protected] 14 Marcela Hernández: [email protected] 15 Running title: Soil microbes after long-term desiccation 16 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.06.371641; this version posted November 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 17 Abstract 18 The abundance and diversity of bacteria in 24 historical soil samples under air- 19 dried storage conditions for more than 70 years were assessed by quantification and 20 high-throughput sequencing analysis of 16S rRNA genes.
    [Show full text]
  • Alicyclobacillus Spp.: New Insights on Ecology and Preserving Food Quality Through New Approaches
    Microorganisms 2015, 3, 625-640; doi:10.3390/microorganisms3040625 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Review Alicyclobacillus spp.: New Insights on Ecology and Preserving Food Quality through New Approaches Emanuela Ciuffreda, Antonio Bevilacqua, Milena Sinigaglia and Maria Rosaria Corbo * Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 15, 71122 Foggia, Italy; E-Mails: [email protected] (E.C.); [email protected] (A.B.); [email protected] (M.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-08-8158-9232. Academic Editor: Giuseppe Comi Received: 27 July 2015 / Accepted: 29 September 2015 / Published: 10 October 2015 Abstract: Alicyclobacillus spp. includes spore-forming and thermo-acidophilic microorganisms, usually recovered from soil, acidic drinks, orchards and equipment from juice producers. The description of the genus is generally based on the presence of ω-fatty acids in the membrane, although some newly described species do not possess them. The genus includes different species and sub-species, but A. acidoterrestris is generally regarded as the most important spoiler for acidic drinks and juices. The main goal of this review is a focus on the ecology of the genus, mainly on the species A. acidoterrestris, with a special emphasis on the different phenotypic properties and genetic traits, along with the correlation among them and with the primary source of isolation. Finally, the last section of the review reports on some alternative approaches to heat treatments (natural compounds and other chemical treatments) to control and/or reduce the contamination of food by Alicyclobacillus.
    [Show full text]
  • Phylogeny of Nitrogenase Structural and Assembly Components Reveals New Insights Into the Origin and Distribution of Nitrogen Fixation Across Bacteria and Archaea
    microorganisms Article Phylogeny of Nitrogenase Structural and Assembly Components Reveals New Insights into the Origin and Distribution of Nitrogen Fixation across Bacteria and Archaea Amrit Koirala 1 and Volker S. Brözel 1,2,* 1 Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA; [email protected] 2 Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa * Correspondence: [email protected]; Tel.: +1-605-688-6144 Abstract: The phylogeny of nitrogenase has only been analyzed using the structural proteins NifHDK. As nifHDKENB has been established as the minimum number of genes necessary for in silico predic- tion of diazotrophy, we present an updated phylogeny of diazotrophs using both structural (NifHDK) and cofactor assembly proteins (NifENB). Annotated Nif sequences were obtained from InterPro from 963 culture-derived genomes. Nif sequences were aligned individually and concatenated to form one NifHDKENB sequence. Phylogenies obtained using PhyML, FastTree, RapidNJ, and ASTRAL from individuals and concatenated protein sequences were compared and analyzed. All six genes were found across the Actinobacteria, Aquificae, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Deferribacteres, Firmicutes, Fusobacteria, Nitrospira, Proteobacteria, PVC group, and Spirochaetes, as well as the Euryarchaeota. The phylogenies of individual Nif proteins were very similar to the overall NifHDKENB phylogeny, indicating the assembly proteins have evolved together. Our higher resolution database upheld the three cluster phylogeny, but revealed undocu- Citation: Koirala, A.; Brözel, V.S. mented horizontal gene transfers across phyla. Only 48% of the 325 genera containing all six nif genes Phylogeny of Nitrogenase Structural and Assembly Components Reveals are currently supported by biochemical evidence of diazotrophy.
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • Metagenomic Characterization Reveals Pronounced Seasonality in the Diversity and Structure of the Phyllosphere Bacterial Community in a Mediterranean Ecosystem
    microorganisms Article Metagenomic Characterization Reveals Pronounced Seasonality in the Diversity and Structure of the Phyllosphere Bacterial Community in a Mediterranean Ecosystem Despoina Vokou 1,*, Savvas Genitsaris 2 , Katerina Karamanoli 3, Katerina Vareli 4, Marina Zachari 4, Despoina Voggoli 4, Nikolaos Monokrousos 5, John Maxwell Halley 4 and Ioannis Sainis 4 1 Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece 2 School of Economics, Business Administration and Legal Studies, International Hellenic University, 57001 Thermi, Greece; [email protected] 3 School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 4 Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; [email protected] (K.V.); [email protected] (M.Z.); [email protected] (D.V.); [email protected] (J.M.H.); [email protected] (I.S.) 5 Department of Soil Science of Athens, Hellenic Agricultural Organization-Demeter, Institute of Soil and Water Resources, 14123 Lykovrisi, Greece; [email protected] * Correspondence: [email protected] Received: 17 September 2019; Accepted: 29 October 2019; Published: 1 November 2019 Abstract: We explore how the phyllosphere microbial community responds to a very seasonal environment such as the Mediterranean. For this, we studied the epiphytic bacterial community of a Mediterranean ecosystem in summer and winter, expecting to detect seasonal differences at their maximum. With high-throughput sequencing (HTS), we detected the operational taxonomic units (OTUs) present in the phyllosphere and also in the surrounding air. The epiphytic community is approximately five orders of magnitude denser than the airborne one and is made almost exclusively by habitat specialists.
    [Show full text]
  • Functional Analysis of Multiple Nifb Genes of Paenibacillus Strains in Synthesis of Mo-, Fe- and V- Nitrogenase
    Functional Analysis of Multiple nifB Genes of Paenibacillus Strains in Synthesis of Mo-, Fe- and V- Nitrogenase Qin Li China Agricultural University Haowei Zhang China Agricultural University Liqun Zhang China Agricultural University San-Feng Chen ( [email protected] ) China Agricultural University https://orcid.org/0000-0003-2956-9025 Research Keywords: Paenibacillus, nifB gene, Mo-nitrogenase, alternative nitrogenases Posted Date: April 22nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-444251/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Microbial Cell Factories on July 19th, 2021. See the published version at https://doi.org/10.1186/s12934-021-01629-9. Page 1/20 Abstract Background: Biological nitrogen xation is catalyzed by Mo-, V- and Fe-nitrogenases that are encoded by nif, vnf and anf genes, respectively. NifB is the key protein in synthesis of the cofactors of all nitrogenases. Most diazotrophic Paenibacillus strains have only one nifB gene located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV). But some Paenibacillus strains have multiple nifB genes and their functions are not known. Results: We have analyzed the genomes of the 116 diazotrophic Paenibacillus strains and found that some Paenibacillus strains have 2-4 nifB genes. Phylogeny analysis shows that all nifB genes in Paenibacillus fall into 4 subclasses: the nifB1 being the rst gene within the compact nif gene cluster, the nifB2 being adjacent to anf or vnf genes, the other nifB3 and nifB4 being scattered on genomes.
    [Show full text]
  • Identification and Classification of Known and Putative Antimicrobial Compounds Produced by a Wide Variety of Bacillales Species Xin Zhao1,2 and Oscar P
    Zhao and Kuipers BMC Genomics (2016) 17:882 DOI 10.1186/s12864-016-3224-y RESEARCH ARTICLE Open Access Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species Xin Zhao1,2 and Oscar P. Kuipers1* Abstract Background: Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. Results: We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. Conclusions: Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified. Keywords: Antimicrobials, Bacillales, Bacillus, Genome-mining, Lanthipeptides, Sactipeptides, Thiopeptides, NRPs, PKs Background (bacteriocins) [4], as well as non-ribosomally synthesized Most of the species of the genus Bacillus and related peptides (NRPs) and polyketides (PKs) [5].
    [Show full text]
  • Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
    Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment.
    [Show full text]
  • Bacillus Mangrovi Sp. Nov., Isolated from a Sediment Sample of Coringa Mangrove Forest, India
    Author version : International Journal of Systematic and Evolutionary Microbiology,vol.67(7);2017; 2219-2224 Bacillus mangrovi sp. nov., isolated from a sediment sample of Coringa mangrove forest, India Vasundhera Gupta1, Pradip Kumar Singh1, Suresh Korpole1, Naga Radha Srinivas Tanuku2, Anil Kumar Pinnaka.*1 1MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh-160036, India 2CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam-530017, India Address for correspondence *Dr. P. Anil Kumar MTCC-Microbial Type Culture Collection & Gene Bank, CSIR- Institute of Microbial Technology, Chandigarh-160036, India E-mail: [email protected] Telephone: +91-172-6665170 Running title: Bacillus mangrovi sp. nov. Subject category New taxa (Firmicutes) The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain AK61T is HG974242. A facultatively anaerobic, endospore forming, alkali tolerant, Gram-positive-staining, motile, rod shaped bacterium, designated strain AK61T, was isolated from a sediment sample collected from Coringa mangrove forest, India. Colonies were circular, 1.5 mm in diameter, shiny, smooth, yellowish and convex with entire margin after 48 h growth at 30oC. Growth occurred at 15-42 oC, 0- 3% (w/v) NaCl and pH of 6-9. Strain AK61T was positive for amylase activity and negative for oxidase, catalase, aesculinase, caseinase, cellulase, DNase, gelatinase, lipase and urease activities. The fatty acids were dominated by branched with iso-, anteiso-, saturated fatty acids with a high abundance of iso-C14:0, iso-C15:0, anteiso-C15:0 and iso-C16:0; the cell-wall peptidoglycan contained - meso-diaminopimelic acid as the diagnostic diamino acid; and MK-7 is the major menaquinone.
    [Show full text]