Sacred Turtles in Mayan Art and Iconography

Total Page:16

File Type:pdf, Size:1020Kb

Sacred Turtles in Mayan Art and Iconography Sacred Animals and Exotic Tropical Plants by Dr. Nicholas M. Hellmuth Sacred turtles in Mayan art and iconography new FLAAR Report* now lists all picted in Mayan art as one of the housings of the animals that were sacred or of God N (also called Pauahtun). Normally Aotherwise considered as special by God N is in a conch shell or snail shell, but the Classic Maya. !ere are animals that are sometimes he can be in a turtle carapace. related to the sky (constellations, stars, plan- Turtles are found in the various Mayan ets), the forests and those that are associated codices and in the murals of Bonampak. with rivers, lakes, swamps and the oceans. Any good book on Mayan archaeoastrono- !ese waters are conflated by the cosmology my will discuss the turtles (and peccary) in of the Preclassic and Classic Maya into the the murals and codices. Turtles are decora- underwaterworld. tion for a typical Puuc structure at Uxmal On the surface of this underwaterworld you in the Yucatán. Turtle symbolism is deeply get the major interaction of exotic creatures. embedded in Classic Maya beliefs. Crocodiles, fish, sharks, turtles—both sea tur- Dr. Nicholas M. Hellmuth is director of FLAAR tles and freshwater turtles—are often depicted. Reports (Foundation for Latin American Anthro- It has long been recognized that turtle pological Research). To view the list of sacred ani- mals visit www.maya-archaeology.org or contact carapaces were used as musical instruments. Dr. Hellmuth at frontdesk@flaar.org !ese instruments are pictured in murals * See the complete list of sacred animals at and on pottery vases, especially in the Late www.maya-archaeology.org Classic period (AD 600-800). Turtles that you can find in the rivers, lakes and mangrove swamps of Guatemala, southern Mexico or Belize include: Central American !e turtle carapace scene shows a youth- river turtle tortuga blanca, Dermatemys mawii; Furrowed wood ful deity figure splitting out of a sea shell on turtle, rhinoclemmys areolata; Mexican snapping turtle, Chelydra serpentina; Narrow-bridged musk turtle, Claudius angustatus; a plate. !is resurrection from a giant turtle Northern (Mexican) giant musk turtle, Staurotypus triporcatus, carapace is one of the truly important mo- three parallel ridges along back; Red-eared terrapin, Mesoamerican ments in Mayan cosmology. slider, jicotea, Trachemys scripta; Scorpion mud turtle, Kinosternon scorpioides; Tabasco mud turtle, Kinosternon acutum; White- !e carapaces of turtles are often de- lipped mud turtle, Kinosternon leucostomum; Creaser’s mud turtle, Kinosternon creaseri; Yucatan box turtle, Terrapene carolina. 100 .
Recommended publications
  • Morphological Study of Epididymides in the Scorpion Mud Turtle in Natural Habitat (Kinosternon Scorpioides – Linnaeus, 1976)
    Biotemas, 26 (2): 153-162, junho de 2013 doi: 10.5007/2175-7925.2013v26n2p153153 ISSNe 2175-7925 Morphological study of epididymides in the scorpion mud turtle in natural habitat (Kinosternon scorpioides – Linnaeus, 1976) Diego C. Viana 1 Leandro A. Rui 1 Maria A. Miglino ¹ Lianne P. F. Araujo 2 Antonia S. Oliveira 2 Alana L. Sousa 2* 1 Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo Avenida Prof. Dr. Orlando Marques de Paiva, 87, CEP 05508-270, Sao Paulo – SP, Brazil. 2 Department of Clinical Veterinary, School of Veterinary Medicine and Animal Science State University of Maranhao, Cidade Universitaria Paulo VI, CEP 65054-970, Sao Luis – MA, Brazil. * Corresponding author [email protected] Submetido em 08/06/2012 Aceito para publicação em 14/01/2013 Resumo Estudo morfológico dos epidídimos de jurará em habitat natural (Kinosternon scorpioides – Linnaeus, 1976). No estado do Maranhão, é encontrado o quelônio de água doce Kinosternon scorpioides, conhecido como jurará, que possui valor social, econômico e ambiental. Vinte jurarás adultos foram coletados nos meses de março, junho, setembro e dezembro, correspondendo aos dois períodos do ano: as estações chuvosa e seca. De cada animal colheram-se os epidídimos para averiguar a existência de sazonalidade reprodutiva. Os órgãos foram avaliados por microscopia de luz e eletrônica de varredura e de transmissão e analisados à altura do epitélio epididimário e os diâmetros tubular e luminal. Os epidídimos estavam divididos em rede testis, ducto eferente e ducto epididimário. Na estação chuvosa, eles apresentaram, epitélio pseudoestratificado estereociliado; na estação seca, eles se caracterizaram por células simples, cúbicas e não ciliadas.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • The Staurotypus Turtles and Aves Share the Same Origin of Sex Chromosomes but Evolved Different Types of Heterogametic Sex Determination
    The Staurotypus Turtles and Aves Share the Same Origin of Sex Chromosomes but Evolved Different Types of Heterogametic Sex Determination Taiki Kawagoshi1, Yoshinobu Uno1, Chizuko Nishida2, Yoichi Matsuda1,3* 1 Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan, 2 Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan, 3 Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan Abstract Reptiles have a wide diversity of sex-determining mechanisms and types of sex chromosomes. Turtles exhibit temperature- dependent sex determination and genotypic sex determination, with male heterogametic (XX/XY) and female heterogametic (ZZ/ZW) sex chromosomes. Identification of sex chromosomes in many turtle species and their comparative genomic analysis are of great significance to understand the evolutionary processes of sex determination and sex chromosome differentiation in Testudines. The Mexican giant musk turtle (Staurotypus triporcatus, Kinosternidae, Testudines) and the giant musk turtle (Staurotypus salvinii) have heteromorphic XY sex chromosomes with a low degree of morphological differentiation; however, their origin and linkage group are still unknown. Cross-species chromosome painting with chromosome-specific DNA from Chinese soft-shelled turtle (Pelodiscus sinensis) revealed that the X and Y chromosomes of S. triporcatus have homology with P. sinensis chromosome 6, which corresponds to the chicken Z chromosome. We cloned cDNA fragments of S. triporcatus homologs of 16 chicken Z-linked genes and mapped them to S. triporcatus and S. salvinii chromosomes using fluorescence in situ hybridization. Sixteen genes were localized to the X and Y long arms in the same order in both species.
    [Show full text]
  • Invasion of the Turtles? Wageningen Approach
    Alterra is part of the international expertise organisation Wageningen UR (University & Research centre). Our mission is ‘To explore the potential of nature to improve the quality of life’. Within Wageningen UR, nine research institutes – both specialised and applied – have joined forces with Wageningen University and Van Hall Larenstein University of Applied Sciences to help answer the most important questions in the domain of healthy food and living environment. With approximately 40 locations (in the Netherlands, Brazil and China), 6,500 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Invasion of the turtles? Wageningen Approach. Alterra is the research institute for our green living environment. We offer a combination of practical and scientific Exotic turtles in the Netherlands: a risk assessment research in a multitude of disciplines related to the green world around us and the sustainable use of our living environment, such as flora and fauna, soil, water, the environment, geo-information and remote sensing, landscape and spatial planning, man and society. Alterra report 2186 ISSN 1566-7197 More information: www.alterra.wur.nl/uk R.J.F. Bugter, F.G.W.A. Ottburg, I. Roessink, H.A.H. Jansman, E.A. van der Grift and A.J. Griffioen Invasion of the turtles? Commissioned by the Invasive Alien Species Team of the Food and Consumer Product Safety Authority Invasion of the turtles? Exotic turtles in the Netherlands: a risk assessment R.J.F.
    [Show full text]
  • New Distributional Records of Freshwater Turtles
    HTTPS://JOURNALS.KU.EDU/REPTILESANDAMPHIBIANSTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSREPTILES • VOL &15, AMPHIBIANS NO 4 • DEC 2008 • 28(1):146–151189 • APR 2021 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS NewFEATURE Distributional ARTICLES Records of Freshwater . Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: TurtlesOn the Roadfrom to Understanding West-central the Ecology and Conservation of the Midwest’s GiantVeracruz, Serpent ...................... Joshua M. KapferMexico 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: A Hypothetical Excursion ............................................................................................................................Robert W. Henderson 198 Víctor Vásquez-Cruz1, Erasmo Cazares-Hernández2, Arleth Reynoso-Martínez1, Alfonso Kelly-Hernández1, RESEARCH ARTICLESAxel Fuentes-Moreno3, and Felipe A. Lara-Hernández1 . 1PIMVS HerpetarioThe Texas Palancoatl,Horned Lizard Avenida in Central 19 andnúmero Western 5525, Texas Colonia ....................... Nueva Emily Esperanza, Henry, JasonCórdoba, Brewer, Veracruz, Krista Mougey, Mexico and ([email protected] Perry 204 ) 2Instituto Tecnológico. The KnightSuperior Anole de Zongolica.(Anolis equestris Colección) in Florida Científica ITSZ. Km 4, Carretera a la Compañía S/N, Tepetitlanapa, Zongolica, Veracruz. México 3Colegio de Postgraduados, ............................................. Campus Montecillo.Brian J. Carretera Camposano, México-Texcoco Kenneth
    [Show full text]
  • Biologia, Allevamento E Riproduzione in Cattività Di Kinosternon Scorpioides Scorpioides (Linnaeus, 1766)
    Schildkröten im Fokus Online, Bergheim 2012: 4: 1–12 Andrea Luison Biologia, allevamento e riproduzione in cattività di Kinosternon scorpioides scorpioides (LINNAEUS, 1766) Testi e foto Andrea Luison, Latina, Italia Introduzione esemplari giovani. È una specie abba­ molti appassionati di trovare in com­ Kinosternon scorpioides scorpioides è stanza resistente alla vita in cattività e mercio esemplari giovani, e riducen­ stata descritta da Linnaeus nel 1766. viste le dimensioni abbastanza ridot­ do il rischio di acquistare esemplari di In base alle informazioni in mio pos­ te, è adatta all’allevamento in acqua­ cattura, spesso stressati e debilitati. sesso ogni anno vengono importati in rio. Fortunatamente, negli ultimi È una specie di libera vendita, Europa migliaia di esemplari adulti di anni, ci sono state diverse riproduzio­ che non necessità di documentazione K. s. scorpioides e solo raramente ni in cattività, permettendo cosi a CITES. Fig. 1 Kinosternon scorpioides scorpioides occupa un vasto areale in Sudamerica. Kinosternon scorpioides scorpioides, the scorpion mud turtle lives in huge parts of South America. SCHILDKRÖTEN IM FOKUS ONLINE 4, 2012 1 Andrea Luison Biologia, allevamento e riproduzione in cattività di Kinosternon scorpioides scorpioides Classificazione (Iverson 1992, Cabrera & Colan­ K. acutum, K. alamosae, K. angusti- Kinosternon scorpioides scorpioides tonio 1997, Schilde 2001, Van Dijk pons, K. arizonense, K. baurii, K. chi- appartiene alla famiglia dei et al 2011): Claudius, Kinosternon, malhuaca, K. creaseri, K. dunni, K. Kinosternidae, che attualmente com­ Staurotypus, e Sternotherus. Il genere durangoense, K. flavescens, K. herre- prende quattro generi differenti Kinosternon è formato da 18 specie: rai, K. hirtipes (6 sottospecie), K. inte- Fig.
    [Show full text]
  • Middle Preclassic Landscapes and Aquatic Resource Use at Cuello, Belize
    Bull. Fla. Mus. Nat. Hist. (2003)44(1): 35-42 35 MIDDLE PRECLASSIC LANDSCAPES AND AQUATIC RESOURCE USE AT CUELLO, BELIZE Arlene Fradkinl and H. Sorayya Carf The aquatic animals identified among the vertebrate faunal remains recovered in the 1990-1993 excavations at the Maya site of Cuello, Belize, are examined. The detected patterns of aquatic resource use are comparable to those described by Elizabeth Wing and Sylvia Scudder in their faunal analysis from previous excavations. These zooarchaeological findings, combined with paleoecological data, suggest that the people of Cuello focused their aquatic resource procurement efforts primarily on local wetland habitats, which may have formed part of a managed landscape surrounding their community in the Middle Preclassic period. Key words: aquatic resources,.Belize, Cuello, Maya, Middle Preclassic, zooarchaeology The archaeological site of Cuello in northern Belize (Fig. the small mud turtle (Kinosternon spp.) throughout the 1) has yielded abundant information on many aspects of Middle Preclassic (p. 85). ancient Maya life. Extensive excavations conducted over When Hammond et al. (1995) reopened excavations the past three decades, under the direction of Norman atCuello in 1990-1993, they focused primarily on Middle Hammond, have revealed a long occupational record, Preclassic contexts, thus expanding the faunal database. spanning the earliest Middle Preclassic through the Early When we were given the opportunity to study this new Classic (ca. 1200 B.C.-A.D. 400). Cuello is especially material, one of our primary objectives was to examine important for having a substantial amount of material the aquatic animal remains in light of the previous findings. cultural remains dating to the Middle Preclassic, a time We were particularly interested in determining the period poorly represented at most Maya sites.
    [Show full text]
  • Taxonomy and Phylogeny of the Higher Categories of Cryptodiran Turtles Based on a Cladistic Analysis of Chromosomal Data
    Copein, 1983(4), pp. 918-932 Taxonomy and Phylogeny of the Higher Categories of Cryptodiran Turtles Based on a Cladistic Analysis of Chromosomal Data John W. Bickham and John L. Carr Karyological data are available for 55% of all cryptodiran turtle species including members of all but one family. Cladistic analysis of these data, as well as con sideration of other taxonomic studies, lead us to propose a formal classification and phylogeny not greatly different from that suggested by other workers. We recognize 11 families and three superfamilies. The platysternid and staurotypid turtles are recognized at the familial level. Patterns and models of karyotypic evolution in turtles are reviewed and discussed. OVER the past 10 years knowledge of turtle and the relationship between the shell and pel karyology has grown to such an extent vic girdle. In the cryptodires ("hidden-necked" that the order Testudines is one of the better turtles), the neck is withdrawn into the body in known groups of lower vertebrates (Bickham, a vertical plane and the pelvis is not fused to 1983). Nondifferentially stained karyotypes are either the plastron or carapace, whereas in the known for 55% of cryptodiran turtle species pleurodires ("side-necked" turtles) the pelvic and banded karyotypes for approximately 25% girdle is fused to both the plastron and carapace (Bickham, 1981). From this body of knowledge, and the neck is folded back against the body in as well as a consideration of the morphological a horizontal plane. Cope's suborder Athecae variation in the order, we herein present a gen includes only the Dermochelyidae and is no eral review of the cryptodiran karyological lit longer recognized.
    [Show full text]
  • Phylogenetic Relationships Among Extinct and Extant Turtles: the Position of Pleurodira and the Effects of the Fossils on Rooting Crown-Group Turtles
    Contributions to Zoology, 79 (3) 93-106 (2010) Phylogenetic relationships among extinct and extant turtles: the position of Pleurodira and the effects of the fossils on rooting crown-group turtles Juliana Sterli1, 2 1 CONICET - Museo Paleontológico Egidio Feruglio, Av. Fontana 140, 9100 Trelew, Chubut, Argentina 2 E-mail: [email protected] Key words: molecules, morphology, phylogeny, Testudinata, Testudines Abstract Taxonomic nomenclature ........................................................ 94 Taxonomic sampling ................................................................ 94 The origin and evolution of the crown-group of turtles (Crypto- Character sampling ................................................................. 95 dira + Pleurodira) is one of the most interesting topics in turtle Phylogenetic analyses ............................................................. 95 evolution, second perhaps only to the phylogenetic position of Results ............................................................................................... 97 turtles among amniotes. The present contribution focuses on Morphological analysis with extinct taxa .......................... 97 the former problem, exploring the phylogenetic relationships Molecular analyses .................................................................. 97 of extant and extinct turtles based on the most comprehensive Morphological and molecular analysis excluding phylogenetic dataset of morphological and molecular data ana- extinct taxa ................................................................................
    [Show full text]
  • Spermiogenesis in Scorpion Mud Turtle, Kinosternon Scorpioides*
    Spermiogenesis in scorpion mud turtle, Kinosternon scorpioides* Diego Carvalho Viana¹+, Amilton Cesar dos Santos¹ and Antônio Chaves de Assis Neto¹ ABSTRACT. Viana D.C., Santos A.C. & Assis Neto A.C. Spermiogenesis in scorpion mud turtle, Kinosternon scorpioide. [Espermatogênese em tartaru- ga da lama Kinosternon scorpioides.] Revista Brasileira de Medicina Veterinária, 37(4):389-396, 2015. Department of Surgery, Sector Anatomy, School of Vet- erinary Medicine and Animal Science, University of Sao Paulo, Avenida Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP 05508-270, Brazil. E-mail: [email protected] The spermatogenesis events have been commonly studied in mammals. On the other hands, there are few studies in reptiles, especially in turtles. In this group there are unique structural variations for sperm formation, determined by reproductive adaptive divergence. The aim of present study was to dee- pen the understanding about the subcellular process of the spermiogenesis by transmission electron micrographic analysis in turtles Kinosternon scorpioides. The result showed the cytoplasmatic elongation of the spermatid in order to removing the content excess and allows the meeting between the spermatozoa and ova. Such morphological aspect could be necessarily to move efficiently in direction to the ova in female reproductive tract. In addition mitochondrial structure and shape was poorly defined with ridges and dense nuclei surroun- ded by concentric lipid bilayers. KEY WORDS. Electron microscopy, manchette, spermatozoa, ultrastructure, reptile. RESUMO. Os eventos da espermiogênese foram densos, rodeada por bica madas concêntrica de li- bem estudados em mamíferos, entretanto, poucas pídios. in vestigações foram feitas em répteis e principal- PALAVRAS-CHAVE. Microscopia eletrônica, esperma- mente em tartarugas.
    [Show full text]
  • Kinosternon Scorpioides (Scorpion Mud Turtle)
    UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Kinosternon scorpioides (Scorpion Mud Turtle) Family: Kinosternidae (Mud Turtles) Order: Testudines (Tortoises and Turtles) Class: Reptilia (Reptiles) Fig. 1. Scorpion mud turtle, Kinosternon scorpioides. [http://foro.elacuarista.com/index.php?topic=1991.0, downloaded 1 December 2014] TRAITS. Kinosternon scorpioides (Fig.1) has many variations in body size of the various sub- species due to geographic locations, but the ratio mean male size to mean female size remains to be that the males have a larger carapace length (outer shell) (exceeding 20cm in some populations) than the females (average of 15cm) (Iverson, 2010). Carapace length is the length of the fused dorsal plates of a turtle (The Free Dictionary, 2014). The carapace of many individuals can have three ridges/keels (Ernst and Barbour, 1989) that can be reduced in size with age. Males of this species have a large grasping/prehensile tail, which has a larger spine at the end (also called a terminal spine) compared to the females of this species (Pritchard and Trebbau. 1984) (Fig. 2). The shell colouration is varied within and among the populations and can vary from tan to black (also having olive and brown). The plastron has a lighter colour, which varies from yellow to UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour brown in adults. Skin colour also has variations in some populations from gray to brown to nearly black and often have vermiculations (dense coverage but irregular line patterns) of yellow, orange or red either on the head or the neck of adults.
    [Show full text]
  • Reinterpretation of the Spanish Late Jurassic “Hispaniachelys Prebetica” As an Indeterminate Plesiochelyid Turtle
    Reinterpretation of the Spanish Late Jurassic “Hispaniachelys prebetica” as an indeterminate plesiochelyid turtle ADÁN PÉREZ-GARCÍA Pérez-García, A. 2014. Reinterpretation of the Spanish Late Jurassic “Hispaniachelys prebetica” as an indeterminate plesiochelyid turtle. Acta Palaeontologica Polonica 59 (4): 879–885. A partial postcranial skeleton (carapace, plastron, and other poorly preserved elements) of a turtle, from the late Ox- fordian of the Betic Range of Spain, has recently been assigned to a new taxon, Hispaniachelys prebetica. This is one of the few European turtle taxa reported from pre-Kimmeridgian levels, and the oldest turtle so far known from southern Europe. The character combination identified in that taxon (including the presence of cleithra, and single cervical scale) did not allow its assignment to Plesiochelyidae, a group of turtles very abundant and diverse in the Late Jurassic of Eu- rope. The revision of the single specimen assigned to this taxon led to the reinterpretation of some of its elements, being reassigned to Plesiochelyidae. This study confirms the presence of Plesiochelyidae in the Oxfordian. However, because the Spanish taxon does not present a unique combination of characters, it is proposed as a nomen dubium. Key words: Testudines, Plesiochelyidae, Hispaniachelys prebetica, Oxfordian, Jurassic, Spain. Adán Pérez-García [[email protected]], Centro de Geologia, Faculdade de Ciências da Universidade de Lisboa (FCUL), Edificio C6, Campo Grande, 1749-016 Lisbon, Portugal; Grupo de Biología Evolutiva, Facultad de Ciencias, UNED, C/ Senda del Rey, 9, 28040 Madrid, Spain. Received 9 October 2012, accepted 29 May 2013, available online 5 June 2013. Copyright © 2014 A. Pérez-García. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]