Impacts of Shellfish Aquaculture on the Environment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fisheries (Southland and Sub-Antarctic Areas Commercial Fishing) Regulations 1986 (SR 1986/220)
Reprint as at 1 October 2017 Fisheries (Southland and Sub-Antarctic Areas Commercial Fishing) Regulations 1986 (SR 1986/220) Paul Reeves, Governor-General Order in Council At Wellington this 2nd day of September 1986 Present: The Right Hon G W R Palmer presiding in Council Pursuant to section 89 of the Fisheries Act 1983, His Excellency the Governor-Gener- al, acting by and with the advice and consent of the Executive Council, hereby makes the following regulations. Contents Page 1 Title, commencement, and application 4 2 Interpretation 4 Part 1 Southland area Total prohibition 3 Total prohibitions 15 Note Changes authorised by subpart 2 of Part 2 of the Legislation Act 2012 have been made in this official reprint. Note 4 at the end of this reprint provides a list of the amendments incorporated. These regulations are administered by the Ministry for Primary Industries. 1 Fisheries (Southland and Sub-Antarctic Areas Reprinted as at Commercial Fishing) Regulations 1986 1 October 2017 Certain fishing methods prohibited 3A Certain fishing methods prohibited in defined areas 16 3AB Set net fishing prohibited in defined area from Slope Point to Sand 18 Hill Point Minimum set net mesh size 3B Minimum set net mesh size 19 3BA Minimum net mesh for queen scallop trawling 20 Set net soak times 3C Set net soak times 20 3D Restrictions on fishing in paua quota management areas 21 3E Labelling of containers for paua taken in any PAU 5 quota 21 management area 3F Marking of blue cod pots and fish holding pots [Revoked] 21 Trawling 4 Trawling prohibited -
Marine Bivalve Molluscs
Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. -
Diseases Affecting Finfish
Diseases Affecting Finfish Legislation Ireland's Exotic / Disease Name Acronym Health Susceptible Species Vector Species Non-Exotic Listed National Status Disease Measures Bighead carp (Aristichthys nobilis), goldfish (Carassius auratus), crucian carp (C. carassius), Epizootic Declared Rainbow trout (Oncorhynchus mykiss), redfin common carp and koi carp (Cyprinus carpio), silver carp (Hypophtalmichthys molitrix), Haematopoietic EHN Exotic * Disease-Free perch (Percha fluviatilis) Chub (Leuciscus spp), Roach (Rutilus rutilus), Rudd (Scardinius erythrophthalmus), tench Necrosis (Tinca tinca) Beluga (Huso huso), Danube sturgeon (Acipenser gueldenstaedtii), Sterlet sturgeon (Acipenser ruthenus), Starry sturgeon (Acipenser stellatus), Sturgeon (Acipenser sturio), Siberian Sturgeon (Acipenser Baerii), Bighead carp (Aristichthys nobilis), goldfish (Carassius auratus), Crucian carp (C. carassius), common carp and koi carp (Cyprinus carpio), silver carp (Hypophtalmichthys molitrix), Chub (Leuciscus spp), Roach (Rutilus rutilus), Rudd (Scardinius erythrophthalmus), tench (Tinca tinca) Herring (Cupea spp.), whitefish (Coregonus sp.), North African catfish (Clarias gariepinus), Northern pike (Esox lucius) Catfish (Ictalurus pike (Esox Lucius), haddock (Gadus aeglefinus), spp.), Black bullhead (Ameiurus melas), Channel catfish (Ictalurus punctatus), Pangas Pacific cod (G. macrocephalus), Atlantic cod (G. catfish (Pangasius pangasius), Pike perch (Sander lucioperca), Wels catfish (Silurus glanis) morhua), Pacific salmon (Onchorhynchus spp.), Viral -
An Assessment of Potential Heavy Metal Contaminants in Bivalve Shellfish from Aquaculture Zones Along the Coast of New South Wales, Australia
PEER-REVIEWED ARTICLE Hazel Farrell,* Phil Baker, Grant Webster, Food Protection Trends, Vol 38, No. 1, p. 18–26 Copyright© 2018, International Association for Food Protection Edward Jansson, Elizabeth Szabo and 6200 Aurora Ave., Suite 200W, Des Moines, IA 50322-2864 Anthony Zammit NSW Food Authority, 6 Ave. of the Americas, Newington NSW 2127, Australia An Assessment of Potential Heavy Metal Contaminants in Bivalve Shellfish from Aquaculture Zones along the Coast of New South Wales, Australia ABSTRACT INTRODUCTION Evaluation of shellfish aquaculture for potential contam- Certain elements are essential in human physiology; inants is essential for consumer confidence and safety. however, an incorrect balance or excess of certain elements Every three years, between 1999 and 2014, bivalve in the diet can result in negative health effects. Heavy metals shellfish from aquaculture zones in up to 31 estuaries are of particular concern because of their ability to persist across 2,000 km of Australia’s east coast were tested and accumulate in the environment. While heavy metals for cadmium, copper, lead, mercury, selenium and zinc. can occur naturally in the environment, human activities Inorganic arsenic was included in the analyses in 2002, and run-off from urban and agricultural land use may and total arsenic was used as a screen for the inorganic increase their concentrations (6, 29). This is particularly form in subsequent years. Concentrations of inorganic important when considering the growing demands on arsenic, cadmium, lead and mercury were low and did not coastal resources due to increasing populations (3) and the exceed maximum limits mandated in the Australia New ability of filter feeding bivalve shellfish to bio-accumulate Zealand Food Standards Code. -
National Review of Ostrea Angasi Aquaculture: Historical Culture, Current Methods and Future Priorities
National review of Ostrea angasi aquaculture: historical culture, current methods and future priorities Christine Crawford Institute of Marine and Antarctic Studies ! [email protected] " secure.utas.edu.au/profles/staff/imas/Christine-Crawford Executive summary Currently in Australia Ostrea angasi oysters (angasi) are being cultured on a small scale, with several farmers growing relatively small numbers of angasis on their predominately Sydney rock or Pacifc oyster farms. Very few farmers are culturing commercially viable quantities of angasi oysters. There are several reasons for this. Although angasi oysters occur in the intertidal zone, they are naturally most abundant in the subtidal and are less tolerant of fuctuating environmental conditions, especially temperature and salinity, than other oyster species. They also have a much shorter shelf life and start to gape after one to two days. Additionally, angasi oysters are susceptible to Bonamiosis, a parasitic disease which has caused major mortalities in several areas. Stress caused by extremes or a combination of factors such as high stocking densities, rough handling, poor food, high temperatures and low salinities have all been observed to increase the prevalence of Bonamiosis. Growth rates of angasi oysters have also been variable, ranging from two to four years to reach market size. From discussions with oyster famers, managers and researchers and from a review of the literature I suggest that the survival and growth of cultured angasi oysters could be signifcantly improved by altering some farm management practices. Firstly, growout techniques need to be specifcally developed for angasi oysters which maintain a low stress environment (not modifcations from other oysters). -
1 - R.Int.Drv/Rh/Lbrest 2001-01
Direction des Ressources Vivantes/Ressources Halieutiques/Laboratoire Côtier Brest PITEL Mathilde BERTHOU Patrick FIFAS Spyros fév 2001 - R.INT.DRV/RH/LBREST 2001-01 1 - Dredge design and fisheries Les dragues françaises et la pêcherie 2 - Environnemental impact Impact sur l’environnement 3 - Management Gestion Programme ECODREDGE 1999-2001 Report 1 – Dredge designs and fisheries These 3 reports have been realised during Ecodredge Program (1999-2001) and contribute to a final ECODREDGE report on international dredges designs and fisheries, environnemetal impact and management. REPORT 1 DREDGE DESIGNS AND FISHERIES ECODREDGE Report 1 – Dredge designs and fisheries Table of contents 1 DREDGE DESIGNS....................................................................................... 5 1.1 Manual dredges for sea-shore fishing................................................................... 7 1.1.1 Recreational fisheries....................................................................................... 7 1.1.2 Professional fisheries........................................................................................ 7 1.2 Flexible Dredges for King scallops (Pecten maximus)......................................... 9 1.3 Flexible and rigid dredges for Warty venus (Venus verrucosa) ....................... 14 1.4 Flexible Dredge for Queen scallops (Chlamys varia, Chlamys opercularia)..... 18 1.5 Rigid Dredges for small bivalves......................................................................... 19 1.6 Flexible Dredge for Mussels -
Breeding and Domestication of Eastern Oyster (Crassostrea
W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2014 Breeding And Domestication Of Eastern Oyster (Crassostrea Virginica) Lines For Culture In The Mid-Atlantic, Usa: Line Development And Mass Selection For Disease Resistance Anu Frank-Lawale Virginia Institute of Marine Science Standish K. Allen Jr. Virginia Institute of Marine Science Lionel Degremont Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Frank-Lawale, Anu; Allen, Standish K. Jr.; and Degremont, Lionel, "Breeding And Domestication Of Eastern Oyster (Crassostrea Virginica) Lines For Culture In The Mid-Atlantic, Usa: Line Development And Mass Selection For Disease Resistance" (2014). VIMS Articles. 334. https://scholarworks.wm.edu/vimsarticles/334 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 33, No. 1, 153–165, 2014. BREEDING AND DOMESTICATION OF EASTERN OYSTER (CRASSOSTREA VIRGINICA) LINES FOR CULTURE IN THE MID-ATLANTIC, USA: LINE DEVELOPMENT AND MASS SELECTION FOR DISEASE RESISTANCE ANU FRANK-LAWALE,* STANDISH K. ALLEN, JR. AND LIONEL DE´GREMONT† Virginia Institute of Marine Science, Aquaculture Genetics and Breeding Technology Center, College of William and Mary, 1375 Greate Road, Gloucester Point, VA 23062 ABSTRACT A selective breeding program for Crassostrea virginica was established in 1997 as part of an initiative in Virginia to address declining oyster harvests caused by the two oyster pathogens Haplosporidium nelsoni (MSX) and Perkinsus marinus (Dermo). -
Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration. -
Optimization of in Vitro Fertilization Using Cryopreserved Sperm of Crassostrea Angulata and Establishment of a Cryopreservation Protocol for Chamelea Gallina
Ana Luísa Lopes Santos Optimization of in vitro fertilization using cryopreserved sperm of Crassostrea angulata and establishment of a cryopreservation protocol for Chamelea gallina UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS E TECNOLOGIA 2018 Ana Luísa Lopes Santos Optimization of in vitro fertilization using cryopreserved sperm of Crassostrea angulata and establishment of a cryopreservation protocol for Chamelea gallina Thesis for Master Degree in Aquaculture and Fisheries Specialization Aquaculture Thesis supervision by: Professora Doutora Elsa Cabrita, CCMAR, Universidade do Algarve Dra Catarina Anjos, CCMAR, Universidade do Algarve UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS E TECNOLOGIA 2018 ii “Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída.” ________________________________________________ Ana Luísa Lopes Santos Copyright © “A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.” iii Eles não sabem, nem sonham, que o sonho comanda a vida, que sempre que um homem sonha o mundo pula e avança como bola colorida entre as mãos de uma criança.” António Gedeão iv This work was supported by VENUS Project (0139_VENUS_5_E) “Estudio Integral de los bancos naturales de moluscos bivalvos en el Golfo de Cádiz para su gestión sostenible y la conservación de sus hábitats asociados”. -
Olympia Oyster (Ostrea Lurida)
COSEWIC Assessment and Status Report on the Olympia Oyster Ostrea lurida in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olympia Oyster Ostrea lurida in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 56 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Gillespie, G.E. 2000. COSEWIC status report on the Olympia Oyster Ostrea conchaphila in Canada in COSEWIC assessment and update status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC acknowledges Graham E. Gillespie for writing the provisional status report on the Olympia Oyster, Ostrea lurida, prepared under contract with Environment Canada and Fisheries and Oceans Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Robert Forsyth and Dr. Gerald Mackie, COSEWIC Molluscs Specialist Subcommittee Co-Chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’huître plate du Pacifique (Ostrea lurida) au Canada. -
Assessment of the Aquacultural Potential of the Portuguese Oyster Crassostrea Angulata
Assessment of the aquacultural potential of the Portuguese oyster Crassostrea angulata Frederico Miguel Mota Batista Dissertação de doutoramento em Ciências do Meio Aquático 2007 Frederico Miguel Mota Batista Assessment of the aquacultural potential of the Portuguese oyster Crassostrea angulata Dissertação de Candidatura ao grau de Doutor em Ciências do Meio Aquático submetida ao Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto. Orientador – Doutor Pierre Boudry Categoria – Investigador Afiliação – “Institut Français de Recherche pour l’Exploitation de la Mer” Co-orientador – Professora Doutora Maria Armanda Henriques Categoria –Professora catedrática Afiliação – Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto. ACKNOWLEDGEMENTS First of all, I would like to thank Dr. Pierre Boudry for accepting to supervise this work, for your commitment and for providing me all conditions that made possible this work. Thank you also for your guidance and at the same time for giving me the freedom to make my own decisions which helped me to become a more independent researcher. Gostaria de agradecer à minha co-orientadora, a Professora Doutora Maria Armanda Henriques por me ter aceite como seu aluno de doutoramento e pela disponibilidade. Gostaria de agradecer ao Dr. Carlos Costa Monteiro por ter permitido a realização de parte deste trabalho na estação experimental de moluscicultura de Tavira do Instituto Nacional de Investigação Agrária e das Pescas (INIAP/IPIMAR). Gostaria também de agradecer-lhe pela disponibilidade e incentivo durante o desenrolar do doutoramento. Je remercie Dr. Philippe Goulletquer et Dr. Tristan Renault pour m’avoir accueillie au sein du Laboratoire de Génétique et Pathologie de la Station de La Tremblade de l’Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER). -
NICO Menu Food 2.8 NEW.Indd
OYSTERS LITTLE NECK CLAMS 1.5 1/2 dozen minimum, accompanied with mignonette, cocktail sauce, hothog sauce, island, lemon VA juice & crostinis clean with a smooth bri NORTH ATLANTIC MID ATLANTIC SOUTH ATLANTIC MOOKIE BLUE* 4 JAMES RIVER* 2 SINGLE LADIES* 3.25 Damariscotta, ME James River, VA Lady Island, SC relatively high salinity, but are very meaty and a mild subtle salinity a clean, briny beginning characterized by their sweet finish. with a sweet finish BIG ROCK* 3 BLUE POINT* 2.75 BEKAH BAY* 2.75 Harwich, MA Long Island, CT Morehead , NC plump meat with clean mild briny flavor large cup, high brine, crisp mineral notes & high salinity followed by a sweet finish GLIDDEN POINT* 3.75 UMAMI* 3.75 LOWCOUNTRY CUPS* 3.75 Bristol, ME Narraganset Bay, RI ACE Basin, SC high salinity, medium to high salinity, vegetal finish assertive salinity, mild brine large body, firm texture THE “OT” * 4 LITTLE NECK CLAMS* 1.5 TIPSY OYSTER* +2 Harwich, MA Hog Island, VA Pick an oyster Big Rock oyster + tuna, capers, citrus clean with a smooth brine pick your poison ADDUCTOR MUSCLE we choose not to slice the adductor muscle on our oysters. Once the muscle is sliced, the oyster has 8 minutes left of life. Simply slide the cocktail fork under the muscle to release it from the shell. If you want it cut, please ask your server. *Consuming raw or undercooked shellfish may increase your risk of foodborne illness. RAW BAR GARDE MANGER A LA CARTE PLATEAUX La Salade Verte 12 pomegranate, pickled red onion tomato, goat cheese cigar, dijon vinaigrette Le Petit* 60