Revised Late Campanian-Danian Age of the Melange-Related Turbiditic Sequence in the Mersin Area (Central Taurides, S

Total Page:16

File Type:pdf, Size:1020Kb

Revised Late Campanian-Danian Age of the Melange-Related Turbiditic Sequence in the Mersin Area (Central Taurides, S Turkish Journal of Earth Sciences Turkish J Earth Sci (2013) 22: 239-246 http://journals.tubitak.gov.tr/earth/ © TÜBİTAK Research Article doi:10.3906/yer-1106-5 Revised Late Campanian-Danian age of the melange-related turbiditic sequence in the Mersin area (Central Taurides, S. Turkey) Hayati KOÇ*, Kemal TASLI, Erol ÖZER Department of Geological Engineering, Faculty of Engineering, Mersin University, 33342 Çiftlikköy, Mersin, Turkey Received: 18.06.2011 Accepted: 02.09.2012 Published Online: 27.02.2013 Printed: 27.03.2013 Abstract: A planktonic foraminiferal assemblage obtained from the Yavca stratigraphic section north of Mersin shows that the age of a melange-related turbiditic sequence extends to the Danian (Early Palaeocene). Previously, this turbiditic sequence, termed the Yavca Formation, was considered to be of Late Cretaceous or Campanian-Maastrichtian age. The formation is either depositionally overlain by the Fındıkpınarı ophiolite-related melange or tectonically by Mersin Ophiolite slices or Jurassic-Cretaceous platform carbonates. Clayey limestone and mudstone samples collected from the type area of the Yavca Formation yielded planktonic foraminiferal assemblages, which include Parasubbotina pseudobulloides (Plummer), P. varianta (Subbotina), Praemurica pseudoinconstans (Blow), P. inconstans (Subbotina), Globanomalina compressa (Plummer), G. ehrenbergi (Blow), Subbotina triloculinoides (Plummer), S. triangularis (White), Morozovella praeangulata (White), and Eoglobigerina spiralis (Bolli). These assemblages range from the late Danian P1c subzone to the basal P3a subzone. Basal red pelagic limestones are assigned here to the late Campanian-Maastrichtian, based on the presence of Radotruncana cf. R. calcarata (Cushman) and Contusotruncana cf. C. walfischensis (Todd). The age of the melange-related turbiditic sequence is revised to be late Campanian (Late Cretaceous) to Danian (Early Paleocene). This revised age provides a new insight into the evolution of the Central Taurides and helps refine palaeogeographical interpretation during this time. The timing of the ophiolite emplacement in the Central Taurides is interpreted as post-Danian to pre-Miocene (Late Palaeocene or Late Eocene). Key Words: Early Palaeocene, planktonic foraminifera, ophiolite emplacement, Central Taurides, S Turkey 1. Introduction and olistoliths (Demirtaşlı et al. 1984). Ricou (1980) gave Ophiolite-related rock assemblages overlying the Mesozoic a stratigraphic section across the Cretaceous limestone Tauride Carbonate Platform are considered to be sutured massif and ophiolitic rocks in Kavaklıpınar village and remnants of the South Neotethys Ocean and have been differentiated 3 Maastrichtian rock assemblages. From widely used in regional tectonic reconstructions (Şengör base to top these are: (1) limestones containing rudist & Yılmaz 1981; Robertson & Dixon 1984; Yılmaz 1993; fragments, Orbitoides media, and Siderolites calcitrapoides; Collins & Robertson 1997; Parlak & Robertson 2004; (2) a few metres of thick red limestones with Globotruncana Robertson et al. 2009). Late Cretaceous melange-derived arca, G. calciformis, and G. gr. stuarti; (3) 25-m-thick turbidites and associated ophiolitic melange in the Mersin greenish sandstones. He suggested that the ophiolitic area were originally studied by İlker (1975) under the nappes in the Arslanköy and Namrun (Çamlıyayla) areas name “Yavca Formation” from around Yavca village, 60 km were emplaced onto the Taurus Limestone Axis during the northeast of Mersin (Figure 1). The name Yavca Formation Maastrichtian. The Yavca Formation can be correlated with has been subsequently restricted to the melange-related the Maastrichtian “regular basal sequence” of ophiolitic turbiditic sediments (Koç et al. 1997; Taslı & Eren 1999), by melange in the Aladağ region, Eastern Taurides (Tekeli et excluding one of the associated melange units (Fındıkpınarı al. 1984). Taslı and Eren (1999) dated the red limestones in Melange of Yaman 1991; Mersin Melange of Parlak & the basal part of the Yavca Formation in the Aydıncık area Robertson 2004). Comparable sediments were termed as late Campanian, based on a planktonic foraminiferal the Arslanköy Formation, assigned a Senonian age based assemblage comprising mainly Globotruncanita on the presence of Globotruncana stuarti, Globotruncana calcarata, Gta. stuartiformis, Globotruncana arca, and tricarinata cf. fornicata, Globotruncana rosetta, Orbitoides Contusotruncana fornicata, identified from thin sections. sp., and Siderolites sp., and with a possible Danian age for Only one of numerous samples from the formation its uppermost part containing ophiolitic olistostromes yielded a few recrystallised planktonic foraminifera, which * Correspondence: [email protected] 239 KOÇ et al. / Turkish J Earth Sci Black Sea Pontdes Ankara 40°N Kırşehr Metamorphc ANKARASUTURE Massf İZMIR Beyşehr ZONE Taurde Menderes - HoyranCarbonate Aladağ Btls Metamorphc Massf suture KaramanNappers Platform Lycan Nappes MERSİN Alanya Massf MELANGE Araban Platform Mersn Hatay ANTALYA AydıncıkFg.2a COMPLEX Güzelsu Fg.3c BAER- BASSIT Troodos MELANGE Medterranean Cyprus Sea MAMONIA COMPLEX 34° N Opholtc unts 0 100 km 30°36°E Figure 1. Tectonic map of Turkey (after Parlak & Robertson, 2004), showing ophiolite-related rock assemblages and the study areas. were questionably assigned to Parasubbotina of Palaeocene lower and upper formation contacts are faulted, named age, during a recent study of the biostratigraphy and the Bozkoyak stratigraphic section with 5 washing samples palaeoenvironmental setting of the Late Cretaceous (Bo/15-19), was measured in the Aydıncık area. In total sediments of the Central Taurides (Koç & Taslı 2010). 36 samples, 21 of them washing samples while the others Additional and more detailed sampling confirmed the were thin-sectioned, were analysed. Muddy samples, occurrence of Palaeocene planktonic foraminifera within each weighing approximately 1 kg, were crushed and this formation. This study focuses on dating the melange- then soaked in dilute hydrogen peroxide (10%) for 12 to related turbiditic succession by means of its planktonic 24 h. The residues were then washed through a 100-µm foraminiferal assemblages. screen and dried out in an oven at less than 50 °C. About 250 specimens were picked and cleaned using ultrasonic 2. Materials and methods agitation for intervals of 10 to 15 s. Determination of Systematic sampling was carried out in the type area of planktonic foraminifera were then made using an optical the Yavca Formation, situated 1 km east of Yavca village stereomicroscope with 40× and 100× magnifications. (Figure 1). The type area is one of the best places to see the The free specimens of planktonic foraminifera were lower and upper depositional contacts of the formation, illustrated with field emission scanning electron which are well preserved and easily accessible. Sampling microscope (FESEM) images in the Mersin University was limited by the relative scarcity of suitable calcareous Advanced Technology, Education and Application Centre. lithologies, compared to mainly sandy and silty lithologies. Planktonic foraminiferal specimens are relatively well Another stratigraphic section further west, in which the preserved although some are recrystallised and infilled 240 KOÇ et al. / Turkish J Earth Sci with iron oxide. The specimens are stored in the Geological with Permian limestone olistoliths (Karagedik Formation), Engineering Department collection, Mersin University, Jurassic-lower Senonian carbonates (Cehennemdere Mersin. Palaeocene taxa and biozones were identified Formation), and Senonian-Danian (?) flysch containing according to the method of Olsson et al. (1999). The time ophiolitic fragments (Arslanköy Formation), which scale used in this paper is that of Gradstein & Ogg (2004). structurally overlie the ophiolitic melange. Two generalised N-S cross-sections (Figure 3) 3. Geological setting demonstrate that the Yavca Formation is sandwiched Ophiolite-related rock assemblages are widely distributed between several thrust sheets and that it structurally on the southern flank of the Bolkar Mountains, in the overlies a southward-dipping thrust sheet containing eastern part of the Central Taurides (Figures 2A and 2B). Mesozoic platform carbonate sediments or ophiolite slices Demirtaşlı et al. (1984) recognised 3 tectono-stratigraphic (Figure 3A). This lithostratigraphical unit can be traced units in the Bolkar Mountain area. The northern part of the westwards into the Aydıncık area (Figure 3B and 3C) in Bolkar Mountains consists of metamorphosed Permian- discontinuous outcrops as a result of nappe cover erosion Late Cretaceous carbonate rocks of the Bolkar Group, (Koç et al. 1997; Taslı & Eren 1999). which are either tectonically overlain by late Senonian ophiolitic melange or unconformably overlain by late 4. Lithology Maastrichtian-Tertiary volcano-sedimentary formations of The Bolkar Mountain inner platform carbonate deposition the Niğde-Ulukışla Basin. The central portion of the Bolkar is represented by the Bajocian-Santonian Cehennemdere Mountain area contains slightly metamorphosed Permian- Formation (Taslı et al. 2006). It is overlain by late Late Cretaceous carbonate-dominated rocks with diabase Campanian hemipelagic and pelagic grey limestones, intercalations that were thrust over the Late Cretaceous- which become siliceous and pinkish upwards, together Palaeocene formations of the Ereğli-Ulukışla Basin. The with centimetric to decimetric-sized slump-folds.
Recommended publications
  • Palaeogene Marine Stratigraphy in China
    LETHAIA REVIEW Palaeogene marine stratigraphy in China XIAOQIAO WAN, TIAN JIANG, YIYI ZHANG, DANGPENG XI AND GUOBIAO LI Wan, X., Jiang, T., Zhang, Y., Xi, D. & Li G. 2014: Palaeogene marine stratigraphy in China. Lethaia, Vol. 47, pp. 297–308. Palaeogene deposits are widespread in China and are potential sequences for locating stage boundaries. Most strata are non-marine origin, but marine sediments are well exposed in Tibet, the Tarim Basin of Xinjiang, and the continental margin of East China Sea. Among them, the Tibetan Tethys can be recognized as a dominant marine area, including the Indian-margin strata of the northern Tethys Himalaya and Asian- margin strata of the Gangdese forearc basin. Continuous sequences are preserved in the Gamba–Tingri Basin of the north margin of the Indian Plate, where the Palaeogene sequence is divided into the Jidula, Zongpu, Zhepure and Zongpubei formations. Here, the marine sequence ranges from Danian to middle Priabonian (66–35 ma), and the stage boundaries are identified mostly by larger foraminiferal assemblages. The Paleocene/Eocene boundary is found between the Zongpu and Zhepure forma- tions. The uppermost marine beds are from the top of the Zongpubei Formation (~35 ma), marking the end of Indian and Asian collision. In addition, the marine beds crop out along both sides of the Yarlong Zangbo Suture, where they show a deeper marine facies, yielding rich radiolarian fossils of Paleocene and Eocene. The Tarim Basin of Xinjiang is another important area of marine deposition. Here, marine Palae- ogene strata are well exposed in the Southwest Tarim Depression and Kuqa Depres- sion.
    [Show full text]
  • Selandian-Thanetian Larger Foraminifera from the Lower Jafnayn Formation in the Sayq Area (Eastern Oman Mountains)
    Geologica Acta, Vol.14, Nº 3, September, 315-333 DOI: 10.1344/GeologicaActa2016.14.3.7 Selandian-Thanetian larger foraminifera from the lower Jafnayn Formation in the Sayq area (eastern Oman Mountains) J. SERRA-KIEL1 V. VICEDO2,* Ph. RAZIN3 C. GRÉLAUD3 1Universitat de Barcelona, Facultat de Geologia. Department of Earth and Ocean Dynamics Martí Franquès s/n, 08028 Barcelona, Spain. 2Museu de Ciències Naturals de Barcelona (Paleontologia) Parc de la Ciutadella s/n, 08003 Barcelona, Spain 3ENSEGID, Bordeaux INP, G&E, EA, 4592, University of Bordeaux III, France 1 allée F. Daguin, 33607 PESSAC cedex, France *Corresponding author E-mail: [email protected] ABS TR A CT The larger foraminifera of the lower part of the Jafnayn Formation outcropping in the Wadi Sayq, in the Paleocene series of the eastern Oman Mountains, have been studied and described in detail. The analysis have allowed us to develop a detailed systematic description of each taxa, constraining their biostratigraphic distribution and defining the associated foraminifera assemblages. The taxonomic study has permitted us to identify each morphotype precisely and describe three new taxa, namely, Ercumentina sayqensis n. gen. n. sp. Lacazinella rogeri n. sp. and Globoreticulinidae new family. The first assemblage is characterized by the presence ofCoskinon sp., Dictyoconus cf. turriculus HOTTINGER AND DROBNE, Anatoliella ozalpiensis SIREL, Ercumentina sayqensis n. gen. n. sp. SERRA- KIEL AND VICEDO, Lacazinella rogeri n. sp. SERRA-KIEL AND VICEDO, Mandanella cf. flabelliformis RAHAGHI, Azzarolina daviesi (HENSON), Lockhartia retiata SANDER, Dictyokathina simplex SMOUT and Miscellanites globularis (RAHAGHI). The second assemblage is constituted by the forms Pseudofallotella persica (HOTTINGER AND DROBNE), Dictyoconus cf.
    [Show full text]
  • Jason P. Schein
    Curriculum Vitae JASON P. SCHEIN EXECUTIVE DIRECTOR BIGHORN BASIN PALEONTOLOGICAL INSTITUTE 3959 Welsh Road, Ste. 208 Willow Grove, Pennsylvania 19090 Office: (406) 998-1390 Cell: (610) 996-1055 ​ ​ [email protected] EDUCATION Ph.D. Student Drexel University, Department of Biology, Earth and Environmental Science, 2005-2013 M.Sc., Auburn University, Department of Geology and Geography, 2004 B.Sc., Auburn University, Department of Geology and Geography, 2000 RESEARCH AND PROFESSIONAL INTERESTS Mesozoic vertebrate marine and terrestrial faunas, paleoecology, paleobiogeography, faunistics, taphonomy, biostratigraphy, functional morphology, sedimentology, general natural history, education and outreach, paleontological resource assessment, and entrepreneurial academic paleontology. ACADEMIC, PROFESSIONAL, & BOARD POSITIONS 2019-Present Member of the Board, Yellowstone-Bighorn Research Association ​ 2017-Present Founding Executive Director, Bighorn Basin Paleontological Institute ​ 2017-Present Member of the Board, Delaware Valley Paleontological Society ​ 2016-Present Scientific and Educational Consultant, Field Station: Dinosaurs ​ 2015-Present Graduate Research Associate, Academy of Natural Sciences of Drexel University ​ 2007-2017 Assistant Curator of Natural History Collections and Exhibits, New Jersey State Museum ​ 2015-2017 Co-founder, Co-leader, Bighorn Basin Dinosaur Project ​ 2010-2015 International Research Associate, Palaeontology Research Team, University of Manchester ​ 2010-2014 Co-leader, New Jersey State Museum’s Paleontology Field Camp ​ 2007-2009 Interim Assistant Curator of Natural History, New Jersey State Museum ​ 2006-2007 Manager, Dinosaur Hall Fossil Preparation Laboratory ​ 2004-2005 Staff Environmental Geologist, Cobb Environmental and Technical Services, Inc. ​ 1 FIELD EXPERIENCE 2010-2019 Beartooth Butte, Morrison, Lance, and Fort Union formations, Bighorn Basin, Wyoming and Montana, U.S.A. (Devonian, Jurassic, Late Cretaceous, and earliest Paleocene, respectively) 2010 Hell Creek Formation, South Dakota, U.S.A.
    [Show full text]
  • Early Eocene Sediments of the Western Crimean Basin, Ukraine 100 ©Geol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte der Geologischen Bundesanstalt Jahr/Year: 2011 Band/Volume: 85 Autor(en)/Author(s): Khoroshilova Margarita A., Shcherbinina E. A. Artikel/Article: Sea-level changes and lithological architecture of the Paleocene - early Eocene sediments of the western Crimean basin, Ukraine 100 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 85 (ISSN 1017-8880) – CBEP 2011, Salzburg, June 5th – 8th Sea-level changes and lithological architecture of the Paleocene- early Eocene sediments of the western Crimean basin, Ukraine Margarita A. Khoroshilova1, E.A. Shcherbinina2 1 Geological Department of the Moscow State University ([email protected]) 2 Geological Institute of the Russian Academy of Sciences, Moscow, Russia During the Paleogene time, sedimentary basin of the western Crimea, Ukraine was bordered by land of coarse topography, which occupied the territory of modern first range of the Crimean Mountains, on the south and by Simferopol uplift on the north and displays a wide spectrum of shallow water marine facies. Paleocene to early Eocene marine deposits are well preserved and can be studied in a number of exposures. Correlated by standard nannofossil scale, five exposures present a ~17 Ma record of sea- level fluctuations. Danian, Selandian-Thanetian and Ypresian transgressive-regressive cycles are recognized in the sections studied. Major sea-level falls corresponding to hiatuses at the Danian/Selandian and Thanetian/Ypresian boundaries appear as hard-ground surfaces. Stratigraphic range of the first hiatus is poorly understood because Danian shallow carbonates are lack in nannofossils while accumulation of Selandian marl begins at the NP6.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • Paleogeographic Maps Earth History
    History of the Earth Age AGE Eon Era Period Period Epoch Stage Paleogeographic Maps Earth History (Ma) Era (Ma) Holocene Neogene Quaternary* Pleistocene Calabrian/Gelasian Piacenzian 2.6 Cenozoic Pliocene Zanclean Paleogene Messinian 5.3 L Tortonian 100 Cretaceous Serravallian Miocene M Langhian E Burdigalian Jurassic Neogene Aquitanian 200 23 L Chattian Triassic Oligocene E Rupelian Permian 34 Early Neogene 300 L Priabonian Bartonian Carboniferous Cenozoic M Eocene Lutetian 400 Phanerozoic Devonian E Ypresian Silurian Paleogene L Thanetian 56 PaleozoicOrdovician Mesozoic Paleocene M Selandian 500 E Danian Cambrian 66 Maastrichtian Ediacaran 600 Campanian Late Santonian 700 Coniacian Turonian Cenomanian Late Cretaceous 100 800 Cryogenian Albian 900 Neoproterozoic Tonian Cretaceous Aptian Early 1000 Barremian Hauterivian Valanginian 1100 Stenian Berriasian 146 Tithonian Early Cretaceous 1200 Late Kimmeridgian Oxfordian 161 Callovian Mesozoic 1300 Ectasian Bathonian Middle Bajocian Aalenian 176 1400 Toarcian Jurassic Mesoproterozoic Early Pliensbachian 1500 Sinemurian Hettangian Calymmian 200 Rhaetian 1600 Proterozoic Norian Late 1700 Statherian Carnian 228 1800 Ladinian Late Triassic Triassic Middle Anisian 1900 245 Olenekian Orosirian Early Induan Changhsingian 251 2000 Lopingian Wuchiapingian 260 Capitanian Guadalupian Wordian/Roadian 2100 271 Kungurian Paleoproterozoic Rhyacian Artinskian 2200 Permian Cisuralian Sakmarian Middle Permian 2300 Asselian 299 Late Gzhelian Kasimovian 2400 Siderian Middle Moscovian Penn- sylvanian Early Bashkirian
    [Show full text]
  • 2009 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Bdy
    2009 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST. HIST. ANOM. ANOM. (Ma) CHRON. CHRO HOLOCENE 65.5 1 C1 QUATER- 0.01 30 C30 542 CALABRIAN MAASTRICHTIAN NARY PLEISTOCENE 1.8 31 C31 251 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 70.6 254 2A PIACENZIAN 32 C32 L 630 C2A 3.6 WUCHIAPINGIAN PLIOCENE 260 260 3 ZANCLEAN 33 CAMPANIAN CAPITANIAN 5 C3 5.3 266 750 NEOPRO- CRYOGENIAN 80 C33 M WORDIAN MESSINIAN LATE 268 TEROZOIC 3A C3A 83.5 ROADIAN 7.2 SANTONIAN 271 85.8 KUNGURIAN 850 4 276 C4 CONIACIAN 280 4A 89.3 ARTINSKIAN TONIAN C4A L TORTONIAN 90 284 TURONIAN PERMIAN 10 5 93.5 E 1000 1000 C5 SAKMARIAN 11.6 CENOMANIAN 297 99.6 ASSELIAN STENIAN SERRAVALLIAN 34 C34 299.0 5A 100 300 GZELIAN C5A 13.8 M KASIMOVIAN 304 1200 PENNSYL- 306 1250 15 5B LANGHIAN ALBIAN MOSCOVIAN MESOPRO- C5B VANIAN 312 ECTASIAN 5C 16.0 110 BASHKIRIAN TEROZOIC C5C 112 5D C5D MIOCENE 320 318 1400 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 326 6 C6 APTIAN 20 120 1500 CALYMMIAN E 20.4 6A C6A EARLY MISSIS- M0r 125 VISEAN 1600 6B C6B AQUITANIAN M1 340 SIPPIAN M3 BARREMIAN C6C 23.0 345 6C CRETACEOUS 130 M5 130 STATHERIAN CARBONIFEROUS TOURNAISIAN 7 C7 HAUTERIVIAN 1750 25 7A M10 C7A 136 359 8 C8 L CHATTIAN M12 VALANGINIAN 360 L 1800 140 M14 140 9 C9 M16 FAMENNIAN BERRIASIAN M18 PROTEROZOIC OROSIRIAN 10 C10 28.4 145.5 M20 2000 30 11 C11 TITHONIAN 374 PALEOPRO- 150 M22 2050 12 E RUPELIAN
    [Show full text]
  • The Incidence of Unusual Test Morphologies of Eocene Larger Benthic Foraminifera: an Example of Paleogene Adriatic Carbonate Platform
    EGU21-10340, updated on 28 Sep 2021 https://doi.org/10.5194/egusphere-egu21-10340 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The incidence of unusual test morphologies of Eocene Larger benthic foraminifera: An example of Paleogene Adriatic Carbonate Platform Vlasta Ćosović1, Jelena Španiček1, Katica Drobne2, and Ervin Mrinjek1 1Faculty of Science, Department of Geology, University of Zagreb, Zagreb, Croatia ([email protected]) 2Research Center of Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia The Paleogene Adriatic carbonate platform(s) existed within the Central NeoTethys (around 32 N paleolatitude) from the Danian to the late Eocene (Bartonian/Priabonian) and produced a succession of limestones up to 500 m thick, rich in larger benthic foraminifera (LBF). The Eocene sediments are widely distributed along the eastern Adriatic coast and have been studied for many years. Taking into account the climatic changes that took place within the Eocene (Early Eocene and Middle Eocene climatic optima, known as EECO, MECO), special attention was paid to the composition of shallow-marine foraminiferal assemblages. The studies reveal the following trends: (1) the alveolinid-dominated assemblages were replaced by nummulitid-dominated assemblages around the MECO; (2) the greater species and morphological diversity (spherical, ellipsoid, extremely elongated fusiform) of the alveolinid fauna was evident at the EECO; (3) the nummulitid- dominated fauna was characterized by less diversified assemblages compared to the alveolinid ones and by the co-occurrence of scleractinian corals, coralline red algae and aborescent foraminifera. The occurrence of twin embryos has been assigned to the early Eocene in the alveolinid populations, especially in Alveolina levantina and A.
    [Show full text]
  • Alphabetical List
    LIST E - GEOLOGIC AGE (STRATIGRAPHIC) TERMS - ALPHABETICAL LIST Age Unit Broader Term Age Unit Broader Term Aalenian Middle Jurassic Brunhes Chron upper Quaternary Acadian Cambrian Bull Lake Glaciation upper Quaternary Acheulian Paleolithic Bunter Lower Triassic Adelaidean Proterozoic Burdigalian lower Miocene Aeronian Llandovery Calabrian lower Pleistocene Aftonian lower Pleistocene Callovian Middle Jurassic Akchagylian upper Pliocene Calymmian Mesoproterozoic Albian Lower Cretaceous Cambrian Paleozoic Aldanian Lower Cambrian Campanian Upper Cretaceous Alexandrian Lower Silurian Capitanian Guadalupian Algonkian Proterozoic Caradocian Upper Ordovician Allerod upper Weichselian Carboniferous Paleozoic Altonian lower Miocene Carixian Lower Jurassic Ancylus Lake lower Holocene Carnian Upper Triassic Anglian Quaternary Carpentarian Paleoproterozoic Anisian Middle Triassic Castlecliffian Pleistocene Aphebian Paleoproterozoic Cayugan Upper Silurian Aptian Lower Cretaceous Cenomanian Upper Cretaceous Aquitanian lower Miocene *Cenozoic Aragonian Miocene Central Polish Glaciation Pleistocene Archean Precambrian Chadronian upper Eocene Arenigian Lower Ordovician Chalcolithic Cenozoic Argovian Upper Jurassic Champlainian Middle Ordovician Arikareean Tertiary Changhsingian Lopingian Ariyalur Stage Upper Cretaceous Chattian upper Oligocene Artinskian Cisuralian Chazyan Middle Ordovician Asbian Lower Carboniferous Chesterian Upper Mississippian Ashgillian Upper Ordovician Cimmerian Pliocene Asselian Cisuralian Cincinnatian Upper Ordovician Astian upper
    [Show full text]
  • Late Cretaceous to Early Paleocene Climate and Sea-Level £Uctuations: the Tunisian Record
    Published in Palaeogeography, Palaeoclimatology, Palaeoecology 2754 : 1-32, 2002, 1 which should be used for any reference to this work Late Cretaceous to early Paleocene climate and sea-level £uctuations: the Tunisian record Thierry Adatte a;*, Gerta Keller b, Wolfgang Stinnesbeck c a Institut de Ge¨ologie, 11 Rue Emile Argand, 2007 Neuchatel, Switzerland b Department of Geosciences, Princeton University, Princeton, NJ 08544, USA c Geologisches Institut, Universitat Karlsruhe, 76128 Karlsruhe, Germany Abstract Climate and sea-level fluctuations across the Cretaceous^Tertiary (K^T) transition in Tunisia were examined based on bulk rock and clay mineralogies, biostratigraphy and lithology in five sections (El Melah, El Kef, Elles, Ain Settara and Seldja) spanning from open marine to shallow inner neritic environments. Late Campanian to early Danian trends examined at El Kef and Elles indicate an increasingly more humid climate associated with sea-level fluctuations and increased detrital influx that culminates at the K^T transition. This long-term trend in increasing humidity and runoff in the Tethys region is associated with middle and high latitude cooling. Results of short-term changes across the K^T transition indicate a sea-level lowstand in the latest Maastrichtian about 25^100 ka below the K^T boundary with the regression marked by increased detrital influx at El Kef and Elles and a short hiatus at Ain Settara. A rising sea-level at the end of the Maastrichtian is expressed at Elles and El Kef by deposition of a foraminiferal packstone. A flooding surface and condensed sedimentation mark the K^T boundary clay which is rich in terrestrial organic matter.
    [Show full text]
  • INTERNATIONAL CHRONOSTRATIGRAPHIC CHART International Commission on Stratigraphy V 2020/03
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2020/03 numerical numerical numerical numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) Eonothem / EonErathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ±0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 0.0117 152.1 ±0.9 ~ 635 U/L Upper Famennian Neo- 0.129 Upper Kimmeridgian Cryogenian M Chibanian 157.3 ±1.0 Upper proterozoic ~ 720 0.774 372.2 ±1.6 Pleistocene Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 L/E Callovian Quaternary 166.1 ±1.2 Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 387.7 ±0.8 Meso- Zanclean Aalenian Middle proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 Calymmian 7.246 Toarcian Devonian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Burdigalian Hettangian proterozoic 2050 20.44 201.3 ±0.2 419.2 ±3.2 Rhyacian Aquitanian Rhaetian Pridoli 23.03 ~ 208.5 423.0 ±2.3 2300 Ludfordian 425.6 ±0.9 Siderian Mesozoic Cenozoic Chattian Ludlow
    [Show full text]
  • Biotic Recoveries from Mass Extinctions
    Colloquium Lessons from the past: Biotic recoveries from mass extinctions Douglas H. Erwin* Department of Paleobiology, MRC-121, Smithsonian Institution, Washington, DC 20560 Although mass extinctions probably account for the disappearance and Wilson’s theory of island biogeography (ref. 1, reviewed in of less than 5% of all extinct species, the evolutionary opportuni- ref. 2). Coupled logistic models have been applied to the ties they have created have had a disproportionate effect on the dynamics of clades from the fossil record and the patterns of history of life. Theoretical considerations and simulations have recoveries after mass extinctions (3–6). The models suggest that suggested that the empty niches created by a mass extinction recoveries will follow a sigmoidal increase to a new equilibrium should refill rapidly after extinction ameliorates. Under logistic as survivors radiate into a now-empty ecospace. The sigmoidal models, this biotic rebound should be exponential, slowing as the shape of such a pattern will produce an apparent lag before an environmental carrying capacity is approached. Empirical studies exponential increase, with paleontologists noting the exponen- reveal a more complex dynamic, including positive feedback and tial phase as the onset of recovery. The duration of the lag should an exponential growth phase during recoveries. Far from a model be proportional to the magnitude of the diversity drop (3, 4). of refilling ecospace, mass extinctions appear to cause a collapse of Empirical studies have recognized that many mass extinctions ecospace, which must be rebuilt during recovery. Other generali- are followed by a survival interval, of variable duration, during ties include the absence of a clear correlation between the mag- which little or no diversification is evident, followed by rapid nitude of extinction and the pace of recovery or the resulting diversification during a recovery phase (7).
    [Show full text]