Isolated Severe Blunt Traumatic Brain Injury: Effect of Obesity on Outcomes

Total Page:16

File Type:pdf, Size:1020Kb

Isolated Severe Blunt Traumatic Brain Injury: Effect of Obesity on Outcomes CLINICAL ARTICLE J Neurosurg 134:1667–1674, 2021 Isolated severe blunt traumatic brain injury: effect of obesity on outcomes Jennifer T. Cone, MD, MHS,1 Elizabeth R. Benjamin, MD, PhD,2 Daniel B. Alfson, MD,2 and Demetrios Demetriades, MD, PhD2 1Department of Surgery, Section of Trauma and Acute Care Surgery, University of Chicago, Illinois; and 2Department of Surgery, Division of Trauma, Emergency Surgery, and Surgical Critical Care, LAC+USC Medical Center, University of Southern California, Los Angeles, California OBJECTIVE Obesity has been widely reported to confer significant morbidity and mortality in both medical and surgical patients. However, contemporary data indicate that obesity may confer protection after both critical illness and certain types of major surgery. The authors hypothesized that this “obesity paradox” may apply to patients with isolated severe blunt traumatic brain injuries (TBIs). METHODS The Trauma Quality Improvement Program (TQIP) database was queried for patients with isolated severe blunt TBI (head Abbreviated Injury Scale [AIS] score 3–5, all other body areas AIS < 3). Patient data were divided based on WHO classification levels for BMI: underweight (< 18.5 kg/m2), normal weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), obesity class 1 (30.0–34.9 kg/m2), obesity class 2 (35.0–39.9 kg/m2), and obesity class 3 (≥ 40.0 kg/ m2). The role of BMI in patient outcomes was assessed using regression models. RESULTS In total, 103,280 patients were identified with isolated severe blunt TBI. Data were excluded for patients aged < 20 or > 89 years or with BMI < 10 or > 55 kg/m2 and for patients who were transferred from another treatment center or who showed no signs of life upon presentation, leaving data from 38,446 patients for analysis. Obesity was not found to confer a survival advantage on univariate analysis. On multivariate analysis, underweight patients as well as obesity class 1 and 3 patients had a higher rate of mortality (OR 1.86, 95% CI 1.48–2.34; OR 1.18, 95% CI 1.01–1.37; and OR 1.41, 95% CI 1.03–1.93, respectively). Increased obesity class was associated with an increased risk of respiratory com- plications (obesity class 1: OR 1.19, 95% CI 1.03–1.37; obesity class 2: OR 1.30, 95% CI 1.05–1.62; obesity class 3: OR 1.55, 95% CI 1.18–2.05) and thromboembolic complications (overweight: OR 1.43, 95% CI 1.16–1.76; obesity class 1: OR 1.45, 95% CI 1.11–1.88; obesity class 2: OR 1.55, 95% CI 1.05–2.29) despite a decreased risk of overall complica- tions (obesity class 2: OR 0.82, 95% CI 0.73–0.92; obesity class 3: OR 0.83, 95% CI 0.72–0.97). Underweight patients had a significantly increased risk of overall complications (OR 1.39, 95% CI 1.24–1.57). CONCLUSIONS Although there was an obesity-associated decrease in overall complications, the study data did not demonstrate a paradoxical protective effect of obesity on mortality after isolated severe blunt TBI. Obese patients with isolated severe blunt TBI are at increased risk of respiratory and venous thromboembolic complications. However, un- derweight patients appear to be at highest risk after severe blunt TBI, with significantly increased risks of morbidity and mortality. https://thejns.org/doi/abs/10.3171/2020.3.JNS193458 KEYWORDS traumatic brain injury; blunt trauma; body mass index; obesity; TQIP; Trauma Quality Improvement Program BESITY is a significant medical comorbidity that states having an obesity prevalence of at least 20% (https:// has risen dramatically in prevalence in the United www.cdc.gov/obesity/data/index.html). States over the last several decades. The preva- Weight is standardly described by the World Health Olence of obesity has more than doubled in the last 25 years. Organization in reference to a person’s body mass index Currently, 36.5% of the US population is obese, with all (BMI; kg/m2).1 Obesity is a BMI ≥ 30 kg/m2, with the fol- ABBREVIATIONS AIS = Abbreviated Injury Scale; ALI/ARDS = acute lung injury/acute respiratory distress syndrome; AUROC = area under the receiver operating char- acteristic; DVT = deep venous thrombosis; ED = emergency department; GCS = Glasgow Coma Scale; HR = heart rate; LOS = length of stay; PE = pulmonary embolism; SBP = systolic blood pressure; TBI = traumatic brain injury; TQIP = Trauma Quality Improvement Program; UTI = urinary tract infection; VTE = venous thromboembolism. SUBMITTED December 20, 2019. ACCEPTED March 9, 2020. INCLUDE WHEN CITING Published online June 12, 2020; DOI: 10.3171/2020.3.JNS193458. ©AANS 2021, except where prohibited by US copyright law J Neurosurg Volume 134 • May 2021 1667 Unauthenticated | Downloaded 10/04/21 04:10 PM UTC Cone et al. lowing discrete obesity classes for increasing BMI: nor- mal weight, 18.5–24.9 kg/m2; underweight, < 18.5 kg/m2; and overweight, 25.0–29.9 kg/m2. Because BMI is not a measure of body fat, there is some controversy regard- ing its utility, especially in individuals with high muscle mass.2 Despite this, BMI remains a standard variable in the description and study of weight. It is generally believed that obesity carries a substantial risk for increased morbidity and mortality in the general population.3–6 Despite this intuitive assumption, there is recent evidence that obese patients may have improved outcomes in certain clinical scenarios.7–13 This protective effect of obesity has been described as the “obesity para- dox.” This term was first coined in 2002 after Gruberg et al. showed that normal-weight patients fared worse after percutaneous coronary intervention than overweight and obese patients, and since then the obesity paradox has been examined in a wide range of medical and surgical patient populations.14 Studies have documented this phe- nomenon in cases of infection and cancer, as well as after cardiac surgery, general surgery, and vascular surgery.7,8, 1 4 – 1 7 , 1 9 , 2 0 , 3 7 Although the etiology of this paradoxical finding is unclear, it is thought to be based in an antiinflammatory effect conferred by the adipose tissue.21–23 The study of the obesity paradox in the trauma popula- tion has yielded conflicting results, likely due to the het- erogeneity of the population.18,24–31 Patients with isolated FIG. 1. Study design. All patients recorded in the TQIP database with severe blunt traumatic brain injury (TBI) represent a clini- isolated severe blunt TBI indicated by maximum (Max) AIS scores of 3 cally unique subset of the trauma population, and the ef- (n = 37,786), 4 (n = 76,856), or 5 (n = 27,366) were selected, leaving data fect of obesity on outcomes in these patients is unclear. In from 38,446 patients for analysis after exclusion criteria were applied (some patients met multiple exclusion criteria). MOI = mechanism of this study we aimed to determine the effect of patient BMI injury. on outcomes after isolated severe blunt TBI. Methods culated using the standard formula.1 Patients with BMI < This study was a retrospective analysis of patient data 10 or > 55 kg/m2 were excluded. Patients were then strati- obtained from the Trauma Quality Improvement Program fied into 5 groups according to their BMI classification: (TQIP) database. Data for all adult patients with isolated underweight (< 18.5 kg/m2), normal weight (18.5–24.9 kg/ severe blunt TBI were collected (2013–2014). Isolated se- m2), overweight (25.0–29.9 kg/m2), obesity class 1 (30.0– vere blunt TBIs were defined based on a head Abbreviated 34.9 kg/m2), obesity class 2 (35.0–39.9 kg/m2), and obesity Injury Scale (AIS) score of 3–5. Patients with significant class 3 (≥ 40.0 kg/m2). extracranial injuries (AIS > 2) were excluded (Fig. 1). Oth- The primary outcomes were overall mortality and er exclusion criteria included patients aged < 20 years or overall in-hospital complications. Secondary outcomes > 89 years and patients who were dead on arrival. Patients included occurrence of any respiratory complications (in- who were transferred from another hospital were also ex- cluding ALI/ARDS, pneumonia, and unplanned intuba- cluded, as initial data for vital signs and Glasgow Coma tion) and occurrence of any VTE complications (including Scale (GCS) scores recorded at an outside hospital could DVT and PE). not be accurately abstracted. Pertinent demographic and Unknown data points were treated as missing data. clinical data for each patient were extracted, including age, Descriptive and comparative statistical analyses were per- sex, height, weight, comorbidities (including hypertension, formed, with categorical data reported as number (%) and smoking status, diabetes mellitus, alcoholism, and bleed- nonparametric continuous variables reported as medians ing disorder), initial emergency department (ED) vital with interquartile ranges (IQRs), as well as dichotomized signs and GCS scores, hospital length of stay (LOS), ICU into clinically relevant cutoff values. Univariate analysis LOS, presence of and time to venous thromboembolism for categorical variables was performed using the chi- (VTE) prophylaxis, in-hospital complications, and mor- square test or the Fisher exact test and for continuous vari- tality. Data were collected for in-hospital complications, ables the Kruskal-Wallis test. including pneumonia, acute lung injury/acute respiratory To compare outcomes according to BMI group, bino- distress syndrome (ALI/ARDS), unplanned intubation, mial logistic regression models were constructed using deep venous thrombosis (DVT), thrombophlebitis, pul- normal-weight patients as the reference group, with vari- monary embolism (PE), urinary tract infection (UTI), and ables inserted using the enter method. Demographic and myocardial infarction, as well as mortality. BMI was cal- clinical variables—including male sex; age > 55 years; 1668 J Neurosurg Volume 134 • May 2021 Unauthenticated | Downloaded 10/04/21 04:10 PM UTC Cone et al.
Recommended publications
  • Blunt and Blast Head Trauma: Different Entities
    International Tinnitus Journal, Vol. 15, No. 2, 115–118 (2009) Blunt and Blast Head Trauma: Different Entities Michael E. Hoffer,1 Chadwick Donaldson,1 Kim R. Gottshall1, Carey Balaban,2 and Ben J. Balough1 1 Spatial Orientation Center, Department of Otolaryngology, Naval Medical Center San Diego, San Diego, California, and 2 Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Abstract: Mild traumatic brain injury (mTBI) caused by blast-related and blunt head trauma is frequently encountered in clinical practice. Understanding the nuances between these two distinct types of injury leads to a more focused approach by clinicians to develop better treat- ment strategies for patients. In this study, we evaluated two separate cohorts of mTBI patients to ascertain whether any difference exists in vestibular-ocular reflex (VOR) testing (n ϭ 55 en- rolled patients: 34 blunt, 21 blast) and vestibular-spinal reflex (VSR) testing (n ϭ 72 enrolled patients: 33 blunt, 39 blast). The VOR group displayed a preponderance of patients with blunt mTBI, demonstrating normal to high-frequency phase lag on rotational chair testing, whereas patients experiencing mTBI from blast-related causes revealed a trend toward low-frequency phase lag on evaluation. The VSR cohort showed that patients with posttraumatic migraine- associated dizziness tended to test higher on posturography. However, an indepth look at the total patient population in this second cohort reveals that a higher percentage of blast-exposed patients exhibited a significantly increased latency on motor control testing as compared to pa- tients with blunt head injury ( p Ͻ .02). These experiments identify a distinct difference be- tween blunt-injury and blast-injury mTBI patients and provide evidence that treatment strategies should be individualized on the basis of each mechanism of injury.
    [Show full text]
  • Traumatic Brain Injury (TBI)
    Traumatic Brain Injury (TBI) Carol A. Waldmann, MD raumatic brain injury (TBI), caused either by blunt force or acceleration/ deceleration forces, is common in the general population. Homeless persons Tare at particularly high risk of head trauma and adverse outcomes to TBI. Even mild traumatic brain injury can lead to persistent symptoms including cognitive, physical, and behavioral problems. It is important to understand brain injury in the homeless population so that appropriate referrals to specialists and supportive services can be made. Understanding the symptoms and syndromes caused by brain injury sheds light on some of the difficult behavior observed in some homeless persons. This understanding can help clinicians facilitate and guide the care of these individuals. Prevalence and Distribution recover fully, but up to 15% of patients diagnosed TBI and Mood Every year in the USA, approximately 1.5 with MTBI by a physician experience persistent Swings. million people sustain traumatic brain injury disabling problems. Up to 75% of brain injuries This man suffered (TBI), 230,000 people are hospitalized due to TBI are classified as MTBI. These injuries cost the US a gunshot wound and survive, over 50,000 people die from TBI, and almost $17 billion per year. The groups most at risk to the head and many subsequent more than 1 million people are treated in emergency for TBI are those aged 15-24 years and those aged traumatic brain rooms for TBI. In persons under the age of 45 years, 65 years and older. Men are twice as likely to sustain injuries while TBI is the leading cause of death.
    [Show full text]
  • Chronic Traumatic Encephalopathy: the Dangers of Getting “Dinged” Shaheen E Lakhan1* and Annette Kirchgessner1,2
    Lakhan and Kirchgessner SpringerPlus 2012, 1:2 http://www.springerplus.com/content/1/1/2 a SpringerOpen Journal REVIEW Open Access Chronic traumatic encephalopathy: the dangers of getting “dinged” Shaheen E Lakhan1* and Annette Kirchgessner1,2 Abstract Chronic traumatic encephalopathy (CTE) is a form of neurodegeneration that results from repetitive brain trauma. Not surprisingly, CTE has been linked to participation in contact sports such as boxing, hockey and American football. In American football getting “dinged” equates to moments of dizziness, confusion, or grogginess that can follow a blow to the head. There are approximately 100,000 to 300,000 concussive episodes occurring in the game of American football alone each year. It is believed that repetitive brain trauma, with or possibly without symptomatic concussion, sets off a cascade of events that result in neurodegenerative changes highlighted by accumulations of hyperphosphorylated tau and neuronal TAR DNA-binding protein-43 (TDP-43). Symptoms of CTE may begin years or decades later and include a progressive decline of memory, as well as depression, poor impulse control, suicidal behavior, and, eventually, dementia similar to Alzheimer’s disease. In some individuals, CTE is also associated with motor neuron disease similar to amyotrophic lateral sclerosis. Given the millions of athletes participating in contact sports that involve repetitive brain trauma, CTE represents an important public health issue. In this review, we discuss recent advances in understanding the etiology of CTE. It is now known that those instances of mild concussion or “dings” that we may have previously not noticed could very well be causing progressive neurodegenerative damage to a player’s brain.
    [Show full text]
  • Understanding Traumatic Brain Injury in Women
    WORKSHOP SUMMARY UNDERSTANDING TRAUMATIC BRAIN INJURY IN WOMEN NIH Main Campus, December 18-19, 2017 Table of Contents Executive Summary ........................................................................................................................................ 1 Introduction ................................................................................................................................................... 3 Background .................................................................................................................................................... 3 Welcome ....................................................................................................................................................... 4 Keynote: Identifying Sex Differences in Research: What Are the Challenges? ................................................ 4 Session I: Sex Differences in TBI across the Lifespan ...................................................................................... 6 The Epidemiology of Sex Differences in the Incidence of TBI ........................................................................................ 6 Sex Differences in Pediatric Cases of TBI ....................................................................................................................... 6 Sex Differences in Older Adults following TBI ............................................................................................................... 7 Session II: TBI as a Consequence of Intimate Partner
    [Show full text]
  • RCH Trauma Guideline Management of Traumatic Pneumothorax & Haemothorax
    RCH Trauma Guideline Management of Traumatic Pneumothorax & Haemothorax Trauma Service, Division of Surgery Aim To describe safe and competent management of traumatic pneumothorax and haemothorax at RCH. Definition of Terms Haemothorax: collection of blood in the pleural space Pneumothorax: collection of air in the pleural space Tension Pneumothorax: one way valve effect which allows air to enter the pleural space, but not leave. Air and so intrapleural pressure (tension) builds up and forces a mediastinal shift. This leads to decreased venous return to the heart and lung collapse/compression causing acute life-threatening respiratory and cardiovascular compromise. Ventilated patients are particularly at risk due to the positive pressure forcing more air into the pleural space. Tension pneumothorax results in rapid clinical deterioration and is an emergency. Finger thoracostomy: preferred method of emergency pleural decompression of a tension pneumothorax. It involves incising 3-4cm of skin over the 4th intercostal space just anterior to the mid-axillary line followed by blunt dissection to the pleura to allow introduction of a finger into the pleural space. Main Points 1. Management of a clinically significant traumatic pneumothorax or haemothorax typically requires pleural decompression by chest drain insertion. 2. Anatomical landmarks should be used to determine the site of incision for pleural decompression within the ‘triangle of safety’ to reduce risk of harm. 3. All patients in traumatic cardiac arrest who do not respond immediately to airway opening should have their pleural cavities decompressed by finger thoracostomy, concurrent with efforts to restore the circulating blood volume. 4. With few exceptions, chest drain insertion follows immediately after finger thoracostomy, with the caveat that the time and place of insertion must be consistent with the child’s overall clinical priorities.
    [Show full text]
  • Withholding and Termination of Resuscitation of Adult Cardiopulmonary Arrest Secondary to Trauma: Resource Document to the Joint NAEMSP-ACSCOT Position Statements
    GUIDELINE Withholding and termination of resuscitation of adult cardiopulmonary arrest secondary to trauma: Resource document to the joint NAEMSP-ACSCOT position statements Michael G. Millin, MD, MPH, Samuel M. Galvagno, DO, PhD, Samiur R. Khandker, MD, Alisa Malki, BA, and Eileen M. Bulger, MD, for the Standards and Clinical Practice Committee of the National Association of EMS Physicians (NAEMSP) and the Subcommittee on Emergency ServicesYPrehospital of the American College of Surgeons’ Committee on Trauma (ACSCOT) AAST Continuing Medical Education Article Accreditation Statement Disclosure Information This activity has been planned and implemented in accordance with the Es- In accordance with the ACCME Accreditation Criteria, the American College of sential Areas and Policies of the Accreditation Council for Continuing Medical Surgeons, as the accredited provider of this journal activity, must ensure that anyone Education through the joint sponsorship of the American College of Surgeons in a position to control the content of JTraumaAcuteCareSurgarticles selected for and the American Association for the Surgery of Trauma. The American CME credit has disclosed all relevant financial relationships with any commercial College Surgeons is accredited by the ACCME to provide continuing medical interest. Disclosure forms are completed by the editorial staff, associate editors, re- education for physicians. viewers, and all authors. The ACCME defines a ‘commercial interest’ as Bany entity AMA PRA Category 1 Creditsi producing, marketing, re-selling, or distributing health care goods or services con- sumed by, or used on, patients.[BRelevant[ financial relationships are those (in any The American College of Surgeons designates this Journal-based CME activity for amount) that may create a conflict of interest and occur within the 12 months pre- a maximum of 1 AMA PRA Category 1 Crediti.
    [Show full text]
  • Types of Traumatic Brain Injuries
    KEANE LAW FIRM www.keanelaw.com Traumatic Brain Injury – Article 3 415-398-2777 What types of brain injuries are there? There are two general types of traumatic brain injury categories: closed and open head trauma. The following terms are descriptions of different types of head injuries. ** Not all head trauma results in traumatic brain injury. Ø Closed head trauma is typically caused by blunt force and non- penetrating objects. Blunt trauma is the most common form of head injury with 75-90% resulting in mild concussion, or otherwise known as classic cerebral concussion. Closed head injuries may also result from acceleration followed by sudden deceleration. Ø Open head trauma is typically caused by penetrating and projectile, missile type objects. Open head trauma results in exposure of the sterile contents within the cranium to be exposed to debris and contaminants from the external environment. This causes the victim to have an increased risk for infection. Penetrating objects, that create tracts through the brain, cause a reaction in the injured tissues that may result in tissue disintegration and demyelination of white matter along the path of the injury. Traumatic brain injury victims with penetrating open head trauma and concurrent unconsciousness, flaccid or decerebrate posturing have a very high mortality rate. Ø Coup injuries refer to the point of impact from direct contact between the skull and an object. In general, coup injuries may cause contusions, skull fractures and/or scalp hematomas. Ø Contrecoup injuries result from the brain hitting the inside of the skull on the opposite side of the point of impact because of the force that causes the brain to bounce inside of the cranium.
    [Show full text]
  • Evaluation and Management of Abdominal Gunshot Wounds: a Western Trauma Association Critical Decisions Algorithm
    2019 WTA PODIUM PAPER Evaluation and management of abdominal gunshot wounds: A Western Trauma Association critical decisions algorithm 01/21/2020 on 8uk0Zth40dAfp4cavR312AYBCIK5pC5Bv36rXL17h+BhYlz5/ljyLewteYwWcBChS9Dexu/EpxsYEdogfkiC4LCdokbdCbopQj8r0xXe2wo3RqbAvIfZ5LTeX4asgT67qt0lbM2/iC8= by https://journals.lww.com/jtrauma from Downloaded Matthew J. Martin, MD, Carlos V. R. Brown, MD, David V. Shatz, MD, Hasan Alam, MD, Karen Brasel, MD, Downloaded Carl J. Hauser, MD, Marc de Moya, MD, Ernest E. Moore, MD, Gary Vercruysse, MD, and Kenji Inaba, MD, Portland, Oregon from https://journals.lww.com/jtrauma KEY WORDS: Gunshot wounds; abdominal trauma; penetrating; Western Trauma Association; algorithm. his is a recommended evaluation and management algorithm as a general framework in the approach to these patients, and to T from the Western Trauma Association (WTA) Algorithms customize and adapt the algorithm to better suit the specifics of by 8uk0Zth40dAfp4cavR312AYBCIK5pC5Bv36rXL17h+BhYlz5/ljyLewteYwWcBChS9Dexu/EpxsYEdogfkiC4LCdokbdCbopQj8r0xXe2wo3RqbAvIfZ5LTeX4asgT67qt0lbM2/iC8= Committee addressing the management of adult patients with ab- that program, personnel, or location. We also recognize that the dominal gunshot wounds (GSW). Because there is a paucity of majority of civilian experience and published literature comes published prospective randomized clinical trials that have gener- from injuries due to standard low-velocity weapons and projec- ated class I data, these recommendations are based primarily on tiles, and that there
    [Show full text]
  • Multisystem Trauma Objectives
    Multisystem Trauma Objectives Describe the pathophysiology and clinical manifestations of multisystem trauma complications. Describe the risk factors and criteria for the multisystem trauma patient. Describe the nursing management of the patient recovering from multisystem trauma. Describe the collaboration with the interdisciplinary teams caring for the multisystem trauma patient. Multisystem Trauma Facts Leading cause of death among children and adults below the age of 45 4th leading cause of death for all ages Accounts for approximately 170,000 deaths each year and over 400 deaths per day Affects mostly the young and the old Kills more Americans than stroke and AIDS combined Leading cause of disability Costs: 100 billion dollars to U.S. society annually Research dollars only 4% of U.S. federal research dollars Most traumas are preventable! Who Is a Trauma Patient? Evidence-Based Categories: Physiologic Criteria Mechanism of Injury Criteria Patient/Environmental Criteria Anatomic Criteria mc.vanderbilt.edu Umm.edu Physiologic Criteria Systolic blood pressure <90mm HG Respiratory rate 10 or >29 per minute Glasgow Coma Scale score <14 Nremtacademy.com Anatomic Criteria Penetrating injuries to the head, neck, torso or proximal extremities 2 or more obvious femur or humerus fractures Amputation above the waist or ankle Crushed, de-gloved or mangled extremities Open or depressed skull fracture Unstable chest wall (flail chest) Paralysis Pelvic fracture www.pulmccrn.org Mechanism of Injury Criteria Blunt Trauma:
    [Show full text]
  • Trauma Guidelines
    Trauma Guidelines June 2016 ADULT Glasgow Coma Scale Eye Opening Spontaneous 4 To Voice 3 To Pain 2 None 1 Verbal Response Oriented 5 Confused 4 Inappropriate words 3 Incomprehensible words 2 None 1 Motor Response Obeys commands 6 Localizes to pain 5 Withdraws to pain 4 Abnormal flexion 3 Abnormal extension 2 None 1 Qualifiers: •Patient Chemically Sedated •Patient Intubated •Obstruction to the Patients Eye Trauma Guidelines Stanford Hospital and Clinics Lucile Packard Children’s Hospital Stanford Training Programs The protocols in this book are guidelines only. Individual cases may vary and clinical judgment should always be used. When in doubt, consult with the trauma attending on-call. This manual reflects an abridged version of the Stanford/LPCHS Trauma Program documents. A-1 TABLE OF CONTENTS TRAUMA GUIDELINE PAGE Phone Numbers 1-4 Trauma/ACS Rotation Goals & Expectations 5-6 Trauma Nurse Practitioner Roles/Responsibilities 7 Trauma Admission Policy 8 Trauma Team Notification & Response 9 Trauma Team Activation – Code 99, 97, 95 10-12 Trauma Resuscitation Roles 13-20 Trauma Order Sets 21 Clinical Trials & Prevention Programs 22 Intervention (CAGE) Programs 23 IV Access 24 Massive Transfusion Guidelines 25-26 Antibiotics in Trauma 27-28 Airway Management 29-30 Rapid Sequence Induction: Adult 31-32 Head Injury – Indications for CT 33-36 Blunt Cerebrovascular Injury (BCVI) 37-38 C-Spine Evaluation – Adult 39-40 TLS Spine Evaluation 41 TABLE OF CONTENTS TRAUMA GUIDELINE PAGE Rib Fracture 42 Penetrating Neck Trauma 43-44 Blunt Aortic Injury
    [Show full text]
  • Distinguishing Accidental from Inflicted Head Trauma at Autopsy
    Pediatr Radiol (2014) 44 (Suppl 4):S632–S640 DOI 10.1007/s00247-014-3061-6 SPECIAL ISSUE: ABUSIVE HEAD TRAUMA Distinguishing accidental from inflicted head trauma at autopsy Mary E. Case Received: 8 January 2014 /Accepted: 15 May 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract This article will discuss accidental and Introduction inflicted head injuries in infants and young children and how forensic pathologists distinguish between This article will discuss how forensic pathologists distinguish these types of injuries. The article begins with a con- accidental from inflicted head trauma at autopsy. It is imperative sideration of the special and unique features of the that the autopsy findings are considered in conjunction with the anatomy and development of the child’s head and neck medical history, beginning with the birth of the child and coming and then relates these features to the mechanisms of forward to the time of the injury, the family’s medical and social traumatic brain injury and how these unique features services history, the circumstances of the injury event, and all of influence the mechanisms of injury. The article very the investigative information derived from reports from law specifically notes that accidental head injuries in young enforcement and other agencies as well as information from children that occur in and around the home are focal genetic screening and toxicology evaluations. This article will head injuries in distinction to inflicted head injuries, consider the mechanisms of traumatic head injury and how these which are diffuse brain injuries. The article discusses mechanisms create various types of pathological findings seen the mechanisms by which traumatic brain injury causes in either accidental or inflicted head injury.
    [Show full text]
  • Spine and Spinal Cord Injuries
    Spine and Spinal Cord Injuries William Schecter, MD Anatomy of the Spine http://education.yahoo.com/reference/gray/fig/387.html Anatomy of the spine • 7 cervical vertebrae • 12 thoracic vertebrae • 5 lumbar vertebrae • 5 fused sacral vertebrae • 3-4 small bones comprising the coccyx http://www.courses.vcu.edu/DANC291-003/unit_3.htm Anatomy of the Spine • Cervical lordosis • Thoracic kyphosis • Lumbar lordosis http://www.orthospine.com/tutorial/frame_tutorial_anatomy.html Structure of the Vertebra Anatomy of the Spine http://www.courses.vcu.edu/DANC291-003/unit_3.htm Spinal cord and Vertebrae http://www.gotorna.com/pages/346343/index.htm Spine Anatomy • Disc is joint between both vertebral bodies • Facet joints form intervertebral foramen through which pass the nerve roots http://www.courses.vcu.edu/DANC291-003/unit_3.htm Spine Anatomy • Anterior and posterior longitudinal spinal ligaments • Ligaments check the motion of the vertebrae and prevent the discs from slipping out of place http://www.courses.vcu.edu/DANC291-003/unit_3.htm Spine Motions Flexion Extension Side bend Rotation Mechanisms of Injury • Compression • Flexion Injury • Extension Injury • Rotation http://www.maitrise-orthop.com/ corpusmaitri/orthopaedic/mo61_ spine_injury_class/spine_injury.shtml Compression Injury • Vertebral body fracture • Disc herniation • Epidural hematoma • Displacement of posterior wall of the vertebral body http://www.maitrise-orthop.com/ corpusmaitri/orthopaedic/mo61_ spine_injury_class/spine_injury.shtml Flexion Injuries • Tearing of interspinous
    [Show full text]