Evaluation of a Rapid Detection Method of Salmonella in Comparison with the Culture Method and Microbiological Quality in Fish F

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of a Rapid Detection Method of Salmonella in Comparison with the Culture Method and Microbiological Quality in Fish F a ISSN 0101-2061 (Print) Food Science and Technology ISSN 1678-457X (Online) DOI: https://doi.org/10.1590/fst.38719 Evaluation of a rapid detection method of Salmonella in comparison with the culture method and microbiological quality in fish from the Brazilian Amazon Paula Hellayne Costa dos SANTOS1#, Hamilton M. FIGUEIREDO1#, Luiza Helena Meller da SILVA1#* , Rafaela Santos Oliveira da SILVA1#, Gabrielle Virginia Ferreira CARDOSO2#, Carina Martins MORAES2#, Antonio Manoel da Cruz RODRIGUES1# Abstract Microbiological safety of fish is a concern of consumers, industries and regulatory agencies worldwide. Among the pathogenic microorganisms, Salmonella spp. is one of the main agents of foodborne diseases and should be absent in animal products. Rapid and accurate identification of pathogens in the supply chain is important for both quality assurance and tracking infectious agents within the chain. In this context, this study aimed to evaluate the equivalence of two rapid detection tests, as alternative methods to the conventional Salmonella detection method, as well as to verify the microbiological quality parameters of two commercially important fish species in the Amazon biome. The plate count of aerobic bacteria ranged from 7.76 x 410 to 8.71 x 107 CFU.g-1 for mesophiles and 1.70 x 106 to 4.27 x 108 CFU.g-1 for psychrotrophic whereas the maximum for this group of microorganisms in fresh fish is 106 CFU.g-1. Regarding the Staphylococcus count, the two species presented variations between 1.35 x 104 to 1.51 x 105 CFU.g-1. This represents unsatisfactory conditions of handling, storage and conservation of fish species. The immunoenzymatic and molecular methods have been shown to be reliable, fast and effective in the detection of Salmonella and for its high index of agreement with the conventional detection method. We also emphasize the convenience of multiplex PCR application due to the high sensitivity, specificity, speed and accuracy of Salmonella detection. Keywords: Brachyplatystoma filamentosum; Ilisha amazonica; mPCR; Tecra Salmonella. Practical Application: Identify the presence of salmonella through fast methods and molecular identification techniques. 1 Introduction Microbiological safety of fish is a concern of consumers, Although Salmonella is not a biologically natural pathogen of fish, industries and regulatory agencies around the world nowadays. it can be introduced to the fish chain through improper handling The rapid and accurate identification of pathogens in the and hygiene in processing or contact with contaminated water supply chain is important both for quality assurance and for by discharging sewage effluent into fishing basins.Salmonella tracking infectious agents within the chain (Välimaa et al., 2015; are facultative intracellular parasites that invade the mucous Sebastião, et al., 2015; Buncic, et al., 2019). According to data membrane with the human and animal intestinal tract being the from regulatory agencies and health inspection agencies main reservoir of this pathogen (Álvarez-Ordóñez et al., 2012; worldwide Salmonella stands out among the pathogens, as the Ertas Onmaz et al., 2015; Nhung et al., 2018). The conventional main bacterial agent, responsible for transmit diseases associated method used for the detection of Salmonella in food is based on with food consumption nowadays (Centers for Disease Control pre-enrichment in buffered peptone water (BPW) and enrichment and Prevention, 2016; European Food Safety Authority, 2018). in selective medium, followed by differential isolation and In Europe, authorities point to Salmonella as the second most serological confirmation (Suo & Wang, 2014; Lee, et al., 2015; important agent in foodborne disease transmission, with over Li, et al., 2017). The main limitation of this method is that these 91,857 cases of salmonellosis (European Food Safety Authority, tests usually require a minimum of 5 to 6 days. However, infection 2018; Trimoulinard et al., 2017). In the United States, the control increasingly depends on faster and more accurate tests incidence of Salmonella represents 15.89% of the cases associated for the diagnosis of this pathogen, especially for monitoring with diseases transmitted by food consumption (Centers for the production of animal products, food manufacturing and Disease Control and Prevention, 2016). In Brazil, Salmonella end products (Andrade et al., 2010; Frickmann, et al., 2013; is responsible for more than 30% of foodborne diseases, Gokduman et al., 2016; Lobato & O’Sullivan, 2018). In addition, according to the Brazilian Ministry of Health (Brasil, 2017). there is a strong industrial demand to comply with legislation and Received 06 Jan., 2020 Accepted 27 Jan., 2020 1 Laboratório de Análise de Alimentos - LAANALI, Programa de Pós-graduação em Ciência e Tecnologia de Alimentos - PPGCTA, Universidade Federal do Pará - UFPA, Campus Guamá, Belém, PA, Brasil 2 Laboratório de Higiene e Qualidade de Alimentos, Programa de Pós-graduação em Saúde Animal na Amazônia, Universidade Federal do Pará - UFPA, Campus Castanhal, Belém, PA, Brasil # These authors contributed equally to this manuscript. *Corresponding author: [email protected] Food Sci. Technol, Campinas, 41(1): 151-157, Jan.-Mar. 2021 151/157 151 Rapid Detection Method of Salmonella in Fish the rapid release of food products to the market. Recent advances Public Health Association, 2001) was followed. Briefly, 25 g of in technologies for the detection and identification of contaminated the samples were homogenized with 225 mL buffered peptone foodborne pathogens have provided faster, more sensitive and water (Oxoid CM509) using a stomacher mixer (Logen Scientifc, specific alternatives to conventional methods (Paula, et al. LS1901n, ALPAX) at 2000 rpm for 2 min. From the initial 2002; Kawasaki, et al., 2009; Koo, et al., 2016; Suo, et al., 2017) suspension, decimal dilutions were prepared by transferring These assays are generally referred as “fast” or alternative 1 mL from the previous dilution to 9 mL of buffered peptone methods, terms commonly used to describe a variety of assays water and so on until reaching the desired dilution. From the including miniaturized biochemical kits, immunoassays, DNA/ decimal dilutions obtained, analyzes of total and thermotolerant RNA-based assays, and combinations with cultural methods coliforms, Staphylococcus aureus and total and psychrotrophic (Lofstrom et al., 2010; Almeida et al., 2013; Kim, et al., 2017). aerobic bacteria count were performed as follows. Molecular testing uses a specific sequence of bacterial nucleic acids as a target for pathogen detection and this is the category 2.3 Microbiological analysis of alternative methods that most improved in recent years (Valderrama et al., 2016; Hu, et al., 2018; Bundidamorn, et al., 2018). The presumptive coliforms test was performed using the CC The PCR assay, Polymerase Chain Reaction, is the molecular test PetrifilmTM commercial kit (3M Company, St. Paul, MN, USA), that has also been widely used to detect Salmonella in food. It is where 1 mL of the dilution, obtained according to item 2.2, a highly sensitive technique based on enzymatic amplification was inoculated into the kit plates, according to manufacturer’s of specific segments of DNA in vitro, which enables to obtain instructions. The plates were incubated at 35 °C for 48 h, and thousands of copies from a single nucleic acid sequence, within the result was expressed in MPN of total coliforms per gram two or three hours (Shabarinath et al., 2007; Singh et al., 2019). of sample. For Thermotolerant Coliforms, 1 mL aliquots of three dilutions of the sample obtained according to item 2.2 Another rapid assay that has been extensively studied in the were inoculated into a series of 3 tubes containing 10 mL of analysis for pathogen detection is multiplex PCR. This technique Tryptose Lauryl Sulfate Broth - LST (ACUMEDIA 7142) and involves more than one pair of oligonucleotides and allows, among incubated at 35 °C. After 48 h, 1 mL aliquots of each positive other applications, to perform a single reaction to detect various tube of LST were transferred to tubes containing 10 mL of types of microorganism, their serotypes or different genes of the Escherichia coli broth - EC (Acumedia 7206) and incubated same microorganism (Malorny et al., 2009; Wang, et al., 2015; at 45 °C for 24 h in a water bath, and the result was expressed Chin et al., 2017). in MPN of thermotolerant coliforms per gram of sample. In this context, the objective of this study was to evaluate the For quantification ofStaphylococcus aureus, the commercial equivalence of two rapid detection tests as alternative methods PetrifilmTM Staph express Cout Plate kit (3M Company, St. Paul, to the conventional method of bacteriological detection of MN, USA) was used, where 1 mL of the sample dilution Salmonella in two fish species with commercial importance obtained according to item 2.2 was inoculated into kit plates, and large occurrence in the Amazon biome and associated and the plates were incubated at 36 °C for 24 h according to the with this verify the parameters of microbiological qualities of manufacturer’s instructions. After the plates incubation period, the two species of fish. typical Staphylococcus colonies were counted and the result expressed in CFU.g-1. In the mesophilic and psychrotrophic aerobic 2 Materials and methods bacterial count assays, the “pour plate” technique with standard agar (PCA) was performed. The plates were incubated at 35 °C 2.1 Samples and procedure for isolation and identification for 48 h (mesophilic) and 7 °C for 10 days (psychrotrophic). The result of the count was expressed in CFU.g-1. The fish samples included in this study wereBrachyplatystoma filamentosum and Ilisha amazonica species. These two species 2.4 Salmonella spp. detection are of large occurrence in the Amazon biome and commercially important for their high consumption. The total of 10 collections In Salmonella detection were applied three protocols, which of fish samples were performed in the period from January are described briefly as follows: to June 2018, at the main North fish landing port in Brazil (Ver-o-Peso market, 01°27’21”S and 48°30’14”W).
Recommended publications
  • Food Science and Human Nutrition (FSN)
    Bachelor of Arts in Business Administration Area of Specialization: Food Science and Human Nutrition (FSN) Description The Food Science and Human Nutrition Department in the College of Agricultural and Life Sciences offers this area of specialization to students seeking employment in food corporations. It provides a basic foundation in food science and nutrition without requiring an extensive science background, and will benefit students interested in food-related careers in market research, production management, and purchasing and sales. For career information view: http://www.crc.ufl.edu/ Requirements Students are required to have a minimum of four classes totaling 12 hours from any of the 3000-4000 level courses listed below and maintain a minimum 2.0 Area of Specialization GPA. Be sure to check course prerequisite requirements. Course Title Prerequisites Offered FOS3042 Introductory Food Science (3 credits) None. Fall, Spring, Summer A FOS 4202 Food Safety and Sanitation (2 credits) MCB2000 with Fall lab MCB2000L FOS 4722C Quality Control in Food Systems (3 credits) STA2023 Fall FOS 4731 Government Regulations and Food (2 credits) FOS3042 Spring FOS 4936 HACCP Systems (2 credits) None. Fall Odd years (FOS4936); Or ALS 4932 Spring (ALS4932) Contact Information You are always welcome to meet with an Advisor in the School of Business, however, advising specifically related to Food Science and Human Nutrition is available through the department in the College of Agricultural & Life Sciences. For registration, scheduling, and area-specific questions, please contact: Undergraduate Advising 352-294-3700 103 FSHN Building (FSN on the UF Campus Map) Department Website: http://fshn.ifas.ufl.edu/undergraduate-program/undergraduate-advising/ Minor Option To complete the Food Science minor, students must earn 15 credits with a minimum C grade in each class.
    [Show full text]
  • Minnesota FACS Frameworks for Food Science
    FOOD SCIENCE Minnesota Department of Education Academic Standards Course Framework Food Science Program: 090101 Program Name: Food and Food Industries Course Code: 21, 22 Food Science is a course that provides students with opportunities to participate in a variety of activities including laboratory work. This is a standards-based, interdisciplinary science course that integrates biology, chemistry, and microbiology in the context of foods and the global food industry. Students enrolled in this course formulate, design, and carry out food-base laboratory and field investigations as an essential course component. Students understand how biology, chemistry, and physics principles apply to the composition of foods, the nutrition of foods, food and food product development, food processing, food safety and sanitation, food packaging, and food storage. Students completing this course will be able to apply the principles of scientific inquiry to solve problems related to biology, physics, and chemistry in the context of highly advanced industry applications of foods. Recommended Prerequisites: Fundamentals of Food Preparation, Nutrition and Wellness Application of Content and Multiple Hour Offerings Intensive laboratory applications are a component of this course and may be either school based or work based or a combination of the two. Work-based learning experiences should be in a closely related industry setting. Instructors shall have a standards-based training plan for students participating in work-based learning experiences. When a course is offered for multiple hours per semester, the amount of laboratory application or work-based learning needs to be increased proportionally. Career and Technical Student Organizations Career and Technical Student Organizations (CTSO) are considered a powerful instructional tool when integrated into Career and Technical Education programs.
    [Show full text]
  • Food Science and Technology (FDST) 1
    Food Science and Technology (FDST) 1 FDST 812 Cereal Technology FOOD SCIENCE AND Crosslisted with: FDST 412 Prerequisites: FDST 205. TECHNOLOGY (FDST) Description: Chemistry and technology of the cereal grains. Post-harvest processing and utilization for food and feed. Current industrial processes FDST 801 Teaching Applications of Food Science and practices, and the theoretical basis for these operations. Crosslisted with: FDST 401 Credit Hours: 3 Prerequisites: BIOS 101 and CHEM 109 Max credits per semester: 3 Notes: Will not count toward a FDST major or minor. Max credits per degree: 3 Description: Overview of the science of food and how food can be used in Format: LEC the classroom to enhance science education. FDST 815 Molds and Mycotoxins in Food, Feed, and the Human Credit Hours: 3 Environment Max credits per semester: 3 Crosslisted with: FDST 415 Max credits per degree: 3 Prerequisites: FDST 405/805/BIOS 445/845 and FDST 406/806/ Format: LEC BIOS 446/846. FDST 803 Food Quality Assurance Description: Occurrence, growth, and mycotoxin production of molds Crosslisted with: FDST 403 in human foods, animal feeds, and the human environment. Spoilage, Prerequisites: FDST 205; STAT 218. mycotoxin production conditions, toxicity, and pathological effects. Description: Quality related issues as they pertain to manufacturing, Culture media, methods and techniques for enumerating and identifying processing, and/or testing of foods, with a major emphasis on food molds, analytical methods for mycotoxins, and effects of food and feed regulations, statistical process control and Hazard Analysis of Critical processing on mycotoxin stability. Control Points (HACCP). Credit Hours: 3 Credit Hours: 3 Max credits per semester: 3 Max credits per semester: 3 Max credits per degree: 3 Max credits per degree: 3 Format: LEC Format: LEC FDST 819 Meat Investigations FDST 805 Food Microbiology Crosslisted with: ASCI 419, ASCI 819, FDST 419 Crosslisted with: BIOS 445, BIOS 845, FDST 405 Prerequisites: ASCI 210 Prerequisites: BIOS 312; CHEM 251; BIOC 321.
    [Show full text]
  • Food Microbiology 101
    November 2018 Food Microbiology 101 Nina G. Parkinson NGP Consulting November 6, 2018 Food Safety and Sanitation Conference Summary • Microbiological contamination of food • Routes of contamination by pathogens • Overview on emerging risks • Solutions 1 November 2018 Basics of Food Microbiology • Not all microorganisms are ‘bad’ • Used to ferment products • Necessary for composting organic materials • Some cause spoilage • Decomposition of foods economic losses • Some cause illnesses and diseases • Pathogens Types of foodborne illnesses • Infections • Caused by swallowing living pathogens, which grow within the body and cause illness • Intoxications • Caused by swallowing toxin (poison) that has been formed in food as pathogens grow • Reactions usually occur within hours or days of consumption • Secondary conditions attributed to some of these illnesses 2 November 2018 Historical perspective 1900‐1950’s • Clostridium botulinum • Salmonella spp. • Staphylococcus aureus Worked hard to figure out how they grew, how they caused illnesses, etc. Growth needs Survival skills • Food • Sporeformers • Acid • High temperatures • Temperature • Unpleasant conditions • Time • Sanitizer chemicals • Oxygen • Low pH • Moisture • Vegetative pathogens • Low water activity • Low pH Some produce toxins • Low temperatures 3 November 2018 1950’s to 2000’s and beyond • E. coli (many strains and serotypes) • E. coli O157:H7 Enterohemorrhagic (EHEC) • Enterotoxigenic E. coli (ETEC) • Shiga (or Shiga‐like) Toxin E. coli (STEC) • Shigella spp. • Cronobacter sakazakii
    [Show full text]
  • Food Science in an Era of Environmental Concern
    CHAPTER 1 Food Science in an Era of Environmental Concern Irana Hawkins, PhD, MPH, RD Chapter Objectives THE STUDENT WILL BE EMPOWERED TO: • Summarize the topics encompassed by the food science discipline. • Define nutrition ecology, environmental nutrition, sustainable diets, ecosystem services, and ecological footprint—and demonstrate how these concepts relate to the study of food science. • Provide examples of anthropogenic effects on the natural environment and on food systems. • Discuss the potential impacts of planetary health, planetary boundaries, climate change, and biodiversity loss on food science, and the potential role of diet in protecting our planetary boundaries and mitigating climate change. • Discuss current challenges to sustainably feeding the world. • Explain the concept of nutrition transitions and give examples of global and national transitions currently under way. • Give specific examples of how the principles of nutrition ecology, environmental nutrition, and sustainable diets can be applied to reduce human impact on the natural environment. © smereka/Shutterstock. 9781284136470_CH01_Edelstein.indd 3 14/11/17 3:53 pm 4 CHAPTER 1 FOOD SCIENCE IN AN ERA OF ENVIRONMENTAL CONCERN Historical, Cultural, and Ecological Significance of Food Production and Consumption s biologist and researcher Dr. Martha Crouch has noted, “our relation- A ship with food is the most intimate of all the connections we have with other beings, for we take it into our mouths and actually incorporate it into our cells.”1 Today there are more than 311 million people living in the United States and approximately 7 billion people inhabiting the planet.2 The global population is expected to increase to more than 9 billion people by 2044.3 Understanding the projected impact of this population growth on the natural environment is paramount, as human health is inextricably linked to that of the natural environment.4 Sustaining human life requires an array of resources, with the most impor- tant being food and water.
    [Show full text]
  • Food Science Curriculum
    FOOD SCIENCE University of Florida - College of Agricultural and Life Sciences To remain on track, first year students must complete the appropriate critical-tracking courses, which appear in bold, with a 2.5 GPA or better. Students are required to complete a Quest 1course in semester 1 or 2. Fall Credits Spring Credits CHM 2045 & 2045L General Chemistry I (3) and 4 CHM 2046 & 2046L General Chemistry II 4 Laboratory (1) (GE-P) (3) and Laboratory (1) (GE-P) MAC 2311 Analytic Geometry & Calculus I (GE-M) 4 Quest 1 (GE-H) 3 Composition (GE-C) (WR) 3 Economics: ECO 2013, ECO 2023, or AEB 2014 3-4 Humanities w/Diversity Designation (GE-H/D) 3 Elective 4 Elective 1 Total 15 Total 14-15 Fall Credits Spring Credits BSC 2010 & 2010L Integrated Principles of Biology I 4 BSC 2011 & 2011L Integrated Principles 4 (3) and Laboratory (1) (GE-B) of Biology II (3) and Laboratory (1) (GE-B) PHY2053 & PHY2053L Physics and Lab (GE-P) 5 + CHM2210 Organic Chemistry I 3 FOS3042 Intro to Food Science 3 STA 2023 Introduction to Statistics (GE-M) 3 Composition (GE-C) (WR) 3 AEB3114L Intro AG Computer Applications 1 Quest 2 w/International Designation (GE-S/N) 3 Elective 1 Total 15 Total 15 Fall Credits Spring Credits FOS4722C Quality Control in Food Systems 3 HUN2201 Fundamentals of Human Nutrition 3 CHM 2211 Organic Chemistry II (3) and 5 MCB2000 (3) & MCB2000L(1) Microbiology and Lab 4 CHM2211 Lab (2) AEC3030C Effective Oral Communication or 3 FOS4311 (3) & FOS4311L (1) Food Chemistry and 4 SPC2608 Intro to Public Speaking Lab FOS3060 (Life After Graduation) 1 FOS4731 Govt.
    [Show full text]
  • Food Allergy
    Information Statement Food Allergy The Institute of Food Science & Technology has authorised the following Information Statement, dated January 2009, which cancels and replaces the version dated October 2005. SUMMARY The problem of food allergens is part of a wider problem, that of all kinds of adverse reactions to foods, which can also result from microbial and chemical food poisoning, psychological aversions and specific non-allergenic responses. Food allergy is now recognised as an important food safety issue. Dealing with at least the major serious food allergens is an essential part of Good Manufacturing Practice. The greatest care must be taken by food manufacturers • to formulate foods so as to avoid, wherever possible, inclusion of unnecessary major allergens as ingredients; • to organise raw material supplies, production, production schedules and cleaning procedures so as to prevent cross-contact of products by "foreign" allergens; • to train all personnel in an understanding of necessary measures and the reasons for them; • to comply with the relevant labeling legislation providing appropriate warning, to potential purchasers, of the presence of a major allergen in a product; • to have in place an appropriate system for recall of any product found to contain a major allergen not indicated on the label warning. The purpose of this statement is to describe the nature and cause of food allergies, to outline recent changes in legislation that aim to help allergic consumers to live with their condition and to emphasise the measures that manufacturers and caterers should take to minimise the problems. BACKGROUND Adverse reactions to foods Adverse reactions to foods include not only food allergies but may also result from microbial and chemical food poisoning, psychological aversions, and specific non-allergenic responses.
    [Show full text]
  • Introduction to the Microbiology of Food Processing.Pdf
    United States Department of Agriculture Food Safety and Inspection Service Introduction TO THE Microbiology OF Food Processing August 2012 Small Plant News Guidebook Series Small Plant News is a four-page, four-color newsletter published by the U.S. Department of Agriculture’s (USDA) Food Safety and Inspection Service (FSIS). It is targeted to small and very small Federal- and State-inspected establishment owners and operators who produce meat, poultry, and processed egg products. Small Plant News’s mission is to support the “FSIS’ Strategic Implementation Plan for Strengthening Small and Very Small Plant Outreach” by providing pertinent information for plant owners and operators so they can produce safe food and, ultimately, ensure the success of their livelihoods. The newsletter strives to do this through: ✔ Informing and educating small and very small plant owners and operators on FSIS news with current and meaningful information in an easy-to-read format. ✔ Assisting plant owners and operators in incorporating FSIS rules and regulations into their daily operational practices with “plain language” information. ✔ Fostering small and very small plants’ ability to stay in business and produce the safest food by providing essential tips that will encourage the highest sanitation standards, paperwork compliance, and cost-saving measures. ✔ Honoring FSIS’ obligations to small and very small plants by providing a mechanism that increases two-way dialogue between plants and the Agency. Back issues of Small Plant News are available on FSIS’ Web site at www.fsis.usda.gov. Or you may call the Small Plant Help Desk at (877) 374-7435 to order back copies.
    [Show full text]
  • Aspartame: an Artificial Sweetener
    84-649 SPR -. Congrsssiona l Research Service 4. The Library of Congress ASPARTAME: .XV XRTLFICIAL SkXETSNER Donna V. Porter Analyst in Life Sciences Science Policy Research Division Xarch 23, 1984 Since 1973 ohen the Food and Drug Administration first approved the arti- ficial sweetener, aspartame, for use in food products, soae researchers have raised questloas about possible health effects associated vith its consumption. This paper provides an overview of the regulatory history and possible health prohlems associated vith the use.of aspartame. CONTENTS HEALTH ASPECTS OF ASPARTAME ................................................ 1 LEGISLATIVE HISTORY OF FOOD ADDITIVE POLICY ................................ 2 REGULATORY HISTORY OF ASPUTAWE ............................................ 5 CURRENT STATUS OF ASPARTAME ................................................ 8 .. APPENDIX I . ASPARTAME: SELECTED CHRONOLOGY OF EVENTS ..................... 16 ASPARTAME: AN ARTIFICIAL SWEETENER Aspartame is an artificial sweetener synthesized from two amino acids, aspartic acid and phenylalanine. It vas discovered accidentally in 1965 by a scientist at G. D. Searle & Company (Skokie, Illinois) who was doing research on nev drugs to treat ulcers. Since 1965, G. D. Searle & Company has conducted extensive testing in an attempt to demonstrate that aspartame is safe for aort people when added to food products. On July 7, 1981, after considerable debate, the Food and Drug Administration (FDA) approved the use of aspartame in dry food products. On July 8, 1983, FDA approved the use of the sweetener in carbonated beverages. This report provides an overview of aspartame, dis- cuses the regulatory his.tory of artificial sveeteners and identifies some of the current controversy over this recently approved substance. HEALTH ASPECTS OF ASPARTAME In terms of caloric value, aspartame contains four calories per gram, the same as table sugar.
    [Show full text]
  • 7. Genetically Modified Microorganisms and Their Potential Effects on Human Health and Nutrition
    Trends in Food Science & Technology 14 (2003) 264–276 7. Genetically modified inactivated or viable. When genetically modified (GM) micoorganisms (GMMs) are used, these alternatives, microorganisms naturally, have rather different safety implications. Owing to the plasticity of microbial genomes and exist- ing gene exchange mechanisms, genetic containment, and their potential especially, is fundamentally different for GMMs than for other genetically modified organisms (GMOs). The effects on human following is an attempt to analyse the impacts of GMMs on human health and nutrition taking into health and nutrition account their various actual or potential uses. 7.2. Contribution of transgenic technologies to food microorganisms a, Atte von Wright * and 7.2.1. Background to the use of microorganisms in A˚ ke Bruceb traditional fermented foods Food fermentations represent an age-old technology to improve the keeping quality, safety and nutritional value of perishable foodstuffs; the types of fermented aInstitute of Applied Biotechnology, University of foods differ greatly in different parts of the world and Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland among different food traditions (Cooke, Twiddy & (tel.: +358-17-162087; fax: +358-17-163322; Reilly, 1987; Nout, 2001). While many processes in the e-mail: atte.vonwright@uku.fi) developed world are nowadays carried out using defined bNational Food Administration, Uppsala, Sweden starter strains with known and predictable properties, spontaneous fermentation, back slopping (inoculation of the fresh
    [Show full text]
  • Food Microbiology - Radomir Lasztity
    FOOD QUALITY AND STANDARDS – Vol. III - Food Microbiology - Radomir Lasztity FOOD MICROBIOLOGY Radomir Lasztity Department of Biochemistry and Food Technology, Budapest University of Technology and Economics, Hungary Keywords: aerobic, anaerobic, antibiotic, ascus, ascomycetes, ascospora, bacteria, botulism, budding, coccus, colony, facultative aerobic, filament, filamentous fungi, film yeasts, food-borne diseses, food-borne pathogens, food microbiology, fungi imperfecti, HACCP, heterofermentative, homofermentative, hypha, industrial use of microorganisms (molds, yeasts, bacteria), lactic acid bacteria, mesophilic, methods in food microbiology, microaerobic, microorganism, molds, morphological characteristics, mycelium, pasteurization, preservation of foods, psychrophilic, single cell protein, spoilage of foods, spore, sterilization, thermophilic, true yeast, water activity, yeasts. Contents 1. Introduction 2. Microorganisms Important in Food 2.1. Molds 2.1.1. General 2.1.2. Molds Occurring in Foods 2.2. Yeasts 2.2.1. General 2.2.2. Classification,Important Genera of Yeasts and Their Industrial Use. 2.3. Bacteria 2.3.1. General 2.3.2. Classification. Bacteria Important in Food Microbiology. 2.3.3. Industrial Use of Bacteria. 2.3.4. Food-borne Pathogens 3. Microbiology of Spoilage and Preservation of Food 3.1. General 3.2. Spoilage of Foods. 3.3. Preservation of Foods 3.3.1. Reduction of Moisture Content 3.3.2. Preservation by Use of High Temperatures. 3.3.3.PresevationUNESCO at low temperatures – EOLSS 3.3.4. Preservation of Foods by Preservatives. 3.3.5. Other MethodsSAMPLE of Food Preservation CHAPTERS 4. Food-borne Diseases 4.1. General 4.2. Microorganisms Causing Food Infection and Food Poisoning. 4.2.1. Botulism 4.2.2. Staphylococcal Food Poisoning 4.2.3.
    [Show full text]
  • World Nutrition
    World Nutrition. Journal of the World Public Health Nutrition Association. www.wphna.org Volume 2, Number 3, March 2011 World Nutrition This pdf is currently a free service offered by the Association Please access our website at: www.wphna.org, renewed every month, for: All our world news, information, discussion and services Complete monthly issues of World Nutrition Details of how to join the Association and to contribute to our work. Volume 2, Number 3, March 2011 Journal of the World Public Health Nutrition Association Published monthly at www.wphna.org The Association is an affiliated body of the International Union of Nutritional Sciences For membership and for other contributions, news, columns and services, go to: www.wphna.org Correspondence The big issue is ultra-processing Short communication When calories are not calories Sir: Our dietary choices affect how much energy (measured as calories) we burn as well as how many we consume. After eating a meal, our metabolic rate increases in response to digestive processes such as peristalsis, enzyme synthesis, and nutrient uptake and assimilation (1,2). This ‘specific dynamic action’ (SDA) of food has been well-known for a century, but curiously, study of the relative SDA of different types of diet has been neglected. More refined foods (those heavily laden with added sugars and other processed carbohydrates), require less digestive energy than minimally processed or unprocessed foods, which often have more protein, are higher in dietary fibre, and have a greater nutrient density (3-6). So the given calorie content of a meal is not the actual amount of net calories the body receives.
    [Show full text]