An Aspect of Nutrition and Main Food Sweeteners in the Diet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Foodservice Toolkit Potatoes Idaho® Idaho® Potatoes
IDAHO POTATO COMMISSION Foodservice Table of Contents Dr. Potato 2 Introduction to Idaho® Potatoes 3 Idaho Soil and Climate 7 Major Idaho® Potato Growing Areas 11 Scientific Distinction 23 Problem Solving 33 Potato Preparation 41 Potato101.com 55 Cost Per Serving 69 The Commission as a Resource 72 Dr. Potato idahopotato.com/dr-potato Have a potato question? Visit idahopotato.com/dr-potato. It's where Dr. Potato has the answer! You may wonder, who is Dr. Potato? He’s Don Odiorne, Vice President Foodservice (not a real doctor—but someone with experience accumulated over many years in foodservice). Don Odiorne joined the Idaho Potato Commission in 1989. During his tenure he has also served on the foodservice boards of United Fresh Fruit & Vegetable, the Produce Marketing Association and was treasurer and then president of IFEC, the International Food Editors Council. For over ten years Don has directed the idahopotato.com website. His interest in technology and education has been instrumental in creating a blog, Dr. Potato, with over 600 posts of tips on potato preparation. He also works with over 100 food bloggers to encourage the use of Idaho® potatoes in their recipes and videos. Awards: The Packer selected Odiorne to receive its prestigious Foodservice Achievement Award; he received the IFEC annual “Betty” award for foodservice publicity; and in the food blogger community he was awarded the Camp Blogaway “Golden Pinecone” for brand excellence as well as the Sunday Suppers Brand partnership award. page 2 | Foodservice Toolkit Potatoes Idaho® Idaho® Potatoes From the best earth on Earth™ Idaho® Potatoes From the best earth on earth™ Until recently, nearly all potatoes grown within the borders of Idaho were one variety—the Russet Burbank. -
Food Science and Human Nutrition (FSN)
Bachelor of Arts in Business Administration Area of Specialization: Food Science and Human Nutrition (FSN) Description The Food Science and Human Nutrition Department in the College of Agricultural and Life Sciences offers this area of specialization to students seeking employment in food corporations. It provides a basic foundation in food science and nutrition without requiring an extensive science background, and will benefit students interested in food-related careers in market research, production management, and purchasing and sales. For career information view: http://www.crc.ufl.edu/ Requirements Students are required to have a minimum of four classes totaling 12 hours from any of the 3000-4000 level courses listed below and maintain a minimum 2.0 Area of Specialization GPA. Be sure to check course prerequisite requirements. Course Title Prerequisites Offered FOS3042 Introductory Food Science (3 credits) None. Fall, Spring, Summer A FOS 4202 Food Safety and Sanitation (2 credits) MCB2000 with Fall lab MCB2000L FOS 4722C Quality Control in Food Systems (3 credits) STA2023 Fall FOS 4731 Government Regulations and Food (2 credits) FOS3042 Spring FOS 4936 HACCP Systems (2 credits) None. Fall Odd years (FOS4936); Or ALS 4932 Spring (ALS4932) Contact Information You are always welcome to meet with an Advisor in the School of Business, however, advising specifically related to Food Science and Human Nutrition is available through the department in the College of Agricultural & Life Sciences. For registration, scheduling, and area-specific questions, please contact: Undergraduate Advising 352-294-3700 103 FSHN Building (FSN on the UF Campus Map) Department Website: http://fshn.ifas.ufl.edu/undergraduate-program/undergraduate-advising/ Minor Option To complete the Food Science minor, students must earn 15 credits with a minimum C grade in each class. -
Minnesota FACS Frameworks for Food Science
FOOD SCIENCE Minnesota Department of Education Academic Standards Course Framework Food Science Program: 090101 Program Name: Food and Food Industries Course Code: 21, 22 Food Science is a course that provides students with opportunities to participate in a variety of activities including laboratory work. This is a standards-based, interdisciplinary science course that integrates biology, chemistry, and microbiology in the context of foods and the global food industry. Students enrolled in this course formulate, design, and carry out food-base laboratory and field investigations as an essential course component. Students understand how biology, chemistry, and physics principles apply to the composition of foods, the nutrition of foods, food and food product development, food processing, food safety and sanitation, food packaging, and food storage. Students completing this course will be able to apply the principles of scientific inquiry to solve problems related to biology, physics, and chemistry in the context of highly advanced industry applications of foods. Recommended Prerequisites: Fundamentals of Food Preparation, Nutrition and Wellness Application of Content and Multiple Hour Offerings Intensive laboratory applications are a component of this course and may be either school based or work based or a combination of the two. Work-based learning experiences should be in a closely related industry setting. Instructors shall have a standards-based training plan for students participating in work-based learning experiences. When a course is offered for multiple hours per semester, the amount of laboratory application or work-based learning needs to be increased proportionally. Career and Technical Student Organizations Career and Technical Student Organizations (CTSO) are considered a powerful instructional tool when integrated into Career and Technical Education programs. -
Food Additives Safety and Maximum Use Level
5/10/2017 FOOD ADDITIVES SAFETY & MAXIMUM USE LEVEL Nuri Andarwulan SEAFAST Center, IPB (Southeast Asian Food & Agr. Sci & Tech Center) Departemen Ilmu dan Teknologi Pangan, IPB [email protected] Outline Food additives Chemicals HOW are food additives regulated? Maximum use level of food additive [email protected] 1 5/10/2017 Food Additive is a substance (intentionally) added to food to alter the properties and/or the appearance of the food [email protected] As described by Paracelsus nearly 500 years ago, “All substances are poisons; there is none which is not a poison. The right dose differentiates a poison and a remedy”. This means that any chemical substance is likely to produce some form(s) of harmful effect, if taken in sufficient quantity. More addition of a chemical in food does not itself make food unsafe, but the quantity used in food, quantity of that food consumed and bodyweight will decide the safety. [email protected] 2 5/10/2017 The Codex definition of hazard is “a biological, chemical or physical agent with the potential to cause an adverse health effect”. The likelihood or risk of that hazard actually occurring in humans is dependent upon the quantity of chemical encountered or taken into the body, i.e. the exposure. [email protected] WHY do we need to regulate food additives? These chemicals may be harmful to your health (if consumed above the safety margin level) Benford, D. 2000, ILSI Europe [email protected] 3 5/10/2017 Food Additive (Codex Stan 192-1995) • Any substance not normally consumed as a food by itself and not normally used as a typical ingredient of the food, whether or not it has nutritive value, the intentional addition of which to food for a technological (including organoleptic) purpose in the manufacture, processing, preparation, treatment, packing, packaging and transport. -
The Speed and Metabolic Cost of Digesting a Blood Meal Depends on Temperature in a Major Disease Vector Marshall D
© 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 1893-1902 doi:10.1242/jeb.138669 RESEARCH ARTICLE The speed and metabolic cost of digesting a blood meal depends on temperature in a major disease vector Marshall D. McCue1,‡, Leigh Boardman2,*, Susana Clusella-Trullas3, Elsje Kleynhans2 and John S. Terblanche2 ABSTRACT and is believed to occur in all animals (reviewed in Jobling, 1983; The energetics of processing a meal is crucial for understanding McCue, 2006; Wang et al., 2006; Secor, 2009). Surprisingly, – energy budgets of animals in the wild. Given that digestion and its information on SDA among one of the largest taxonomic groups – associated costs may be dependent on environmental conditions, it is insects comes from very few studies (Table 1). Furthermore, the necessary to obtain a better understanding of these costs under SDA of insects remains poorly characterized in terms of the diverse conditions and identify resulting behavioural or physiological standard metrics used to characterize this phenomenon in other trade-offs. This study examines the speed and metabolic costs – in animals (e.g. magnitude, peak time, duration and coefficient). Given ’ cumulative, absolute and relative energetic terms – of processing a insects multiple roles as disease vectors, pests of agriculture, and as bloodmeal for a major zoonotic disease vector, the tsetse fly Glossina model taxa for evolutionary, climate and conservation-related brevipalpis, across a range of ecologically relevant temperatures (25, research, this constitutes a significant limitation for integrating 30 and 35°C). Respirometry showed that flies used less energy mechanistic understanding into population dynamics modelling, digesting meals faster at higher temperatures but that their starvation including population persistence and vulnerability to environmental tolerance was reduced, supporting the prediction that warmer change. -
Allergy FREE Ultimate Meal Assembly Guide
Ready. Set. Go. AAlllleerrggyy FFRREEEE UUllttiimmaattee MMeeaall AAsssseemmbbllyy GGuuiiddee Free of Gluten, Soy, Dairy, Peanuts, Corn, Eggs, Sugar and Artificial Sweeteners! JJ Virgin, CNS, CHFS Disclaimer: This information has not been evaluated by the FDA and is not intended to treat, diagnose, cure or prevent any disease. This information is not intended as a substitute for the advice or medical care of a qualified health care professional and you should seek the advice of your health care professional before undertaking any dietary or lifestyle changes. The material provided herein is for educational purposes only ©2011 JJ Virgin & Associates, Inc. www.jjvirgin.com Page 1 All rights reserved. This material may not be reproduced, transmitted, distributed or otherwise used, except with the prior written permission of JJ Virgin & Associates, Inc. Why Can’t I Eat Eggs, Gluten, Dairy, Corn, Soy, Sugar, Artificial Sugars or Peanuts? The removal of offending foods from the diet can deliver a number of health benefits: weight loss, better energy, improvements in sleep, clear complexion, and much more. To make this happen, the primary organs of detoxification (the GI system, skin, and liver) need to function at full capacity. Over the years, we have discovered with our private clients that certain foods can be problematic and interfere with efficient detoxification and, ultimately, weight loss and health gains. As such they have been removed from the program. Here’s more detail on those that trigger the most questions from our program participants. EGGS What They Do Eggs are a fairly common food sensitivity item; most of our clients who discover this issue through our functional lab testing aren’t even aware they have the problem. -
Food Science in an Era of Environmental Concern
CHAPTER 1 Food Science in an Era of Environmental Concern Irana Hawkins, PhD, MPH, RD Chapter Objectives THE STUDENT WILL BE EMPOWERED TO: • Summarize the topics encompassed by the food science discipline. • Define nutrition ecology, environmental nutrition, sustainable diets, ecosystem services, and ecological footprint—and demonstrate how these concepts relate to the study of food science. • Provide examples of anthropogenic effects on the natural environment and on food systems. • Discuss the potential impacts of planetary health, planetary boundaries, climate change, and biodiversity loss on food science, and the potential role of diet in protecting our planetary boundaries and mitigating climate change. • Discuss current challenges to sustainably feeding the world. • Explain the concept of nutrition transitions and give examples of global and national transitions currently under way. • Give specific examples of how the principles of nutrition ecology, environmental nutrition, and sustainable diets can be applied to reduce human impact on the natural environment. © smereka/Shutterstock. 9781284136470_CH01_Edelstein.indd 3 14/11/17 3:53 pm 4 CHAPTER 1 FOOD SCIENCE IN AN ERA OF ENVIRONMENTAL CONCERN Historical, Cultural, and Ecological Significance of Food Production and Consumption s biologist and researcher Dr. Martha Crouch has noted, “our relation- A ship with food is the most intimate of all the connections we have with other beings, for we take it into our mouths and actually incorporate it into our cells.”1 Today there are more than 311 million people living in the United States and approximately 7 billion people inhabiting the planet.2 The global population is expected to increase to more than 9 billion people by 2044.3 Understanding the projected impact of this population growth on the natural environment is paramount, as human health is inextricably linked to that of the natural environment.4 Sustaining human life requires an array of resources, with the most impor- tant being food and water. -
Food Allergy
Information Statement Food Allergy The Institute of Food Science & Technology has authorised the following Information Statement, dated January 2009, which cancels and replaces the version dated October 2005. SUMMARY The problem of food allergens is part of a wider problem, that of all kinds of adverse reactions to foods, which can also result from microbial and chemical food poisoning, psychological aversions and specific non-allergenic responses. Food allergy is now recognised as an important food safety issue. Dealing with at least the major serious food allergens is an essential part of Good Manufacturing Practice. The greatest care must be taken by food manufacturers • to formulate foods so as to avoid, wherever possible, inclusion of unnecessary major allergens as ingredients; • to organise raw material supplies, production, production schedules and cleaning procedures so as to prevent cross-contact of products by "foreign" allergens; • to train all personnel in an understanding of necessary measures and the reasons for them; • to comply with the relevant labeling legislation providing appropriate warning, to potential purchasers, of the presence of a major allergen in a product; • to have in place an appropriate system for recall of any product found to contain a major allergen not indicated on the label warning. The purpose of this statement is to describe the nature and cause of food allergies, to outline recent changes in legislation that aim to help allergic consumers to live with their condition and to emphasise the measures that manufacturers and caterers should take to minimise the problems. BACKGROUND Adverse reactions to foods Adverse reactions to foods include not only food allergies but may also result from microbial and chemical food poisoning, psychological aversions, and specific non-allergenic responses. -
Aspartame: an Artificial Sweetener
84-649 SPR -. Congrsssiona l Research Service 4. The Library of Congress ASPARTAME: .XV XRTLFICIAL SkXETSNER Donna V. Porter Analyst in Life Sciences Science Policy Research Division Xarch 23, 1984 Since 1973 ohen the Food and Drug Administration first approved the arti- ficial sweetener, aspartame, for use in food products, soae researchers have raised questloas about possible health effects associated vith its consumption. This paper provides an overview of the regulatory history and possible health prohlems associated vith the use.of aspartame. CONTENTS HEALTH ASPECTS OF ASPARTAME ................................................ 1 LEGISLATIVE HISTORY OF FOOD ADDITIVE POLICY ................................ 2 REGULATORY HISTORY OF ASPUTAWE ............................................ 5 CURRENT STATUS OF ASPARTAME ................................................ 8 .. APPENDIX I . ASPARTAME: SELECTED CHRONOLOGY OF EVENTS ..................... 16 ASPARTAME: AN ARTIFICIAL SWEETENER Aspartame is an artificial sweetener synthesized from two amino acids, aspartic acid and phenylalanine. It vas discovered accidentally in 1965 by a scientist at G. D. Searle & Company (Skokie, Illinois) who was doing research on nev drugs to treat ulcers. Since 1965, G. D. Searle & Company has conducted extensive testing in an attempt to demonstrate that aspartame is safe for aort people when added to food products. On July 7, 1981, after considerable debate, the Food and Drug Administration (FDA) approved the use of aspartame in dry food products. On July 8, 1983, FDA approved the use of the sweetener in carbonated beverages. This report provides an overview of aspartame, dis- cuses the regulatory his.tory of artificial sveeteners and identifies some of the current controversy over this recently approved substance. HEALTH ASPECTS OF ASPARTAME In terms of caloric value, aspartame contains four calories per gram, the same as table sugar. -
Popular Sweeteners and Their Health Effects Based Upon Valid Scientific Data
Popular Sweeteners and Their Health Effects Interactive Qualifying Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science By __________________________________ Ivan Lebedev __________________________________ Jayyoung Park __________________________________ Ross Yaylaian Date: Approved: __________________________________ Professor Satya Shivkumar Abstract Perceived health risks of artificial sweeteners are a controversial topic often supported solely by anecdotal evidence and distorted media hype. The aim of this study was to examine popular sweeteners and their health effects based upon valid scientific data. Information was gathered through a sweetener taste panel, interviews with doctors, and an on-line survey. The survey revealed the public’s lack of appreciation for sweeteners. It was observed that artificial sweeteners can serve as a low-risk alternative to natural sweeteners. I Table of Contents Abstract .............................................................................................................................................. I Table of Contents ............................................................................................................................... II List of Figures ................................................................................................................................... IV List of Tables ................................................................................................................................... -
Ec:Rbfc/2010/3
EC:RBFC/2010/3 Food and Agriculture Organization of the United Nations JOINT FAO/WHO EXPERT CONSULTATION ON THE RISKS AND BENEFITS OF FISH CONSUMPTION Rome, Italy, 25 - 29 January 2010 HEALTH RISKS ASSOCIATED WITH FISH CONSUMPTION FOCUS ON METHYLMERCURY, DIOXINS AND DIOXIN-LIKE PCBS Lucio G. Costa Professor, Department of Occupational and Health Sciences University of Washington, Seattle, USA & Vittorio Fattori Nutrition and Consumer Protection Division, FAO, Rome, Italy 2 EC:RBFC/2010/3 TABLE OF CONTENTS 1 INTRODUCTION ......................................................................................... 4 1.1 Objective and Scope of the paper ................................................................ 4 2 CONTAMINANTS IN FISH ........................................................................... 4 3 INTERNATIONAL ADVISORIES ................................................................... 6 3.1 Mercury ....................................................................................................... 6 4 MERCURY ................................................................................................... 8 4.1 Mercury in the environment ....................................................................... 8 4.1.1 The environmental cycle of mercury ............................................................................ 8 4.1.2 Main sources of mercury release into environment ..................................................... 9 4.1.3 Main food sources ....................................................................................................... -
Hungry Bengal: War, Famine, Riots, and the End of Empire 1939-1946
Hungry Bengal: War, Famine, Riots, and the End of Empire 1939-1946 By Janam Mukherjee A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy (Anthropology and History) In the University of Michigan 2011 Doctoral Committee: Professor Barbara D. Metcalf, Chair Emeritus Professor David W. Cohen Associate Professor Stuart Kirsch Associate Professor Christi Merrill 1 "Unknown to me the wounds of the famine of 1943, the barbarities of war, the horror of the communal riots of 1946 were impinging on my style and engraving themselves on it, till there came a time when whatever I did, whether it was chiseling a piece of wood, or burning metal with acid to create a gaping hole, or cutting and tearing with no premeditated design, it would throw up innumerable wounds, bodying forth a single theme - the figures of the deprived, the destitute and the abandoned converging on us from all directions. The first chalk marks of famine that had passed from the fingers to engrave themselves on the heart persist indelibly." 2 Somnath Hore 1 Somnath Hore. "The Holocaust." Sculpture. Indian Writing, October 3, 2006. Web (http://indianwriting.blogsome.com/2006/10/03/somnath-hore/) accessed 04/19/2011. 2 Quoted in N. Sarkar, p. 32 © Janam S. Mukherjee 2011 To my father ii Acknowledgements I would like to thank first and foremost my father, Dr. Kalinath Mukherjee, without whom this work would not have been written. This project began, in fact, as a collaborative effort, which is how it also comes to conclusion. His always gentle, thoughtful and brilliant spirit has been guiding this work since his death in May of 2002 - and this is still our work.