Late Cretaceous to Early Paleocene Climate and Sea-Level £Uctuations: the Tunisian Record

Total Page:16

File Type:pdf, Size:1020Kb

Late Cretaceous to Early Paleocene Climate and Sea-Level £Uctuations: the Tunisian Record Published in Palaeogeography, Palaeoclimatology, Palaeoecology 2754 : 1-32, 2002, 1 which should be used for any reference to this work Late Cretaceous to early Paleocene climate and sea-level £uctuations: the Tunisian record Thierry Adatte a;*, Gerta Keller b, Wolfgang Stinnesbeck c a Institut de Ge¨ologie, 11 Rue Emile Argand, 2007 Neuchatel, Switzerland b Department of Geosciences, Princeton University, Princeton, NJ 08544, USA c Geologisches Institut, Universitat Karlsruhe, 76128 Karlsruhe, Germany Abstract Climate and sea-level fluctuations across the Cretaceous^Tertiary (K^T) transition in Tunisia were examined based on bulk rock and clay mineralogies, biostratigraphy and lithology in five sections (El Melah, El Kef, Elles, Ain Settara and Seldja) spanning from open marine to shallow inner neritic environments. Late Campanian to early Danian trends examined at El Kef and Elles indicate an increasingly more humid climate associated with sea-level fluctuations and increased detrital influx that culminates at the K^T transition. This long-term trend in increasing humidity and runoff in the Tethys region is associated with middle and high latitude cooling. Results of short-term changes across the K^T transition indicate a sea-level lowstand in the latest Maastrichtian about 25^100 ka below the K^T boundary with the regression marked by increased detrital influx at El Kef and Elles and a short hiatus at Ain Settara. A rising sea-level at the end of the Maastrichtian is expressed at Elles and El Kef by deposition of a foraminiferal packstone. A flooding surface and condensed sedimentation mark the K^T boundary clay which is rich in terrestrial organic matter. The P0^ P1a transition is marked by a sea-level lowstand corresponding to a short hiatus at Ain Settara where most of P0 is missing and a period of non-deposition and erosion in the lower part of P1a (64.95 Ma). At Seldja, P0 and possibly the topmost part of CF1 are missing. These sea-level fluctuations are associated with maximum humidity. These data suggest that in Tunisia, long-term environmental stresses during the last 500 ka before the K^T boundary and continuing into the early Danian are primarily related to climate and sea-level fluctuations. Within this long-term climatic trend the pronounced warm and humid event within the latest Maastrichtian Zone CF1 may be linked to greenhouse conditions induced by Deccan volcanism. The absence of any significant clay mineral variations at or near the K^T boundary and Ir anomaly suggests that the bolide impact had a relatively incidental short-term effect on climate in the Tethys region. Keywords: sea-level; climate £uctuations; K^T boundary; Upper Campanian; Maastrichtian; Tunisia; bulk; clay minerals; organic matter; geochemistry 1. Introduction There are relatively few studies that detail long- * Corresponding author. Tel.: +41-32-718-26-18; Fax: +41- 32-718-26-01. term climate and sea-level changes during the late E-mail address: [email protected] (T. Adatte). Cretaceous which was generally assumed to have 2 been equally warm. Recent stable isotope studies, addition, climatic changes inferred from clay min- however, have revealed that the Maastrichtian eral contents correlate with sea-level changes. global climate was signi¢cantly cooler than during Warm or humid climates accompany high sea-lev- the earlier Cretaceous. Strong climate and temper- els and cooler or arid climates generally accom- ature £uctuations mark the late Campanian and pany low sea-level (Li et al., 2000). Maastrichtian, as indicated from stable isotope The global sea-level £uctuations are linked to records from the equatorial Paci¢c (Site 463, Kel- climatic changes (Li et al., 1999) and inversely ler and Li, in press) and middle and high latitude correlate with species diversity in planktic fora- South Atlantic (Sites 525, 689 and 690, Barrera minifera (e.g. diversity maximum follows maxi- and Huber, 1990; Barrera, 1994; Barrera et al., mum cooling at 70.7^70.3 Ma; diversity decline 1997; Li and Keller, 1998a,b). The ¢rst major follows warming at 65.4^65.2 Ma, Li and Keller, global cooling occurred between 71 and 73 Ma 1998a,c). But precisely how climate changed and decreased intermediate water temperatures across the K^T boundary mass extinction and by 5^6³C and surface temperatures by 4^5³C in during the subsequent evolution of early Tertiary middle and high latitudes. Between 68.5 and 70 faunas is still an enigma largely because diagenetic Ma, intermediate waters warmed by 2³C. Global alteration of carbonates obscures the oxygen iso- cooling resumed between 68.5 and 65.5 Ma when tope records (see Stueben et al., this volume). intermediate water temperatures decreased by 3^ A number of studies have attempted to recon- 4³C and sea surface temperatures decreased by struct the sea-level history across the K^T transi- 5³C in middle latitudes. About 450^200 ka before tion in Tunisia based on benthic and planktic for- the Cretaceous^Tertiary (K^T) boundary rapid aminifera, dino£agellates or palyno£oras (e.g. global warming increased intermediate and sea Brinkhuis and Zachariasse, 1988; Keller, 1988b, surface temperatures by 3^4³C, though sea sur- 1992; MacLeod and Keller, 199la,b; Schmitz et face temperatures changed little in low latitudes al., 1992; Speijer, 1994; Keller and Stinnesbeck, (Li and Keller, 1998b). Beginning about 200 ka 1996; Brinkhuis and Visscher, 1994; Brinkhuis et before the end of the Maastrichtian, climate al., 1998; Galeotti and Coccioni, 2002). The over- cooled rapidly by 2^3³C in both surface and in- all sea-level trends in these studies are in general termediate waters and warmed again during the agreement, though may vary in the details and the last 50^100 ka of the Maastrichtian (Li and Kel- timing of sea-level lowstands. A major problem ler, 1998b; Stueben et al., this volume). has been the absence of oxygen isotope-inferred These global climatic changes were associated climate data to support sea-level £uctuations in- with major sea-level £uctuations as expressed in ferred from faunal and £oral proxies. Oxygen iso- a variety of sea-level proxies, including bulk rock tope data are frequently not reliable temperature and clay mineral compositions, stable isotopes, indicators across the K^T transition because of total organic carbon (TOC), Sr/Ca ratios and diagenetic alteration of carbonate and recrystalli- macro- and microfaunal associations. Based on zation of foraminiferal tests (Oberhaensli et al., these sea-level and climate proxies, Li et al. 1998; Stueben et al., this volume). Alternate tem- (1999, 2000) have identi¢ed seven major sea-level perature proxies based on the coiling direction of regressions during the last 10 myr of the Creta- the benthic foraminifera Cibicidoides pseudoacutus ceous at El Kef and Elles (Tunisia): late Campa- (Galeotti and Coccioni, 2002) and the ratio of nian (V74.2 Ma, 73.4^72.5 Ma and 72.2^71.7 warm/cool dinocysts (Brinkhuis et al., 1998) Ma), early Maastrichtian (70.7^70.3 Ma, 69.6^ have been proposed, but these have yet to be in- 69.3 Ma and 68.9^68.3 Ma), and late Maastrich- dependently con¢rmed. tian (65.45^65.50 Ma). Low sea-levels are gener- This study evaluates climate and sea-level ally associated with increased terrigenous in£ux, changes across the K^T transition based on litho- low kaolinite/chlorite+illite ratios, high TOC and logical characteristics, bulk rock and clay mineral high Sr/Ca ratios, whereas high sea-levels are gen- data from several Tunisian sections that span erally associated with the reverse conditions. In from upper slope (El Melah) to outer neritic (El 3 Fig. 1. Paleoenvironmental settings of ¢ve Tunisian K^T sections spanning from the restricted shallow Gafsa Basin (Seldja sec- tion) at the edge of the Sahara to the middle and outer shelf depths of the El Kef, Elles and Ain Settara sections to the north of the Kasserine Island, and to the upper bathyal El Melah section to the north (modi¢ed after Burollet, 1956; Burollet and Oudin, 1980). Isopach lines are given in meter for the Maastrichtian interval. Kef, Elles), middle neritic (Ain Settara) and inner trichtian of Elles and El Kef sections. Biostrati- neritic (Seldja) environments (Fig. 1). The time graphic data for each section are based on pub- interval analyzed spans from the uppermost lished studies: Elles I and El Melah from Karoui- Maastrichtian Zone CF1 to the early Danian Yakoub et al. (2002), Elles II K^T transition from Zone Plb or Plc. In addition, we examine long- Keller et al. (2002) and upper Maastrichtian from term trends based on bulk rock and clay mineral Abramovich and Keller (2002), Ain Settara from data from the late Campanian through Maas- Luciana (2002) and Seldja from Keller et al. trichtian of the Elles and El Kef sections. (1998). Sediment accumulation rates were calcu- lated based on the time scale of Cande and Kent (1995). 2. Methods Whole rock and clay mineral analyses were conducted at the Geological Institute of the Uni- In the ¢eld, sections were cleaned from surface versity of Neuchatel, Switzerland, based on XRD contamination by digging a trench to fresh bed- analyses (SCINTAG XRD 2000 Di¡ractometer). rock. Samples were then collected at 5^10 cm in- Sample processing followed the procedure out- tervals and at closer 1^2 cm intervals across the lined by Ku«bler (1987) and Adatte et al. (1996). K^T boundary clay layer. For each section, the XRD analyses of the whole rock were carried out same sample set was used for faunal, geochemical for all the samples at the Geological Institute of and mineralogical studies to insure direct compar- the University of Neuchatel.
Recommended publications
  • Palaeogene Marine Stratigraphy in China
    LETHAIA REVIEW Palaeogene marine stratigraphy in China XIAOQIAO WAN, TIAN JIANG, YIYI ZHANG, DANGPENG XI AND GUOBIAO LI Wan, X., Jiang, T., Zhang, Y., Xi, D. & Li G. 2014: Palaeogene marine stratigraphy in China. Lethaia, Vol. 47, pp. 297–308. Palaeogene deposits are widespread in China and are potential sequences for locating stage boundaries. Most strata are non-marine origin, but marine sediments are well exposed in Tibet, the Tarim Basin of Xinjiang, and the continental margin of East China Sea. Among them, the Tibetan Tethys can be recognized as a dominant marine area, including the Indian-margin strata of the northern Tethys Himalaya and Asian- margin strata of the Gangdese forearc basin. Continuous sequences are preserved in the Gamba–Tingri Basin of the north margin of the Indian Plate, where the Palaeogene sequence is divided into the Jidula, Zongpu, Zhepure and Zongpubei formations. Here, the marine sequence ranges from Danian to middle Priabonian (66–35 ma), and the stage boundaries are identified mostly by larger foraminiferal assemblages. The Paleocene/Eocene boundary is found between the Zongpu and Zhepure forma- tions. The uppermost marine beds are from the top of the Zongpubei Formation (~35 ma), marking the end of Indian and Asian collision. In addition, the marine beds crop out along both sides of the Yarlong Zangbo Suture, where they show a deeper marine facies, yielding rich radiolarian fossils of Paleocene and Eocene. The Tarim Basin of Xinjiang is another important area of marine deposition. Here, marine Palae- ogene strata are well exposed in the Southwest Tarim Depression and Kuqa Depres- sion.
    [Show full text]
  • Asteroid Impact, Not Volcanism, Caused the End-Cretaceous Dinosaur Extinction
    Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction Alfio Alessandro Chiarenzaa,b,1,2, Alexander Farnsworthc,1, Philip D. Mannionb, Daniel J. Luntc, Paul J. Valdesc, Joanna V. Morgana, and Peter A. Allisona aDepartment of Earth Science and Engineering, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom; bDepartment of Earth Sciences, University College London, WC1E 6BT London, United Kingdom; and cSchool of Geographical Sciences, University of Bristol, BS8 1TH Bristol, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 21, 2020 (received for review April 1, 2020) The Cretaceous/Paleogene mass extinction, 66 Ma, included the (17). However, the timing and size of each eruptive event are demise of non-avian dinosaurs. Intense debate has focused on the highly contentious in relation to the mass extinction event (8–10). relative roles of Deccan volcanism and the Chicxulub asteroid im- An asteroid, ∼10 km in diameter, impacted at Chicxulub, in pact as kill mechanisms for this event. Here, we combine fossil- the present-day Gulf of Mexico, 66 Ma (4, 18, 19), leaving a crater occurrence data with paleoclimate and habitat suitability models ∼180 to 200 km in diameter (Fig. 1A). This impactor struck car- to evaluate dinosaur habitability in the wake of various asteroid bonate and sulfate-rich sediments, leading to the ejection and impact and Deccan volcanism scenarios. Asteroid impact models global dispersal of large quantities of dust, ash, sulfur, and other generate a prolonged cold winter that suppresses potential global aerosols into the atmosphere (4, 18–20). These atmospheric dinosaur habitats.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • Uncorking the Bottle: What Triggered the Paleocene/Eocene Thermal Maximum Methane Release? Miriame
    PALEOCEANOGRAPHY, VOL. 16, NO. 6, PAGES 549-562, DECEMBER 2001 Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release? MiriamE. Katz,• BenjaminS. Cramer,Gregory S. Mountain,2 Samuel Katz, 3 and KennethG. Miller,1,2 Abstract. The Paleocene/Eocenethermal maximum (PETM) was a time of rapid global warming in both marine and continentalrealms that has been attributed to a massivemethane (CH4) releasefrom marine gas hydrate reservoirs. Previously proposedmechanisms for thismethane release rely on a changein deepwatersource region(s) to increasewater temperatures rapidly enoughto trigger the massivethermal dissociationof gas hydratereservoirs beneath the seafloor.To establish constraintson thermaldissociation, we modelheat flow throughthe sedimentcolumn and showthe effectof the temperature changeon the gashydrate stability zone throughtime. In addition,we provideseismic evidence tied to boreholedata for methanerelease along portions of the U.S. continentalslope; the releasesites are proximalto a buriedMesozoic reef front. Our modelresults, release site locations, published isotopic records, and oceancirculation models neither confirm nor refute thermaldissociation as the triggerfor the PETM methanerelease. In the absenceof definitiveevidence to confirmthermal dissociation,we investigatean altemativehypothesis in which continentalslope failure resulted in a catastrophicmethane release.Seismic and isotopic evidence indicates that Antarctic source deepwater circulation and seafloor erosion caused slope retreatalong
    [Show full text]
  • Late Cretaceous (Santonian-Campanian) Stratigraphy of the Northern Sacramento Valley, California
    Late Cretaceous (Santonian-Campanian) stratigraphy of the northern Sacramento Valley, California DcT^rf {Department of Geology, University of California at Davis, Davis, California 95616 rElbK L). WAKL) J ABSTRACT INTRODUCTION METHODS The Upper Cretaceous (Coniacian-lower Thick accumulations of Upper Cretaceous Strata of the Chico Formation dip gently to Campanian) Chico Formation of the north- sedimentary deposits are found on the western, the southwest. Sections were mejisured using eastern Sacramento Valley, California, includes northern, and eastern margins of the Great Val- either tape and compass or Jacob's staff. In some three newly defined members at the type local- ley of California (Fig. 1). The search for oil and areas, outcrop data were plotted on U.S. Geo- ity: (1) cobble conglomerate of the basal Pon- gas in northern California, as well as interest in logical Survey topographic quadrangles and derosa Way Member, (2) coarse-grained con- the processes of sedimentation in fore-arc re- stratigraphie columns were determined trigo- glomeratic sandstone of the overlying Musty gimes, has made the Great Valley seque nce, ex- nometrically. Paleontologic collections of mac- Buck Member, and (3) fine-grained silty sand- posed along the west side of the Sacramento rofossils were made during the measuring of stone of the uppermost Ten Mile Member. Valley, probably the best-studied fore-arc de- sections. Minor offset of bedding was observed Other outcrops of the Chico Formation exhibit posit in the world (Ojakangas, 1968; Dickinson, on more southerly exposures of the Chico For- the same three members plus an additional unit, 1971; Ingersoll, 1978, 1979). These workers in- mation, and such structural modification be- the Kingsley Cave Member, composed of mud- terpreted strata of the Great Valley sequence to comes more prominent farther north.
    [Show full text]
  • Reconstructions of the Continents Around the North Atlantic at About the 60Th Parallel
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library 1 Published in Earth and Planetary Science Letters 187: 55-69, 2001 Reconstructions of the continents around the North Atlantic at about the 60th parallel Trond H. Torsvik a;d, Rob Van der Voo b;*, Joseph G. Meert a;e, Jon Mosar a, Harald J. Walderhaug c a VISTA, c/o Geological Survey of Norway, Leiv Eiriksonsvei 39, N-7491 Trondheim, Norway b Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1063, USA c University of Bergen, Institute of Solid Earth Physics, Allegt. 41, N-5007Bergen, Norway d Institute for Petroleum Technology and Applied Geophysics, S.P. Andersens v. 15a, N-7491 Trondheim, NTNU, Norway e Department of Geography and Geology, Indiana State University, Terre Haute, IN 47809, USA Received 12 September 2000; received in revised form 16 February 2001; accepted 21 February 2001 Abstract Late Carboniferous^Early Tertiary apparent polar wander (APW) paths (300^40 Ma) for North America and Europe have been tested in various reconstructions. These paths demonstrate that the 500 fathom Bullard et al. fit is excellent from Late Carboniferous to Late Triassic times, but the continental configuration in northern Pangea changed systematically between the Late Triassic (ca. 214 Ma) and the Mid-Jurassic (ca. 170 Ma) due to pre-drift extension. Best fit North Atlantic reconstructions minimize differences in the Late Carboniferous^Early Jurassic and Late Cretaceous^ Tertiary segments of the APW paths, but an enigmatic difference exists in the paths for most of the Jurassic, whereas for the Early Cretaceous the data from Europe are nearly non-existent.
    [Show full text]
  • Clay Minerals at the Paleocene–Eocene Thermal Maximum: Interpretations, Limits, and Perspectives
    minerals Review Clay Minerals at the Paleocene–Eocene Thermal Maximum: Interpretations, Limits, and Perspectives Fabio Tateo Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche (IGG-CNR) Padova, c/o Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131 Padova, Italy; [email protected] Received: 20 October 2020; Accepted: 26 November 2020; Published: 30 November 2020 Abstract: The Paleocene–Eocene Thermal Maximum (PETM) was an “extreme” episode of environmental stress that affected the Earth in the past, and it has numerous affinities concerning the rapid increase in the greenhouse effect. It has left several biological, compositional, and sedimentary facies footprints in sedimentary records. Clay minerals are frequently used to decipher environmental effects because they represent their source areas, essentially in terms of climatic conditions and of transport mechanisms (a more or less fast travel, from the bedrocks to the final site of recovery). Clay mineral variations at the PETM have been studied by several authors in terms of climatic and provenance indicators, but also as tracers of more complicated interplay among different factors requiring integrated interpretation (facies sorting, marine circulation, wind transport, early diagenesis, etc.). Clay minerals were also believed to play a role in the recovery of pre-episode climatic conditions after the PETM exordium, by becoming a sink of atmospheric CO2 that is considered a necessary step to switch off the greenhouse hyperthermal effect. This review aims to consider the use of clay minerals made by different authors to study the effects of the PETM and their possible role as effective (simple) proxy tools for environmental reconstructions.
    [Show full text]
  • Jason P. Schein
    Curriculum Vitae JASON P. SCHEIN EXECUTIVE DIRECTOR BIGHORN BASIN PALEONTOLOGICAL INSTITUTE 3959 Welsh Road, Ste. 208 Willow Grove, Pennsylvania 19090 Office: (406) 998-1390 Cell: (610) 996-1055 ​ ​ [email protected] EDUCATION Ph.D. Student Drexel University, Department of Biology, Earth and Environmental Science, 2005-2013 M.Sc., Auburn University, Department of Geology and Geography, 2004 B.Sc., Auburn University, Department of Geology and Geography, 2000 RESEARCH AND PROFESSIONAL INTERESTS Mesozoic vertebrate marine and terrestrial faunas, paleoecology, paleobiogeography, faunistics, taphonomy, biostratigraphy, functional morphology, sedimentology, general natural history, education and outreach, paleontological resource assessment, and entrepreneurial academic paleontology. ACADEMIC, PROFESSIONAL, & BOARD POSITIONS 2019-Present Member of the Board, Yellowstone-Bighorn Research Association ​ 2017-Present Founding Executive Director, Bighorn Basin Paleontological Institute ​ 2017-Present Member of the Board, Delaware Valley Paleontological Society ​ 2016-Present Scientific and Educational Consultant, Field Station: Dinosaurs ​ 2015-Present Graduate Research Associate, Academy of Natural Sciences of Drexel University ​ 2007-2017 Assistant Curator of Natural History Collections and Exhibits, New Jersey State Museum ​ 2015-2017 Co-founder, Co-leader, Bighorn Basin Dinosaur Project ​ 2010-2015 International Research Associate, Palaeontology Research Team, University of Manchester ​ 2010-2014 Co-leader, New Jersey State Museum’s Paleontology Field Camp ​ 2007-2009 Interim Assistant Curator of Natural History, New Jersey State Museum ​ 2006-2007 Manager, Dinosaur Hall Fossil Preparation Laboratory ​ 2004-2005 Staff Environmental Geologist, Cobb Environmental and Technical Services, Inc. ​ 1 FIELD EXPERIENCE 2010-2019 Beartooth Butte, Morrison, Lance, and Fort Union formations, Bighorn Basin, Wyoming and Montana, U.S.A. (Devonian, Jurassic, Late Cretaceous, and earliest Paleocene, respectively) 2010 Hell Creek Formation, South Dakota, U.S.A.
    [Show full text]
  • The Triassic Period and the Beginning of the Mesozoic Era
    Readings and Notes An Introduction to Earth Science 2016 The Triassic Period and the Beginning of the Mesozoic Era John J. Renton Thomas Repine Follow this and additional works at: https://researchrepository.wvu.edu/earthscience_readings Part of the Geology Commons C\.\- \~ THE TRIASSIC PERIOD and the BEGINNING OF THE MESOZOIC ERA Introduction to the Mesozoic Era: The Triassic Period is the first period of the Mesozoic Era, a span of time from 245 million years ago to 66 million years ago. Although the Mesozoic era commonly known as the "Age of the Dinosaurs", it should be pointed out that there were other important evolutionary developments taking place such as the appearance of the first mammal birds and flowering plans. The onset of the Mesozoic Era, the Triassic Period, was also a time of profound tectonic activity affecting the entire North American craton. In the east, the primary event was the breakup of Pangea and the formation of the Atlantic Ocean. In the west, it was the formation ofan Andean-type continental margin as the newly-formed continent of North America rapidly moved westward in response to the opening of the Atlantic Ocean coupled with the addition of exotic terranes to the western margin of the continent.. As the Atlantic oceanic ridge rose, the volume of ocean waters that was displaced was sufficient to result in the most extensive flooding of the continent by an epeiric sea since the Paleozoic; a sea whose presence was recorded by the accumulation of extensive carbonates throughout the continental interior. In the oceans, new life forms evolved to fill the vacancies brought about by the Permian extinction.
    [Show full text]
  • Early Eocene Sediments of the Western Crimean Basin, Ukraine 100 ©Geol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte der Geologischen Bundesanstalt Jahr/Year: 2011 Band/Volume: 85 Autor(en)/Author(s): Khoroshilova Margarita A., Shcherbinina E. A. Artikel/Article: Sea-level changes and lithological architecture of the Paleocene - early Eocene sediments of the western Crimean basin, Ukraine 100 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 85 (ISSN 1017-8880) – CBEP 2011, Salzburg, June 5th – 8th Sea-level changes and lithological architecture of the Paleocene- early Eocene sediments of the western Crimean basin, Ukraine Margarita A. Khoroshilova1, E.A. Shcherbinina2 1 Geological Department of the Moscow State University ([email protected]) 2 Geological Institute of the Russian Academy of Sciences, Moscow, Russia During the Paleogene time, sedimentary basin of the western Crimea, Ukraine was bordered by land of coarse topography, which occupied the territory of modern first range of the Crimean Mountains, on the south and by Simferopol uplift on the north and displays a wide spectrum of shallow water marine facies. Paleocene to early Eocene marine deposits are well preserved and can be studied in a number of exposures. Correlated by standard nannofossil scale, five exposures present a ~17 Ma record of sea- level fluctuations. Danian, Selandian-Thanetian and Ypresian transgressive-regressive cycles are recognized in the sections studied. Major sea-level falls corresponding to hiatuses at the Danian/Selandian and Thanetian/Ypresian boundaries appear as hard-ground surfaces. Stratigraphic range of the first hiatus is poorly understood because Danian shallow carbonates are lack in nannofossils while accumulation of Selandian marl begins at the NP6.
    [Show full text]
  • Late Jurassic Dinosaurs on the Move, Gastroliths and Long-Distance Migration" (2019)
    Augustana College Augustana Digital Commons Geography: Student Scholarship & Creative Works Geography Winter 12-8-2019 Late Jurassic Dinosaurs on the Move, Gastroliths and Long- Distance Migration Josh Malone Augustana College, Rock Island Illinois Follow this and additional works at: https://digitalcommons.augustana.edu/geogstudent Part of the Geology Commons, Physical and Environmental Geography Commons, Sedimentology Commons, and the Spatial Science Commons Augustana Digital Commons Citation Malone, Josh. "Late Jurassic Dinosaurs on the Move, Gastroliths and Long-Distance Migration" (2019). Geography: Student Scholarship & Creative Works. https://digitalcommons.augustana.edu/geogstudent/8 This Student Paper is brought to you for free and open access by the Geography at Augustana Digital Commons. It has been accepted for inclusion in Geography: Student Scholarship & Creative Works by an authorized administrator of Augustana Digital Commons. For more information, please contact [email protected]. LATE JURASSIC DINOSAURS ON THE MOVE, GASTROLITHS AND LONG- DISTANCE MIGRATION a senior thesis written by Joshua Malone in partial fulfillment of the graduation requirements for the major in Geography Augustana College Rock Island, Illinois 61201 1 Table of Contents 1. Abstract ................................................................................................................................................ 4 2. Introduction ........................................................................................................................................
    [Show full text]
  • The Palaeocene – Eocene Thermal Maximum Super Greenhouse
    The Palaeocene–Eocene Thermal Maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change A. SLUIJS1, G. J. BOWEN2, H. BRINKHUIS1, L. J. LOURENS3 & E. THOMAS4 1Palaeoecology, Institute of Environmental Biology, Utrecht University, Laboratory of Palaeobotany and Palynology, Budapestlaan 4, 3584 CD Utrecht, The Netherlands (e-mail: [email protected]) 2Earth and Atmospheric Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA 3Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands 4Center for the Study of Global Change, Department of Geology and Geophysics, Yale University, New Haven CT 06520-8109, USA; also at Department of Earth & Environmental Sciences, Wesleyan University, Middletown, CT, USA Abstract: The Palaeocene–Eocene Thermal Maximum (PETM), a geologically brief episode of global warming associated with the Palaeocene–Eocene boundary, has been studied extensively since its discovery in 1991. The PETM is characterized by a globally quasi-uniform 5–8 8C warming and large changes in ocean chemistry and biotic response. The warming is associated with a negative carbon isotope excursion (CIE), reflecting geologically rapid input of large amounts of isotopically light CO2 and/or CH4 into the exogenic (ocean–atmosphere) carbon pool. The biotic response on land and in the oceans was heterogeneous in nature and severity, including radiations, extinctions and migrations. Recently, several events that appear
    [Show full text]