RCH Trauma Guideline Management of Traumatic Pneumothorax & Haemothorax
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spontaneous Pneumothorax in COVID-19 Patients Treated with High-Flow Nasal Cannula Outside the ICU: a Case Series
International Journal of Environmental Research and Public Health Case Report Spontaneous Pneumothorax in COVID-19 Patients Treated with High-Flow Nasal Cannula outside the ICU: A Case Series Magdalena Nalewajska 1, Wiktoria Feret 1 , Łukasz Wojczy ´nski 1, Wojciech Witkiewicz 2 , Magda Wi´sniewska 1 and Katarzyna Kotfis 3,* 1 Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70–111 Szczecin, Poland; [email protected] (M.N.); [email protected] (W.F.); [email protected] (Ł.W.); [email protected] (M.W.) 2 Department of Cardiology, Pomeranian Medical University, 70–111 Szczecin, Poland; [email protected] 3 Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70–111 Szczecin, Poland * Correspondence: katarzyna.kotfi[email protected] Abstract: The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic and a burden to global health at the turn of 2019 and 2020. No targeted treatment for COVID-19 infection has been identified so far, thus supportive treatment, invasive and non-invasive oxygen support, and corticosteroids remain a common therapy. High-flow nasal cannula (HFNC), a non-invasive oxygen support method, has become a prominent treatment option for respiratory failure during the SARS-CoV-2 pandemic. Citation: Nalewajska, M.; Feret, W.; HFNC reduces the anatomic dead space and increases positive end-expiratory pressure (PEEP), Wojczy´nski,Ł.; Witkiewicz, W.; allowing higher concentrations and higher flow of oxygen. Some studies suggest positive effects of Wi´sniewska,M.; Kotfis, K. HFNC on mortality and avoidance of intubation. -
Title: ED Trauma: Trauma Nurse Clinical Resuscitation
Title: ED Trauma: Trauma Nurse Clinical Resuscitation Document Category: Clinical Document Type: Policy Department/Committee Owner: Practice Council Original Date: Approved By (last review): Director of Emergency Services, Approval Date: 07/28/2014 Trauma Medical Director, Medical Director Emergency (Complete history at end of document.) Services POLICY: To provide immediate, effective and efficient patient care to the trauma patient, designated nursing staff will respond to the trauma room when a trauma page is received. TRAUMA CONTROL NURSE: 1) Role: a) The trauma control nurse (TCN) is a registered nurse (RN) with specialized training in the care of the traumatized patient, and who will function as the trauma team’s lead nurse. b) The TCN shall have successfully completed the Trauma Nurse Core Course (TNCC), Advanced Cardiac Life Support (ACLS), Emergency Nurse Pediatric Course (ENPC) or Pediatric Advanced Life Support (PALS), and role orientation with trauma services. c) Full-time employee or regularly scheduled part-time Emergency Department (ED) nurse. d) RN must have 6 months of LMH ED experience. 2) Trauma Control Duties: a) Inspects and stocks trauma room at beginning of each shift and after each trauma patient is discharged from the ED. b) Attempts to maintain trauma room temperature at 80-82 degrees Fahrenheit. c) Communicates with pre-hospital personnel to obtain patient information and prior field treatment and response. d) Makes determination that a patient meets Type I or Type II criteria and immediately notifies LMH’s Call System to initiate the Trauma Activation System. e) Assists physician with orders as directed. f) Acts as liaison with patient’s family/law enforcement/emergency medical services (EMS)/flight crews. -
Blunt and Blast Head Trauma: Different Entities
International Tinnitus Journal, Vol. 15, No. 2, 115–118 (2009) Blunt and Blast Head Trauma: Different Entities Michael E. Hoffer,1 Chadwick Donaldson,1 Kim R. Gottshall1, Carey Balaban,2 and Ben J. Balough1 1 Spatial Orientation Center, Department of Otolaryngology, Naval Medical Center San Diego, San Diego, California, and 2 Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Abstract: Mild traumatic brain injury (mTBI) caused by blast-related and blunt head trauma is frequently encountered in clinical practice. Understanding the nuances between these two distinct types of injury leads to a more focused approach by clinicians to develop better treat- ment strategies for patients. In this study, we evaluated two separate cohorts of mTBI patients to ascertain whether any difference exists in vestibular-ocular reflex (VOR) testing (n ϭ 55 en- rolled patients: 34 blunt, 21 blast) and vestibular-spinal reflex (VSR) testing (n ϭ 72 enrolled patients: 33 blunt, 39 blast). The VOR group displayed a preponderance of patients with blunt mTBI, demonstrating normal to high-frequency phase lag on rotational chair testing, whereas patients experiencing mTBI from blast-related causes revealed a trend toward low-frequency phase lag on evaluation. The VSR cohort showed that patients with posttraumatic migraine- associated dizziness tended to test higher on posturography. However, an indepth look at the total patient population in this second cohort reveals that a higher percentage of blast-exposed patients exhibited a significantly increased latency on motor control testing as compared to pa- tients with blunt head injury ( p Ͻ .02). These experiments identify a distinct difference be- tween blunt-injury and blast-injury mTBI patients and provide evidence that treatment strategies should be individualized on the basis of each mechanism of injury. -
Guidelines for Trauma Team Activation (TTA)
Guidelines for Trauma Team Activation (TTA) ONE of the following criteria must be present with associated traumatic mechanism L e v e Measure Vital Signs and level of consciousness l Trauma Team Activation ALL TTA 1 & 2's MUST BE TRANSPORTED TO RGH Rural Travel time greater than 1 hour, failed airway · Glasgow Coma Scale less than 13 or immediate life threat divert to local facility and · Systolic Blood Pressure less than 90mmHg arrange STAT transport to RGH Trauma Center · Respiratory Rate less than 10 or greater then 29 breaths Prehospital per minute (less than 20 in infant), or advanced airway · Assess patient and determine TTA Level 1 support required · Early activation to receiving facility with: TTA Level, MIVT Report, ETA · STARS Activation or ALS (ACP) intercept NO · Update facility as needed Yes · Transport to Trauma Center Assess anatomy of injury Triage Nurse · Alert TTL Physician with TTA level, MIVT Report, ETA · TTL has a 20min response time · All penetrating injuries to head, neck, torso, and · Alert switchboard to overhead page: extremities proximal to elbow or knee Trauma Level ‘#’ ETA · Chest wall instability or deformity (e.g. flail chest) Trauma Team Lead · Two or more proximal long-bone fractures · Update ER on incoming Rural Trauma patients · Crushed, degloved, mangled, pulseless or amputation · Assume lead role and MRP status of an extremity proximal to wrist or ankle · Prepare resuscitation team · Pelvic fractures (high impact) · Assess, Treat and Stabilize patient 2 · Major facial or head trauma including depressed/open -
Isolated Severe Blunt Traumatic Brain Injury: Effect of Obesity on Outcomes
CLINICAL ARTICLE J Neurosurg 134:1667–1674, 2021 Isolated severe blunt traumatic brain injury: effect of obesity on outcomes Jennifer T. Cone, MD, MHS,1 Elizabeth R. Benjamin, MD, PhD,2 Daniel B. Alfson, MD,2 and Demetrios Demetriades, MD, PhD2 1Department of Surgery, Section of Trauma and Acute Care Surgery, University of Chicago, Illinois; and 2Department of Surgery, Division of Trauma, Emergency Surgery, and Surgical Critical Care, LAC+USC Medical Center, University of Southern California, Los Angeles, California OBJECTIVE Obesity has been widely reported to confer significant morbidity and mortality in both medical and surgical patients. However, contemporary data indicate that obesity may confer protection after both critical illness and certain types of major surgery. The authors hypothesized that this “obesity paradox” may apply to patients with isolated severe blunt traumatic brain injuries (TBIs). METHODS The Trauma Quality Improvement Program (TQIP) database was queried for patients with isolated severe blunt TBI (head Abbreviated Injury Scale [AIS] score 3–5, all other body areas AIS < 3). Patient data were divided based on WHO classification levels for BMI: underweight (< 18.5 kg/m2), normal weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), obesity class 1 (30.0–34.9 kg/m2), obesity class 2 (35.0–39.9 kg/m2), and obesity class 3 (≥ 40.0 kg/ m2). The role of BMI in patient outcomes was assessed using regression models. RESULTS In total, 103,280 patients were identified with isolated severe blunt TBI. Data were excluded for patients aged < 20 or > 89 years or with BMI < 10 or > 55 kg/m2 and for patients who were transferred from another treatment center or who showed no signs of life upon presentation, leaving data from 38,446 patients for analysis. -
Allergic Bronchopulmonary Aspergillosis: a Perplexing Clinical Entity Ashok Shah,1* Chandramani Panjabi2
Review Allergy Asthma Immunol Res. 2016 July;8(4):282-297. http://dx.doi.org/10.4168/aair.2016.8.4.282 pISSN 2092-7355 • eISSN 2092-7363 Allergic Bronchopulmonary Aspergillosis: A Perplexing Clinical Entity Ashok Shah,1* Chandramani Panjabi2 1Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India 2Department of Respiratory Medicine, Mata Chanan Devi Hospital, New Delhi, India This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. In susceptible individuals, inhalation of Aspergillus spores can affect the respiratory tract in many ways. These spores get trapped in the viscid spu- tum of asthmatic subjects which triggers a cascade of inflammatory reactions that can result in Aspergillus-induced asthma, allergic bronchopulmo- nary aspergillosis (ABPA), and allergic Aspergillus sinusitis (AAS). An immunologically mediated disease, ABPA, occurs predominantly in patients with asthma and cystic fibrosis (CF). A set of criteria, which is still evolving, is required for diagnosis. Imaging plays a compelling role in the diagno- sis and monitoring of the disease. Demonstration of central bronchiectasis with normal tapering bronchi is still considered pathognomonic in pa- tients without CF. Elevated serum IgE levels and Aspergillus-specific IgE and/or IgG are also vital for the diagnosis. Mucoid impaction occurring in the paranasal sinuses results in AAS, which also requires a set of diagnostic criteria. Demonstration of fungal elements in sinus material is the hall- mark of AAS. -
Traumatic Cardiac Arrest
TRAUMATIC CARDIAC ARREST There are a number of studies that show that attempts at resuscitation of traumatic arrests are futile in certain situations. In these futile situations a patient should be considered dead and there should be no further resuscitation efforts. All traumatic pulseless non-breathers will undergo full resuscitation efforts unless: x All trauma with a significant mechanism of injury – If on the first arrival of EMS the patient is pulseless, apneic, and without other signs of life (pupil reactivity, spontaneous movement) or is asystolic, then the patient is not resuscitatable. x If the injuries are incompatible with life (e.g. Decapitation), the patient is not resuscitatable. Any patient not meeting one of the above criteria should have attempted resuscitation – Begin CPR. Follow appropriate Cardiac Arrest, PEA/Asystole protocol in addition to protocol below. If resuscitation has started but it is determined that patient has criteria where additional care is futile, terminate resuscitation if protocol criteria are met (line 10) or contact medical control to determine if resuscitation should be terminated. a. Once determination has been made that the patient is not resuscitatable, law enforcement and the local coroner/medical examiner should be contacted b. The EMS team is not required to stay until the coroner/medical examiner arrives, but should provide law enforcement with: i. Time of arrival and time resuscitation stopped, if applicable. ii. Names of medical crew (and Medical Control Physician if applicable). iii. Name of your EMS agency/department and business phone number. EMERGENCY MEDICAL RESPONDER (EMR) / EMERGENCY MEDICAL TECHNICIAN (EMT)/ ADVANCED EMT (AEMT)/ INTERMEDIATE / PARAMEDIC 1. -
Traumatic Brain Injury (TBI)
Traumatic Brain Injury (TBI) Carol A. Waldmann, MD raumatic brain injury (TBI), caused either by blunt force or acceleration/ deceleration forces, is common in the general population. Homeless persons Tare at particularly high risk of head trauma and adverse outcomes to TBI. Even mild traumatic brain injury can lead to persistent symptoms including cognitive, physical, and behavioral problems. It is important to understand brain injury in the homeless population so that appropriate referrals to specialists and supportive services can be made. Understanding the symptoms and syndromes caused by brain injury sheds light on some of the difficult behavior observed in some homeless persons. This understanding can help clinicians facilitate and guide the care of these individuals. Prevalence and Distribution recover fully, but up to 15% of patients diagnosed TBI and Mood Every year in the USA, approximately 1.5 with MTBI by a physician experience persistent Swings. million people sustain traumatic brain injury disabling problems. Up to 75% of brain injuries This man suffered (TBI), 230,000 people are hospitalized due to TBI are classified as MTBI. These injuries cost the US a gunshot wound and survive, over 50,000 people die from TBI, and almost $17 billion per year. The groups most at risk to the head and many subsequent more than 1 million people are treated in emergency for TBI are those aged 15-24 years and those aged traumatic brain rooms for TBI. In persons under the age of 45 years, 65 years and older. Men are twice as likely to sustain injuries while TBI is the leading cause of death. -
Pneumothorax in Patients with Idiopathic Pulmonary Fibrosis
Yamazaki et al. BMC Pulm Med (2021) 21:5 https://doi.org/10.1186/s12890-020-01370-w RESEARCH ARTICLE Open Access Pneumothorax in patients with idiopathic pulmonary fbrosis: a real-world experience Ryo Yamazaki, Osamu Nishiyama* , Kyuya Gose, Sho Saeki, Hiroyuki Sano, Takashi Iwanaga and Yuji Tohda Abstract Background: Some patients with idiopathic pulmonary fbrosis (IPF) develop pneumothorax. However, the charac- teristics of pneumothorax in patients with IPF have not been elucidated. The purpose of this study was to clarify the clinical course, actual management, and treatment outcomes of pneumothorax in patients with IPF. Methods: Consecutive patients with IPF who were admitted for pneumothorax between January 2008 and Decem- ber 2018 were included. The success rates of treatment for pneumothorax, hospital mortality, and recurrence rate after discharge were examined. Results: During the study period, 36 patients with IPF were admitted with pneumothorax a total of 58 times. During the frst admission, 15 patients (41.7%) did not receive chest tube drainage, but 21 (58.3%) did. Of the 21 patients, 8 (38.1%) received additional therapy after chest drainage. The respective treatment success rates were 86.6% and 66.7% in patients who underwent observation only vs chest tube drainage. The respective hospital mortality rates were 13.3% and 38.0%. The total pneumothorax recurrence rate after hospital discharge was 34.6% (n 9). = Conclusions: Pneumothorax in patients with IPF was difcult to treat successfully, had a relatively poor prognosis, and showed a high recurrence rate. Keywords: Idiopathic pulmonary fbrosis, Hospitalization, Pneumothorax, Recurrence, Treatment Background pneumothorax was signifcantly associated with poor Idiopathic pulmonary fbrosis (IPF) is a specifc form survival in patients with IPF [11]. -
Anytown Trauma Center Trauma Protocols
ANYTOWN TRAUMA CENTER TRAUMA PROTOCOLS TITLE: TRAUMA TEAM ACTIVATION PROTOCOL PURPOSE: The purpose of the protocol is to establish guidelines for trauma team activation and define the members of the responding trauma team to facilitate the resuscitation and management of critical or seriously injured patients who require rapid, organized resuscitation, evaluation and stabilization to promote optimal outcomes. It also serves to provide triage guidelines for adult and pediatric patients. PROCESS: 1. TRAUMA TEAM ACTIVATION PROTCOL A. The criteria for activation of the trauma team is clearly defined and posted at the Emergency Department triage desk, by the EMS communication station and in the resuscitation rooms. B. The trauma team may be activated prior to arrival based on the EMS communication and their assessment. C. The trauma surgeon, emergency medicine physician, emergency department charge nurse/ house supervisor, emergency department nurses and the Trauma Program Manager may activate the trauma team. D. The person calling the trauma activation will initiate the trauma page to group page the trauma team and will specify the MOI, BP, HR, ETA and level of activation required and age if available. E. If the trauma team members are present in the emergency department and alert is still communicated to ensure everyone is notified. F. Trauma team member notification and arrival times will be documented on the trauma flow sheet (paper or electronic). G. Trauma team members will sign-in when they arrive. H. Trauma team members will be activated for all patients who meet the following criteria: 1. Level 1 trauma activation (major): life threatening injuries and/or unstable vital signs, limb-threating or disability threatening injury 2. -
Chapter 1 - Trauma Team from Prehospital Through the Emergency Department Test Questions
Chapter 1 - Trauma Team from Prehospital through the Emergency Department Test Questions 1. As the prehospital provider approaches the scene of a trauma call, they perform a. a radio transmission to the hospital b. a scene size up c. an estimate of neck size for c-collar d. an estimate of victim’s height and weight 2. Field intubation has been proven to improve outcome in a. patients with BP less than 90 mm Hg b. patients with GCS less than 9 c. patients with acute respiratory distress d. none of the above 3. A proven technique of hemorrhage control is a. Direct pressure b. Elevate above the heart c. Pressure points d. Cold application 4. Prehospital care for apparent pelvic fractures includes a. DO NOT ROCK or palpate the pelvis in the prehospital arena b. Avoid log rolling as much as possible c. Apply splint if in your area protocols d. All of the above 5. Most preventable deaths in trauma care are due to a. Delay in CPR b. Cardiac tamponade c. Airway obstruction d. Tension pneumothorax STN 2012 Electronic Library: Chapter 1 - Trauma Team from Prehospital Through the Emergency Department Test Questions 2 6. For resuscitation to occur, there must be a. Cellular perfusion and tissue oxygenation b. Restoration of a blood pressure greater than 90mm Hg c. A hemoglobin greater than 9g/dL d. A PaO2 greater than 80 mm Hg 7. The Trauma Triad of Death is a. Hypotension, tachycardia and decreased urine output b. Infection, inadequate nutrition, DVT’s c. Hypothermia, acidosis and coagulopathy d. -
Traumatic Cardiac Arrest
CG002 Traumatic Cardiac Arrest 1. Key Recommendations for operational use For use by: Pre-hospital teams: Internet: Yes • Trauma patient in cardiac arrest or peri-arrest 1 Assess • Blunt vs penetrating • Consider primary event may have underlying medical cause Medical cause 2 • Follow ALS guidelines suspected Loss of vital signs 3 • Consider stopping resuscitation > 20 minutes • Commence IPPV via BVM / ETT / Supraglottic airway (LMA) Penetrating trauma • Perform bilateral open thoracostomies or bilateral needle decompression as dictated by 4 (Chest or clinician skill set (injured side first) epigastrium) • Consider resuscitative thoracotomy • Simultaneously address reversible pathology: • Hypovolaemia: - control external haemorrhage - splint pelvis and fractures - blood or fluid bolus (preferably via IV/IO above diaphragm) - blood is preferred fluid but if not available administer 250ml 0.9% saline boluses and monitor ETCO2 for response • Oxygenation: 5 Blunt trauma - IPPV via BVM / ETT / Supraglottic airway (LMA) • Tension pneumothorax: - perform bilateral open thoracostomies or bilateral needle decompression dictated by clinician skillset • Ultrasound: - should not delay completion of above interventions - may be applicable on case-by-case basis with individual clinician judgment paramount • CPR may not be effective until the reversible cause is addressed. 6 CPR • Addressing reversible causes takes priority over CPR • If ROSC achieved transport immediately to appropriate hospital 7 ROSC • Pre-alert with activation of Code Red protocol.