Doctor of Philosophy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Functional-Morphological Study on the Attachment, Respiration and Feeding Mechanisms in Balitorinae (Balitoridae, Teleostei)
Faculty of Sciences Department of Biology Research group: Evolutionary Morphology of Vertebrates Academic year 2012-2013 A functional-morphological study on the attachment, respiration and feeding mechanisms in Balitorinae (Balitoridae, Teleostei) De Meyer Jens Supervisor: Dr. Tom Geerinckx Thesis submitted to obtain the degree of Tutor: Dr. Tom Geerinckx Master in Biology II © Faculty of Sciences – Evolutionary Morphology of Vertebrates Deze masterproef bevat vertrouwelijk informatie en vertrouwelijke onderzoeksresultaten die toebehoren aan de UGent. De inhoud van de masterproef mag onder geen enkele manier publiek gemaakt worden, noch geheel noch gedeeltelijk zonder de uitdrukkelijke schriftelijke voorafgaandelijke toestemming van de UGent vertegenwoordiger, in casu de promotor. Zo is het nemen van kopieën of het op eender welke wijze dupliceren van het eindwerk verboden, tenzij met schriftelijke toestemming. Het niet respecteren van de confidentiële aard van het eindwerk veroorzaakt onherstelbare schade aan de UGent. Ingeval een geschil zou ontstaan in het kader van deze verklaring, zijn de rechtbanken van het arrondissement Gent uitsluitend bevoegd daarvan kennis te nemen. All rights reserved. This thesis contains confidential information and confidential research results that are property to the UGent. The contents of this master thesis may under no circumstances be made public, nor complete or partial, without the explicit and preceding permission of the UGent representative, i.e. the supervisor. The thesis may under no circumstances be copied or duplicated in any form, unless permission granted in written form. Any violation of the confidential nature of this thesis may impose irreparable damage to the UGent. In case of a dispute that may arise within the context of this declaration, the Judicial Court of© All rights reserved. -
Evolution and Phylogenetic Application of the MC1R Gene in the Cobitoidea (Teleostei: Cypriniformes)
ZOOLOGICAL RESEARCH Evolution and phylogenetic application of the MC1R gene in the Cobitoidea (Teleostei: Cypriniformes) Qiong-Ying TANG1,*, Li-Xia SHI1,2, Fei LIU1, Dan YU1, Huan-Zhang LIU1,* 1 The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China 2 University of Chinese Academy of Sciences, Beijing 100049, China ABSTRACT INTRODUCTION Fish of the superfamily Cobitoidea sensu stricto (namely loaches) exhibit extremely high diversity of The superfamily Cobitoidea is a group of small- to medium- color patterns, but so far little is known about their sized benthic fish, composed of approximately 28% of species evolutionary mechanism. Melanocortin 1 receptor of the order Cypriniformes, which is the largest group of gene (MC1R) plays an important role during the freshwater fish in the world (Nelson et al., 2016). Depending on synthesis of melanin and formation of animal body different authors, Cobitoidea includes variable families. Bohlen color patterns. In this study, we amplified and sequenced the partial MC1R gene for 44 loach & Šlechtová (2009) and Chen et al. (2009) congruently individuals representing 31 species of four families. recognized the genus Ellopostoma as a distinct new family Phylogenetic analyses yielded a topology congruent Ellopostomatidae, and proposed that Cobitoidea is composed with previous studies using multiple nuclear loci, of eight families (Catostomidae, Gyrinocheilidae, Botiidae, showing that each of the four families was Vaillantellidae, Cobitidae, Ellopostomatidae, Nemacheilidae and monophyletic with sister relationships of Botiidae+ Balitoridae). Kottelat (2012) raised genera Serpenticobitis and (Cobitidae+(Balitoridae+Nemacheilidae)). Gene Barbucca to family rank, and established Serpenticobitidae and evolutionary analyses indicated that MC1R in Barbuccidae. -
2201 Innal Et Al Four Aphanius Species Endemic Turkey.Indd
ACTA ZOOLOGICA BULGARICA Aquatic Ecology Acta zool. bulg., 71 (2), 2019: 211-217 Research Article Age Structure and Length-Weight Relationship for Four Species of Aphanius Nardo, 1827 (Actinopterygii: Aphaniidae) Endemic to the Lake District, Central Anatolia, Turkey Deniz Innal1*, Salim Serkan Güçlü2, Mehmet Can Ünal1, Buğrahan Doğangil1 & Daniela Giannetto3 1Department of Biology, Mehmet Akif Ersoy University, Burdur, Turkey 2Eğirdir Fisheries Faculty, Isparta University of Applied Sciences, Isparta, Turkey 3Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey Abstract: Age structure and length-weight relationship are examined for four species of the genus Aphanius Nardo, 1827 endemic to the Lake District, Central Anatolia, Turkey: A. iconii Akşiray, 1948, A. saldae (Aksiray, 1955), A. sureyanus (Neu, 1937) and A. transgrediens (Ermin, 1946). Specimens were sampled by a shore seine net from Lake Eğirdir (A. iconii), Lake Salda (A. saldae), Lake Burdur (A. sureyanus) and Lake Acıgöl (A. transgrediens) during 2014-2015. A total of 1246 specimens are examined (A. iconii: n=206; A. saldae: n=525; A. sureyanus: n= 350; A. transgrediens: n=165). The maximum age for A. iconii, A. saldae and A. sureyanus was 4 years and for A. transgrediens was 5 years. The values of the b parameter of the length- weight equations for A.transgrediens, A. saldae, A. sureyanus and A. iconii populations are 3.027, 2.587, 3.221 and 2.713, respectively. A new maximum total length of 6.1 cm for A. transgrediens is reported. Key words: Anatolia; endemic species; killifish; Aphaniidae; Cyprinodontidae; length-weight relationship; age. Introduction The genus Aphanius Nardo, 1827 is native to North Aphanius iconii Akşiray, 1948, A. -
Review of the Organismal Biology of Hill Stream Loaches
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2019 doi:10.20944/preprints201911.0322.v1 1 Review of the organismal biology of hill stream loaches. 2 Jay Willis (corresponding author), Oxford University , Department of Zoology 3 Theresa Burt De Perera, Oxford University , Department of Zoology 4 Adrian L. R. Thomas, Oxford University , Department of Zoology 5 6 Correspondence to be sent to: 7 Dr Jay Willis ([email protected]) 8 1 © 2019 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2019 doi:10.20944/preprints201911.0322.v1 9 10 Abstract 11 Hill stream loaches are a group of fish that inhabit fast flowing shallow freshwater. The family has 12 radiated over Asia. For some species their range is limited to single catchments; they provide an ex- 13 cellent example of biogeographical speciation on multiple scales. Hill stream loaches have a range of 14 adaptations which help them exploit environments where competitors and predators would be 15 washed away. They have streamlined bodies and keeled scales reminiscent of Mako sharks and po- 16 tentially many other as yet undiscovered drag reducing features. They adhere to rocks, crawl over 17 shallow films of water, glide over hard surfaces using ground effects and launch into currents to at- 18 tack prey or evade predation. They offer a test of modern approaches to organismal biology and a 19 broad range of biomimetic potential. In this paper we analyse what behaviour is associated with 20 their physical adaptations and how this might relate to their evolution and radiation. -
Karyological Analysis of Some Species of Aphanius (Osteichthyes: Cyprinodontidae) from Anatolia
Pakistan J. Zool., vol. 46(5), pp. 1271-1275, 2014. Karyological Analysis of Some Species of Aphanius (Osteichthyes: Cyprinodontidae) From Anatolia Muhammet Gaffaroğlu1, Muradiye Karasu Ayata1*, Sevgi Ünal2 and Mustafa Özkan1 1Department of Biology, Faculty of Arts and Sciences, Ahi Evran University, 40100 Kırşehir, Turkey 2Department of Biology, Faculty of Science, Gazi University, 06100 Ankara, Turkey Abstract.- In this study, chromosomal studies were carried out on four species of the genus Aphanius (Osteichthyes, Cyprinodontidae). Metaphase chromosomes were obtained from kidney cells. The diploid chromosome numbers of Aphanius anatoliae, A. danfordii, A. splendens and A. villwocki were 2n=48, and consisted of three pairs of submetacentric and 21 pairs of subtelocentric chromosomes. The arm number (NF) was 54. Constitutive heterochromatin regions were observed on the centromeres of chromosomes in all four species by using C-banding. Nucleolus organizer regions (NOR) were observed on the short arms of two pairs of chromosomes. It is believed that the data obtained will make a contribution to fish cytogenetics. Key words: Aphanius, chromosome, C-banding, NOR INTRODUCTION There has been no a detailed study on the cytogenetic features of these species although only haploid chromosome number has been reported in The family Cyprinodontidae is distributed A. anatoliae (Öztan, 1954; Wildekamp, 1993). throughout the United States, Africa, Southern The purpose of this study is to reveal the Europe and Asia. It is represented by a genus in our chromosomal features (with Giemsa, Ag-NOR country (Geldiay and Balık, 2007). The genus staining and C-banding) of four species (A. Aphanius Nardo, 1827 has 10 species in Anatolia. -
An Updated List of Taxonomy, Distribution and Conservation Status (Teleostei: Cyprinodontoidea)
Iran. J. Ichthyol. (March 2018), 5(1): 1–29 Received: January 5, 2018 © 2018 Iranian Society of Ichthyology Accepted: March 1, 2018 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v5i1.267 http://www.ijichthyol.org Review Article Cyprinodontid fishes of the world: an updated list of taxonomy, distribution and conservation status (Teleostei: Cyprinodontoidea) Hamid Reza ESMAEILI1*, Tayebeh ASRAR1, Ali GHOLAMIFARD2 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran. 2Department of Biology, Faculty of Sciences, Lorestan University, 6815144316 Khorramabad, Iran. Email: [email protected] Abstract: This checklist aims to list all the reported cyprinodontid fishes (superfamily Cyprinodontoidea/pupfishes) of the world. It lists 141 species in 8 genera and 4 families. The most diverse family is Cyprinodontidae (54 species, 38%), followed by Orestiidae (45 species, 32%), Aphaniidae (39 species, 28%), and Cubanichthyidae (3 species, 2%). Among 141 listed species, 73 (51.8%) species are Not Evaluated (NE), 15 (10.6%) Least Concern (LC), 9 (6.4%) Vulnerable (VU), 3 (2.1%) Data Deficient (DD), 11 (7.8%) Critically Endangered (CR), 4 (2.8%) Near Threatened (NT), 18 (12.8%) Endangered (EN), 3 (2.1%) Extinct in the Wild (EW) and 5 (3.5%) Extinct of the Red List of IUCN. They inhabit in the fresh, brackish and marine waters of the United States, Middle America, the West Indies, parts of northern South America, North Africa, the Mediterranean Anatolian region, coastal areas of the Persian Gulf and Makran Sea (Oman Sea), the northern Arabian Sea east to Gujarat in India, and some endorheic basins of Iran, Pakistan and the Arabian Peninsula. -
Phylogenetic Position of the Genus Bibarba As Revealed from Molecular Genetic Data (Teleostei: Cobitidae)
297 Ichthyol. Explor. Freshwaters, Vol. 29, No. 4, pp. 297-304, 5 figs., 1 tab., February 2020 © 2020 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 LSID: http://zoobank.org/urn:lsid:zoobank.org:pub:5380FE17-1144-4AD6-A3A1-5762553CC37F DOI: http://doi.org/10.23788/IEF-1099 Published 15 May 2019 Phylogenetic position of the genus Bibarba as revealed from molecular genetic data (Teleostei: Cobitidae) Jörg Bohlen*, Fan Li** and Vendula Šlechtová* Phylogenetically, the family Cobitidae consists of an assemblage of lineages that are referred to as ‘southern line- ages’, out of which stems a monophyletic bunch of lineages that is referred to as ‘Northern clade’. Up to now, 17 of the 21 valid genera have been included into genetic phylogenies. The present phylogenetic study analyses the only two known species of Bibarba using nuclear and mitochondrial DNA sequences. Both species together formed a monophyletic lineage that is sister to the Northern clade of Cobitidae, but well-separated from the four other major lineages within the Northern clade. The results support the validity of the genus and show it to represent a major lineage on its own. The morphological synapomorphy of the northern clade is in the sexual dimorphism, with males bearing an ossified structure (lamina circularis or scale of Canestrini) on the second branched pectoral-fin ray in males. Bibarba was reported to have such structure on the third instead of second fin ray, but our observations reveal the presence of two lamina circularis, one on the second and one on the third fin ray (character doubling). -
Inferring the Tree of Life of the Order Cypriniformes, the Earth's Most
Journal of Systematics and Evolution 46 (3): 424–438 (2008) doi: 10.3724/SP.J.1002.2008.08062 (formerly Acta Phytotaxonomica Sinica) http://www.plantsystematics.com Inferring the Tree of Life of the order Cypriniformes, the earth’s most diverse clade of freshwater fishes: Implications of varied taxon and character sampling 1Richard L. MAYDEN* 1Kevin L. TANG 1Robert M. WOOD 1Wei-Jen CHEN 1Mary K. AGNEW 1Kevin W. CONWAY 1Lei YANG 2Andrew M. SIMONS 3Henry L. BART 4Phillip M. HARRIS 5Junbing LI 5Xuzhen WANG 6Kenji SAITOH 5Shunping HE 5Huanzhang LIU 5Yiyu CHEN 7Mutsumi NISHIDA 8Masaki MIYA 1(Department of Biology, Saint Louis University, St. Louis, MO 63103, USA) 2(Department of Fisheries, Wildlife, and Conservation Biology, Bell Museum of Natural History, University of Minnesota, St. Paul, MN 55108, USA) 3(Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA) 4(Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA) 5(Laboratory of Fish Phylogenetics and Biogeography, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China) 6(Tohoku National Fisheries Research Institute, Fisheries Research Agency, Miyagi 985-0001, Japan) 7(Ocean Research Institute, University of Tokyo, Tokyo 164-8639, Japan) 8(Department of Zoology, Natural History Museum & Institute, Chiba 260-8682, Japan) Abstract The phylogenetic relationships of species are fundamental to any biological investigation, including all evolutionary studies. Accurate inferences of sister group relationships provide the researcher with an historical framework within which the attributes or geographic origin of species (or supraspecific groups) evolved. Taken out of this phylogenetic context, interpretations of evolutionary processes or origins, geographic distributions, or speciation rates and mechanisms, are subject to nothing less than a biological experiment without controls. -
Odete Marinho Gonçalves the Origin of Stomach
ODETE MARINHO GONÇALVES THE ORIGIN OF STOMACH VERTEBRATE AND THE PARADOX OF LOSS Tese de Candidatura ao grau de Doutor em Ciências Biomédicas submetida ao Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto. Orientador – Doutor Jonathan M. Wilson Categoria – Professor auxiliar/Investigador Afiliação – Universidade de Wilfrid Laurier, Waterloo, Canadá/ CIIMAR- Centro Interdisciplinar de Investigação marinha e ambiental. Coorientador – Doutor L. Filipe C. Castro Categoria – Investigador auxiliar Afiliação – CIIMAR- Centro Interdisciplinar de Investigação do mar e ambiente. Coorientador – Professor João Coimbra Categoria – Professor emérito/ Investigador Afiliação – ICBAS- Instituto de Ciências Biomédicas Abel Salazar/ CIIMAR- Centro Interdisciplinar de Investigação marinha e ambiental. This work was conducted in laboratory of Molecular Physiology (MP) at CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental. The animals were maintained at BOGA- Biotério de Organismos Aquáticos. The Chapter 5 of this thesis was partially developed at Station Biologique de Roscoff (France) in laboratory of Dr. Sylvie Mazan (2013). This Chapter was done in collaboration with Dr. Renata Freitas from IBMC. Some work was also developed in Laboratory of Professor Eduardo Rocha at ICBAS- Instituto de Ciências Biomédicas Abel Salazar. This work was funded by FCT scholarship with reference: SFRH/ BD/ 79821/ 2011 “The theories exposed in this work are the exclusive responsibility of the author” AKNOWLEDGMENTS I am grateful to my supervisor Dr. Jonathan Wilson and my co-supervisor Dr. Filipe Castro. This fascinating work begun almost one decade ago (2007) with my master that allow we work together until now. Thanks to Professor João Coimbra to be so kind and to show interested in my work. -
Freshwater Fishes of Turkey: a Revised and Updated Annotated Checklist
BIHAREAN BIOLOGIST 9 (2): 141-157 ©Biharean Biologist, Oradea, Romania, 2015 Article No.: 151306 http://biozoojournals.ro/bihbiol/index.html Freshwater fishes of Turkey: a revised and updated annotated checklist Erdoğan ÇIÇEK1,*, Sevil Sungur BIRECIKLIGIL1 and Ronald FRICKE2 1. Nevşehir Hacı Bektaş Veli Üniversitesi, Faculty of Art and Sciences, Department of Biology, 50300, Nevşehir, Turkey. E-mail: [email protected]; [email protected] 2. Im Ramstal 76, 97922 Lauda-Königshofen, Germany, and Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany. E-Mail: [email protected] *Corresponding author, E. Çiçek, E-mail: [email protected] Received: 24. August 2015 / Accepted: 16. October 2015 / Available online: 20. November 2015 / Printed: December 2015 Abstract. The current status of the inland waters ichthyofauna of Turkey is revised, and an updated checklist of the freshwater fishes is presented. A total of 368 fish species live in the inland waters of Turkey. Among these, 3 species are globally extinct, 5 species are extinct in Turkey, 28 species are non-native and 153 species are considered as endemic to Turkey. We recognise pronounced species richness and a high degree of endemism of the Turkish ichthyofauna (41.58%). Orders with the largest numbers of species in the ichthyofauna of Turkey are the Cypriniformes 247 species), Perciformes (43 species), Salmoniformes (21 species), Cyprinodontiformes (15 species), Siluriformes (10 species), Acipenseriformes (8 species) and Clupeiformes (8 species). At the family level, the Cyprinidae has the greatest number of species (188 species; 51.1% of the total species), followed by the Nemacheilidae (39), Salmonidae (21 species), Cobitidae (20 species), Gobiidae (18 species) and Cyprinodontidea (14 species). -
Evolutionary Trends of the Pharyngeal Dentition in Cypriniformes (Actinopterygii: Ostariophysi)
Evolutionary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi). Emmanuel Pasco-Viel, Cyril Charles, Pascale Chevret, Marie Semon, Paul Tafforeau, Laurent Viriot, Vincent Laudet To cite this version: Emmanuel Pasco-Viel, Cyril Charles, Pascale Chevret, Marie Semon, Paul Tafforeau, et al.. Evolution- ary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi).. PLoS ONE, Public Library of Science, 2010, 5 (6), pp.e11293. 10.1371/journal.pone.0011293. hal-00591939 HAL Id: hal-00591939 https://hal.archives-ouvertes.fr/hal-00591939 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Evolutionary Trends of the Pharyngeal Dentition in Cypriniformes (Actinopterygii: Ostariophysi) Emmanuel Pasco-Viel1, Cyril Charles3¤, Pascale Chevret2, Marie Semon2, Paul Tafforeau4, Laurent Viriot1,3*., Vincent Laudet2*. 1 Evo-devo of Vertebrate Dentition, Institut de Ge´nomique Fonctionnelle de Lyon, Universite´ de Lyon, CNRS, INRA, Ecole Normale Supe´rieure de Lyon, Lyon, France, 2 Molecular Zoology, Institut de Ge´nomique Fonctionnelle de Lyon, Universite´ de Lyon, CNRS, INRA, Ecole Normale Supe´rieure de Lyon, Lyon, France, 3 iPHEP, CNRS UMR 6046, Universite´ de Poitiers, Poitiers, France, 4 European Synchrotron Radiation Facility, Grenoble, France Abstract Background: The fish order Cypriniformes is one of the most diverse ray-finned fish groups in the world with more than 3000 recognized species. -
Fishes of the Xe Kong Drainage in Laos, Especially from the Xe Kaman
1 Co-Management of freshwater biodiversity in the Sekong Basin Fishes of the Xe Kong drainage in Laos, especially from the Xe Kaman October 2011 Maurice Kottelat Route de la Baroche 12 2952 Cornol Switzerland [email protected] 2 Summary The fishes of the Xe Kaman drainage in Laos have been surveyed between 15 and 24 May 2011. Fourty-five fish species were observed, bringing to 175 the number of species recorded from the Xe Kong drainage in Laos, 9 of them new records for the drainage. Twenty-five species (14 %) have been observed from no other drainage and are potentially endemic to the Xe Kong drainage. Five species observed during the survey are new to science (unnamed); they belong to the genera Scaphiodonichthys, Annamia, Sewellia and Schistura (2 species). Three of them have been discovered during the survey, the others although still unnamed were already known for some time, under an erroneous name. In the Xekong drainage, a total of 19 (11 %) fish species are still unnamed or their identity is not yet cleared and they are potentially also new to science. The survey focused on Dakchung district. Eleven species were collected on Dakchung plateau and 3 are apparently new to science (and thus 27 % of the fish fauna of the plateau is endemic there). Most of the endemic species (and all the new species discovered by the survey) are from rapids and other high gradient habitats. This reflects the limited distribution range of rheophilic species, but may also partly result from a sampling bias. Acknowledgements The author wishes to thank the WWF – Co-management of Freshwater Biodiversity in the Sekong Basin Project funded by the Critical Ecosystem Partnership FUND (CEPF) for supporting and organising this survey, especially Dr Victor Cowling who originally developed the survey activity and Mr.