High Degree of Polyphagy in a Seed-Eating Bark Beetle

Total Page:16

File Type:pdf, Size:1020Kb

High Degree of Polyphagy in a Seed-Eating Bark Beetle ISSN : 0917-415X DOI:10.3759/tropics.MS18-07 TROPICS Vol. 27 (3) 59-66 Issued December 1, 2018 ORIGINAL ARTICLE High degree of polyphagy in a seed-eating bark beetle, Coccotrypes gedeanus (Coleoptera: Curculionidae: Scolytinae), during a community-wide fruiting event in a Bornean tropical rainforest Asano Iku1*, Takao Itioka1, Atsushi Kawakita2, 3, Hideaki Goto4, Akira Ueda4, Usun Shimizu-kaya1, 5 and Paulus Meleng6 1 Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan 2 Center for Ecological Research, Kyoto University, Otsu, Japan 3 The Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan 4 Kyushu Research Center, Forestry and Forest Products Research Institute, Kumamoto, Japan 5 Faculty of Life and Environmental Science, Shimane University, Matsue, Japan 6 Research Development and Innovation Division, Forest Department Sarawak, Kuching, Malaysia * Corresponding author: [email protected] Received: October 14, 2018 Accepted: November 9, 2018 ABSTRACT A bark beetle Coccotrypes gedeanus Eggers (Coleoptera: Curculionidae: Scolytinae) is a dominant insect seed predator of dipterocarp fruits in the lowland tropical rainforests of Southeast Asia. In this study, the host preference and host range of C. gedeanus was determined by sampling 22,216 fruits from 137 species of 59 genera belonging to 24 families in a primary lowland mixed dipterocarp forest in Borneo. Coccotrypes gedeanus adults were found in the fruits of 51 species from 19 genera belonging to 13 families, and were observed to settle in the fruits of 34 species of 11 genera belonging to 6 families to initiate breeding. Except one plant species, the rest of the 34 plant species were confirmed to bear“ nut” or“ drupe” type fruit. These results suggested that a population of C. gedeanus utilize seeds of various plant species simultaneously. The polyphagy of the bark beetle might be adaptive for survival in the Bornean tropical rain forests where the density of each plant species is low, and most plants produce fruits at unpredictably long intervals. Our results also suggested that the characteristics of fruit might affect the host plant preference of C. gedeanus adults and/or the growth performance of C. gedeanus larvae. Key words: Dipterocarpaceae, general flowering, masting, predator satiation hypothesis, Southeast Asian tropical rainforests INTRODUCTION of dipterocarp reproduction. However, limited biological information on C. gedeanus is available. In the lowland tropical rainforests of Southeast Asia, Many Coccotrypes species breed in small hard seeds Dipterocarpaceae is a dominant family that includes many (Kirkendall et al. 2015), most are considered to have wide canopy tree species (Ashton 2004; Ghazoul 2016). Most host ranges (Wood & Bright 1992), and some can use seeds dipterocarp species in the region produce large fruit at as well as bark, leafstalks, and other plant tissues as their irregular intervals of 2‒10 years, synchronously with many breeding spaces (Jordal et al. 2002, Kirkendall et al. 2015). other tree species at the community level (Appanah 1985; Although several studies have reported that C. gedeanus Ashton et al. 1988; Sakai et al. 1999, 2006). Such uses the seeds and leafstalks of multiple plant families as reproduction periods are termed“ community-wide host plants (Beaver 1979a; Wood & Bright 1992; Jordal et synchronized reproduction” (CSR), and start with al. 2002, Nakagawa et al. 2003), most studies have been community-wide flowering, which was originally termed based on fragmentary records and have included insufficient “general flowering”. Coccotrypes gedeanus Eggers seed samples obtained by routine sampling from a site. (Coleoptera: Curculionidae: Scolytinae) is a bark beetle and Thus, to date, the host preference and host range of C. one of the most dominant insect predators of dipterocarp gedeanus at the population level have not been sufficiently seeds. This beetle reproduces during CSR periods in a elucidated. Bornean lowland tropical rainforest (Nakagawa et al. 2003; In this study, to determine the host preference and host Iku et al. 2018), and is thus predicted to affect the success range of C. gedeanus, we repeatedly sampled fruits of 60 TROPICS Vol. 27 (3) Asano Iku, Takao Itioka et al. Fig. 1. Lateral view of a Coccotrypes gedeanus adult female (a), and a C. gedeanus adult female with several eggs inside a Dipterocarpus globosus seed (b). The latter photo shows that the female has settled into the seed. Photograph (b) captured by Makoto Yokotsuka. various tree species and collected bark beetles from the Coccotrypes gedeanus sampled fruits during a CSR period in a Bornean tropical rainforest. Coccotrypes gedeanus is a bark beetle species and a seed predator in a wide area of Southeast Asia (Fig. 1a) (Wood & Bright 1992). One or a few female adults burrow MATERIALS AND METHODS into a post-dispersal fruit of the host species, excavate tunnels and galleries inside the fruit, including the seed Study site part, and lay multiple eggs in the galleries. The larvae feed mainly on seed parts of the host fruit and pupate within the The study site was a primary lowland mixed dipterocarp galleries (Fig. 1b) (Hulcr et al. 2007; Iku et al. 2018). After forest in Lambir Hills National Park, Sarawak, Malaysia sib-mating, the new female adults disperse from the host (4°20′N, 113°50′E; altitude, 50‒250 m). The mean annual fruit (Jordal et al. 2002). Usually, more than 15 new adults temperature and precipitation were 26℃and 2,600 mm, appear from a host fruit, which has lost its germination respectively (Kume et al. 2011). The forest at the study site capacity. is composed of more than 1,100 tree species belonging to Wood & Bright (1992) reported that the beetle used approximately 80 families (Lee et al. 2002), more than seeds of plants belonging to Anacardiaceae, Burseraceae, 20 % of which reproduce during CSR periods (Sakai et al. Dipterocarpaceae, and Moraceae as its food resources, 2006). Most plant species that reproduce during CSR although it is unclear whether the predation occurred during periods, including most of the dipterocarp species in that CSR periods. In the study site, the beetle was confirmed to region, produce seeds only during CSR periods. prey on seeds of plants belonging to mainly Dipterocarpaceae, The field survey was conducted in two research plots but also Celastraceae, Moraceae, and Myrtaceae during a (an 8 ha plot: 200×400 m and a 4 ha plot: 200×200 m) and CSR period (Nakagawa et al. 2003). The beetle usually three belt transects along sightseeing trails (approximately utilizes plant seeds as its food resources; however, in some 10 m×1 km, 10 m×1 km, 10 m×2 km, respectively). cases, such as an absence of plant seeds around its habitats, Almost all trees over 10 cm DBH in the research plots, it apparently also uses leafstalks (Beaver 1979a). consisting of approximately 6,100 and 2,800 trees in the 8 and 4 ha plots, respectively, were identified at the species level. Although most trees in the belt transects were not Sample collection identified, the species composition of the trees was similar to that within the two research plots. Fruit was collected in the study site over 9 months in a long CSR period from August 2013 to October 2014 (see Iku et al. 2017 for details). We repeatedly collected the fallen fruits of various plant species within the two research High degree of polyphagy in a bark beetle Coccotrypes gedeanus 61 plots and the three belt transects, mainly targeting canopy GenBank (accession number AF375310). If a sampled tree species, at intervals of 1‒3 weeks during the CSR beetle shared 99 % identity with the registered sequence, period. Fifty fruits were collected from each species per the sampled beetle was identified as C. gedeanus. sampling event. When the total number of fallen fruits was less than 50, we collected as many as possible. We dissected the sampled fruits to detect any bark beetles inside. We also RESULTS recorded the presence or absence of bark beetle eggs or larvae in a small fraction of sampled fruits per plant species. In total, we collected 22,216 fruits from 137 species of The plant species where at least one C. gedeanus adult was 59 genera belonging to 24 families (Table 1). The total found with their eggs or larvae in a fruit, we considered that number of adult bark beetles obtained from the collected the bark beetle could have settled in the fruit of the plant fruit was 3,710. Of these, 1,791 were C. gedeanus, which species and started breeding. All sampled bark beetles were were collected from 51 species belonging to 19 genera of preserved in 99.5 % ethanol soon after sampling. 13 plant families (Table 1). There were no inconsistencies between identification based on morphological charac- teristics and that based on sequences of the COI gene. In Identification of the collected bark beetles each of 34 species belonging to 11 genera of six families, at least one C. gedeanus adult settled in fruits to begin We sorted C. gedeanus from all collected bark beetles breeding (Table 1). Except Allantospermum borneense based on their morphological characteristics. Bark beetle (Irvingiaceae), all plant species were confirmed to bear nut- species belonging to Coccotrypes are often difficult to or drupe-type fruit (Table 1). distinguish based on morphological characteristics alone Bark beetles other than C. gedeanus accounted for (Jordal et al. 2002; Hulcr et al. 2015); therefore, we also approximately 51.7 % of those obtained from fruits. All used DNA barcoding (Hebert et al. 2003) to confirm the belonged to Coccotrypes, comprising at least six species; identification based on morphological characteristics. however, they could not be identified at the species level. Identification via DNA barcoding is based on the sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene, which is a standard marker used to detect within- and DISCUSSION among-species variations in bark beetles (Jordal et al.
Recommended publications
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Title General Flowering in an Asesonal Tropical Forest : Plant Reproductive Phenology and Plant-Pollinator Interactions in A
    General flowering in an asesonal tropical forest : plant Title reproductive phenology and plant-pollinator interactions in a lowland dipterocarp forest in Sarawak( Dissertation_全文 ) Author(s) Sakai, Shoko Citation 京都大学 Issue Date 1999-03-23 URL https://doi.org/10.11501/3149376 Right Type Thesis or Dissertation Textversion author Kyoto University Shoko Sakai 1 Doctoral thesis General flowering in an aseasonal tropical forest: plant reproductive phenology and plant-pollinator interactions in a lowland dipterocarp forest in Sarawak i1-:;r"J'Ji~tt!3"79 1 \t5-:t:t-*1=d=311 ~f®~m~9m"7 I .J o 9-c f@~7ll-~fJJ~t§B:fJ=f§ Shoko SAKAI Fuculty of Science, Kyoto University March 1999 Shoko Sakai 2 CONTENTS Summary 4 Chapter 1. Introduction 6 Chapter 2. Canopy observation system 11 Chapter 3. Plant reproductive phenology 16 Chapter 4. Pollination system in a general flowering period 56 Chapter 5. General discussion 77 Acknowledgments 88 Reference 89 Appendix 99 Shoko Sakai 3 Jttm 7:; 7 ~m~f~:lt!!. 7 7 ;\ tf .:t-w-r: I±, - =for oo:rE e: Df'Jn ~ :m~-IJ\jo G n -c \,t) ~ o -=for 001£ C: I±, 2-10 ifmJM-r:w7Ct ~ f~hX:T ~ :f*4 ~f!Hi-/J\~7 JJ ~Fa, ~:.:J(4 C: 001£ · ~~T ~ ;m~ -r:~ ~ o -: ~:m~ ~~~~ t-:=&IJ, 1992ifiJ" G? v- Y 7 · -IT 7 r:7 71+1 · 7 / ~-Jv00J1.0~ ~=13 v)-c, JE:M89~: 305{i576f~1*~til!fo/J~001E · fffl~15th~~c&~l .. 53'-;fJl-~13-:~-:>t-:= o i-~~ :lf!;, 1992if-IJ"G 19951f:i-r:'±~1tjt~~til!fo/J~~ ~~OO:rEL-cv)~{i, ~~v)l±f~i*~~Uil '±~~: 2-5% C: 1~-/J"-:> t-:=-/J\, f-~~Ui!L± 19961f: 3 JJ iJ" Gf&,Jt~:_t~ L-c 20% ~=~ l, - =foTOO 1E ~ ~c&~ L t-:= o 001E~Uil~ ~1tL± 5 JJ C: 9 Jn: I!- 7 ~ ~--:::> =L1J ~ ~ L t-:: o it-::, - =for 001£ L± 70 ;~-- r Jv ~-: -t~tH*n" G*f'*f~*-?~~ 7 / i -r:~l*~til!fo/J-/J\--:::> < ~ te-t:m~t! e: v) ~-: (: -/)\ b -/)'> -:> t-:= 0 7 7 ;\if .:t- W~fil!fo/J I± i- ~ Li C: lv C:"-/J\j}J!fo/J ~: ~~' ~ {t(fF L-c v) ~ ~ -r:, - =for OO:f£-/J\13-: ~ C:~f;t~~11ff~-/J\f&,~=r'§J < ~~ 0 ttg:I±1Eit?]Jjt~z Lv)w-r:-=foT001E~~~m-~T- ~AiJ\C:"~ J:: ~ 1: 1 iJ" ~ b n -c \,t) ~ ~ iJ"I±, -=for oo:rE ~ &~J <" ~ * ~ ~ rQ~m~ ---:::> -c- ~ ~ o -: n 1 -r: .
    [Show full text]
  • Irvingia Gabonensis Irvingiaceae (Aubrey-Lecomte Ex O. Rorke) Baill
    Irvingia gabonensis (Aubrey-Lecomte ex O. Rorke) Baill. Irvingiaceae dika nut LOCAL NAMES English (wild mango,native mango,duiker nut,bush mango,bread tree,African mango tree); French (manguier sauvage,bobo); Hausa (goron,biri); Igbo (obono); Trade name (dika nut); Yoruba (oro) BOTANIC DESCRIPTION Irvingia gabonensis grows to a height of 15-40 m, bole slightly buttressed. It has a dense, compact crown, branchlets ending in a narrow, curved, stipular sheath covering the leaf bud. Bark greyish, smooth or very slightly scaly; slash yellowish-brown to light yellow, brittle. Fruit on three-year-old trees in Onne, Nigeria (Anthony Simons) Leaves 5-15 x 2.5-6 cm, elliptic to slightly obovate, 1 margin often a little more rounded than the other, acute or shortly acuminate, cuneate or slightly rounded at the base; leathery dark green and glossy above; with 5- 10 pairs of irregular lateral veins, the lower ones running out nearly to the margin. Flowers yellowish to greenish-white, in slender, clustered racemes or small panicles above the leaves and about as long as them, or on the branchlets and younger branchlets; individual flower stalks slender, about 6 mm long, petals bent right back and soon falling off, disc bright yellow. Tree in degraded forest near Port Harcourt, Fruits yellowish when ripe, broadly ellipsoid and variable in size between Nigeria. (Anthony Simons) varieties, 5-7.5 cm with a yellow, fibrous pulp surrounding a large seed. The genus name commemorates E.G. Irving, 1816-1855, a Scots botanist. BIOLOGY I. gabonensis is hermaphroditic, with flowers being pollinated by Coleoptera, Diptera, Hymenoptera and Lepidoptera.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • 621 R. Kool Leiden)
    Ixonanthaceae R. Kool Leiden) 2 This small family of or 3 Old World rain-forest genera was already recognized as a separate suprageneric taxon by PLANCHON (1847) and PLANCHON & KLOTZSCH (1856), who relegated it to the affinity of Ochnaceae, later correctly referred to Linaceae as a subfamily Ixonanthoideaeby HUB. WINKLER (1931) and finally recognized as a family of its own by EXELL & MENDONÇA (1951). the of the As to number genera containedin family, there is no unanimity of opinion. FORMAN 8 NOOTEBOOM that (1965: 523) referred genera to the family, but (1967) argued several belong to Simaroubaceae. After careful consideration 3 genera are admitted here in Ixonanthaceae sensu stricto: Cyrillopsis Kuhlm. from South America, Ochthocosmus BENTH. (incl. Phyllocosmus KLOTZSCH) from tropical America and Africa, and Ixonanthes JACK from Indo-Malesia. The three genera form a close-knit group. They are all small and the wide distributionin the tropics points to a high age of the group. We must mentionthat there is a, doubtful, fourth genus, Allantospermum FORMAN, which the author reckons to the Ixonanthaceae. It occurs with one species in Borneo and another one in Ma- NOOTEBOOM The dagascar. (1967, 1972) included this genus in Simaroubaceae. morphology, chemotaxonomy, and palynology corroborate this affinity, but the anatomy of wood and leaf (VAN WELZEN & BAAS, 1984) is just in favour of affinity with Ixonanthaceae. We refrain from a long discussion of the merits of HALLIER'S attempt (1923) to have Linaceae as a hugecomplex centre of affinities and confine ourselves to what is usually accepted nowadays in recognizing a few families grouped around Linaceae sensu stricto.
    [Show full text]
  • The Evolutionary Fate of Rpl32 and Rps16 Losses in the Euphorbia Schimperi (Euphorbiaceae) Plastome Aldanah A
    www.nature.com/scientificreports OPEN The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome Aldanah A. Alqahtani1,2* & Robert K. Jansen1,3 Gene transfers from mitochondria and plastids to the nucleus are an important process in the evolution of the eukaryotic cell. Plastid (pt) gene losses have been documented in multiple angiosperm lineages and are often associated with functional transfers to the nucleus or substitutions by duplicated nuclear genes targeted to both the plastid and mitochondrion. The plastid genome sequence of Euphorbia schimperi was assembled and three major genomic changes were detected, the complete loss of rpl32 and pseudogenization of rps16 and infA. The nuclear transcriptome of E. schimperi was sequenced to investigate the transfer/substitution of the rpl32 and rps16 genes to the nucleus. Transfer of plastid-encoded rpl32 to the nucleus was identifed previously in three families of Malpighiales, Rhizophoraceae, Salicaceae and Passiforaceae. An E. schimperi transcript of pt SOD-1- RPL32 confrmed that the transfer in Euphorbiaceae is similar to other Malpighiales indicating that it occurred early in the divergence of the order. Ribosomal protein S16 (rps16) is encoded in the plastome in most angiosperms but not in Salicaceae and Passiforaceae. Substitution of the E. schimperi pt rps16 was likely due to a duplication of nuclear-encoded mitochondrial-targeted rps16 resulting in copies dually targeted to the mitochondrion and plastid. Sequences of RPS16-1 and RPS16-2 in the three families of Malpighiales (Salicaceae, Passiforaceae and Euphorbiaceae) have high sequence identity suggesting that the substitution event dates to the early divergence within Malpighiales.
    [Show full text]
  • Comparative Genomics of the Balsaminaceae Sister Genera Hydrocera Triflora and Impatiens Pinfanensis
    International Journal of Molecular Sciences Article Comparative Genomics of the Balsaminaceae Sister Genera Hydrocera triflora and Impatiens pinfanensis Zhi-Zhong Li 1,2,†, Josphat K. Saina 1,2,3,†, Andrew W. Gichira 1,2,3, Cornelius M. Kyalo 1,2,3, Qing-Feng Wang 1,3,* and Jin-Ming Chen 1,3,* ID 1 Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; [email protected] (Z.-Z.L.); [email protected] (J.K.S.); [email protected] (A.W.G.); [email protected] (C.M.K.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China * Correspondence: [email protected] (Q.-F.W.); [email protected] (J.-M.C.); Tel.: +86-27-8751-0526 (Q.-F.W.); +86-27-8761-7212 (J.-M.C.) † These authors contributed equally to this work. Received: 21 December 2017; Accepted: 15 January 2018; Published: 22 January 2018 Abstract: The family Balsaminaceae, which consists of the economically important genus Impatiens and the monotypic genus Hydrocera, lacks a reported or published complete chloroplast genome sequence. Therefore, chloroplast genome sequences of the two sister genera are significant to give insight into the phylogenetic position and understanding the evolution of the Balsaminaceae family among the Ericales. In this study, complete chloroplast (cp) genomes of Impatiens pinfanensis and Hydrocera triflora were characterized and assembled using a high-throughput sequencing method. The complete cp genomes were found to possess the typical quadripartite structure of land plants chloroplast genomes with double-stranded molecules of 154,189 bp (Impatiens pinfanensis) and 152,238 bp (Hydrocera triflora) in length.
    [Show full text]
  • Federal Register/Vol. 71, No. 89/Tuesday, May 9, 2006/Rules
    Federal Register / Vol. 71, No. 89 / Tuesday, May 9, 2006 / Rules and Regulations 26835 I 2. Revise paragraphs (a)(1) and (a)(2) § 1200.7 What are NARA logos and how (1) The Federal Records Center of § 1200.7 to read as follows: are they used? Program; (a) * * * (2) The National Historical Publications and Records Commission; * * * * * This final rule implements the Federal in) of rain per year, while some leeward Dated: May 3, 2006. protections provided by the Act for coasts that lie in the rain shadow of the Allen Weinstein, these 12 species of Hawaiian picture- high volcanoes are classified as deserts, wing flies. receiving as little as 25 cm (10 in) of Archivist of the United States. DATES: This final rule is effective June rain annually. This topographic and [FR Doc. 06–4302 Filed 5–8–06; 8:45 am] 8, 2006. climatic regime has given rise to a rich BILLING CODE 7515–01–P ADDRESSES: Comments and materials diversity of plant communities, received, as well as supporting including coastal, lowland, montane, documentation used in the preparation subalpine, and alpine; dry, mesic, and DEPARTMENT OF THE INTERIOR of this final rule, will be available for wet; and herblands, grasslands, shrublands, forests, and mixed Fish and Wildlife Service public inspection, by appointment, during normal business hours at the communities (Gagne and Cuddihy 1990). These habitats and plant 50 CFR Part 17 Pacific Islands Fish and Wildlife Office, U.S. Fish and Wildlife Service, 300 Ala communities in turn support one of the RIN 1018 AG23 Moana Boulevard, Room 3–122, Box most unique arthropod faunas in the 50088, Honolulu, HI 96850.
    [Show full text]
  • Ecological and Economic Potential of Non-Timber Forest Products in Southeast Cameroon
    It's Not the Availability, But the Accessibility that Matters: Title Ecological and Economic Potential of Non-Timber Forest Products in Southeast Cameroon Author(s) HIRAI, Masaaki; YASUOKA, Hirokazu African study monographs. Supplementary issue (2020), 60: Citation 59-83 Issue Date 2020-03 URL https://doi.org/10.14989/250128 Copyright by The Center for African Area Studies, Kyoto Right University, March 1, 2020. Type Journal Article Textversion publisher Kyoto University African Study Monographs, Suppl. 60: 59–83, March 2020 IT’S NOT THE AVAILABILITY, BUT THE ACCESSIBILITY THAT MATTERS: ECOLOGICAL AND ECONOMIC POTENTIAL OF NON-TIMBER FOREST PRODUCTS IN SOUTHEAST CAMEROON HIRAI Masaaki The Center for African Area Studies, Kyoto University, Japan YASUOKA Hirokazu The Center for African Area Studies, Kyoto University, Japan ABSTRACT This study examined the ecological availability and economic potential of 10 non-timber forest product (NTFP) species. Irvingia gabonensis and Ricinodendron heudelotii produce large quantities of fruits and have higher economic values compared to other species. The number of nuts and kernels harvested and sold was a small percentage of the total annual production in the area. This is likely to be due to the low human population density and the difficulty in increasing the efficiency of gathering the nuts and kernels. Given the affluent ecological availability demonstrated in this study, even when innovations to improve the efficiency of harvesting are achieved, the trees produce more than 10 times the amount of fruits that can be gathered by all the people in the region, even with their maximum labor input. However, because of the forest zoning carried out by the government in the 1990s, the area that local people can harvest, without any concerns, is limited.
    [Show full text]
  • Botanical Survey in Thirteen Montane Forests of Bawean Island Nature Reserve, East Java Indonesia: Flora Diversity, Conservation Status, and Bioprospecting
    BIODIVERSITAS ISSN: 1412-033X Volume 17, Number 2, October 2016 E-ISSN: 2085-4722 Pages: 832-846 DOI: 10.13057/biodiv/d170261 Botanical survey in thirteen montane forests of Bawean Island Nature Reserve, East Java Indonesia: Flora diversity, conservation status, and bioprospecting TRIMANTO♥, LIA HAPSARI♥♥ Purwodadi Botanic Garden, Indonesian Institute of Sciences. Jl. Surabaya – Malang Km 65, Pasuruan 67163, East Java, Indonesia. Tel./Fax. +62-343- 615033, ♥email: [email protected], [email protected]; ♥♥ [email protected], [email protected] Manuscript received: 31 March 2016. Revision accepted: 19 October 2016. Abstract. Trimanto, Hapsari L. 2016. Botanical survey in thirteen montane forests of Bawean Island Nature Reserve, East Java Indonesia: Conservation status, bioprospecting and potential tourism. Biodiversitas 17: 832-846. Bawean Island which located between Borneo and Java islands possessed unique and distinctive abiotic and biotic resources. Botanical survey has been conducted in Bawean Island Nature Reserve. This paper reported the results of inventory study of plant bioresources in 13 montane forests of Bawean Island, discussed their conservation status, bioprospecting on some wild plant species and potential development subjected to some conservation areas. Inventory results in montane forests showed that it was registered about 432 plant species under 286 genera and 103 families; comprised of 14 growth habits in which tree plants were the most dominant with about 237 species. Conservation status evaluation showed that there are at least 33 species of plants included in IUCN list comprised of 30 species categorized as least concern and 3 species considered at higher risk of extinction i.e.
    [Show full text]
  • Functional Traits of Indigenous and Exotic Ground-Dwelling Arthropods Show Contrasting Responses to Land-Use Change in an Oceani
    Functional traits of indigenous and exotic ground-dwelling arthropods show contrasting responses to land-use change in an oceanic island, Terceira, Azores François Rigal, Pedro Cardoso, Jorge Lobo, Kostas Triantis, Robert Whittaker, Isabel Amorim, Paulo Borges To cite this version: François Rigal, Pedro Cardoso, Jorge Lobo, Kostas Triantis, Robert Whittaker, et al.. Functional traits of indigenous and exotic ground-dwelling arthropods show contrasting responses to land-use change in an oceanic island, Terceira, Azores. Diversity and Distributions, Wiley, 2018, 24, pp.36-47. 10.1111/ddi.12655. hal-01596143 HAL Id: hal-01596143 https://hal.archives-ouvertes.fr/hal-01596143 Submitted on 27 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Functional traits of indigenous and exotic ground-dwelling arthropods show 2 contrasting responses to land-use change in an oceanic island, Terceira, Azores 3 François Rigal1,2*, Pedro Cardoso1,3, Jorge M. Lobo4, Kostas A. Triantis1,5, Robert J. 4 Whittaker6,7, Isabel R. Amorim1 and Paulo A.V. Borges1 5 1cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean 6 Biodiversity Group and Universidade dos Açores - Departamento de Ciências e 7 Engenharia do Ambiente, 9700-042 Angra do Heroísmo, Açores, Portugal 8 2CNRS-Université de Pau et des Pays de l’Adour, Institut des Sciences Analytiques et 9 de Physico-Chimie pour l'Environnement et les Materiaux, MIRA, Environment and 10 Microbiology Team, UMR 5254, BP 1155, 64013 Pau Cedex, France 11 3Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
    [Show full text]
  • Diversity of the Tree Flora in Semenggoh Arboretum, Sarawak, Borneo
    Gardens’ Bulletin Singapore 64(1): 139–169. 2012 139 Diversity of the tree flora in Semenggoh Arboretum, Sarawak, Borneo C.Y. Ling1 and S. Julia2 Botanical Research Centre, Sarawak Forestry Corporation, Km 20, Jalan Puncak Borneo, 93250 Kuching, Sarawak [email protected] (corresponding author) [email protected] ABSTRACT. A 4-ha sample plot was established at the Arboretum, Semenggoh Forest Reserve to document tree species in this lowland mixed dipterocarp forest. The area assessed contains 2837 trees with diameter at breast height ≥ 10 cm belonging to 60 families, 160 genera and 541 species. Euphorbiaceae and Malvaceae (10 genera each) were the most diverse families at genus level and Dipterocarpaceae (61 species) is most diverse at species level. More than 25% of trees (720 individuals) were dipterocarps and contributed the highest basal area (cross-sectional area over-bark at breast height measured in m2) of 16.7 m2/ha. The most abundant species are Shorea multiflora (21 trees/ha) and Pouteria malaccensis (31 trees/ha) for dipterocarp and non-dipterocarp species, respectively. Semenggoh Arboretum has a rich and diverse flora and, being a natural primary forest in the middle of an increasingly developed area, Semenggoh is important as a genetic reservoir for threatened species (particularly the dipterocarps) and as an in-situ conservation site for Sarawak’s lowland mixed dipterocarp forest. Keywords. Borneo, Dipterocarpaceae, Sarawak, Semenggoh Arboretum, tree diversity Introduction Floristic composition studies or floristic analyses are a useful tool to understand the spatial pattern of plant composition and diversity. When combined with ecological, environmental, geological and historical variables, important information on mechanisms maintaining high levels of tree species diversity in tropical forest can be obtained (Slik et al.
    [Show full text]