DDR3 SDRAM Memory Controller N.Purnachand1, K Hari Kishore2, K.V.Pavankalyan3, K.Divya4, A.Karthik5, Khadar Bhasha6 1,2,3,4,5,6D

Total Page:16

File Type:pdf, Size:1020Kb

DDR3 SDRAM Memory Controller N.Purnachand1, K Hari Kishore2, K.V.Pavankalyan3, K.Divya4, A.Karthik5, Khadar Bhasha6 1,2,3,4,5,6D International Journal of Pure and Applied Mathematics Volume 115 No. 7 2017, 507-512 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu DDR3 SDRAM Memory Controller N.Purnachand 1, K Hari Kishore 2, K.V.Pavankalyan 3, K.Divya 4, A.Karthik 5, Khadar Bhasha 6 1,2,3,4,5,6 Department of ECE, K L University, Vaddeswaram, Guntur, A.P. India [email protected], [email protected] Abstract:To overcome the problem of latency in particular memory location. The DDR SDRAM SDRAM, data rate schemes were introduced. In these Controller architecture is shown in Figure 2. scheme the data will worked in according with clock It consists of three modules: pulses such that it automatically adjusts the latency. Till 1) Main control module now Double data rate (DDR) based SDRAM, DDR2- 2) Signal generation module SDRAM and DDR3-SDRAM were implemented. In 3) Data path module. our condition modified DDR3-SDRAM was The main control module has two state machines and a implemented. To enhance the latency of the system and refresh counter. The two state machines are for area utilization. This design will overcome the issues initialization of the SDRAM and for generating the such as data rate interference, high delay and limited commands to the SDRAM. They generate iState and period offence. DDR3 SDRAM controller helps cState outputs according to the system interface control memory interfacing and reduces the problem of signals. The signal generation module now generates synchronization. This high performance RAM the address and command signals depending upon the overcomes the limitations and further can be extended iState and cState. The data path module performs the other memory accessing applications such as CAM, read and writes operations between the bus master and TCAM. The performance of DDR3 were compared DDR. Following are some of the important features of with DDR and helps in identifying the efficiency of the DDR SDRAM Controller: scheme. i. The DDR SDRAM Read and Write operations are simplified by the controller. 1. Introduction ii. For initializing the DDR SDRAM controller, Synchronous DRAM (SDRAM) is preferred in separate state machines are designed internally. embedded system memory design because of its speed iii. The access time for read and the write cycle is and pipelining capability. In high-end applications, like optimised based on the CAS latency and burst length of microprocessors there will be specific built in the DDR SDRAM. peripherals to provide the interface to the SDRAM. But iv. The auto refresh for the DDR SDRAM is done by for other applications, the system designer must design the controller. a specific memory controller to provide command The main control module consists of three sub signals for memory refresh, read and write operation modules: and initialization of SDRAM. "Synchronous switch", 1) Initialization FSM module (INIT_FSM). tells about the behavior of the DRAM kind. In late 2) Command FSM module (CMD_FSM) 1996, SDRAM commenced appearing in systems. 3) Counter module. Unlike preceding technology, SDRAM is designed to In this paper, the SDRAM controller, located between synchronize itself with the timing of the CPU. This the SDRAM and the bus master, minimizes the effort to enables the reminiscence controller to realize the deal with the SDRAM memory by providing a simple precise clock cycle when the asked records might be system to interact with the bus master. Figure 1 is the prepared, so the CPU does not have to wait between block diagram of the DDR SDRAM Memory reminiscence accesses. For example, PC66 SDRAM Controller that is connected between the bus master and runs at 66 MT/s, PC100 SDRAM runs at 100 MT/s, SDRAM. PC133 SDRAM runs at 133 MT/s, and so on. SDRAM’s are classified based on their data transfer rates. In Single data rate SDRAM, the data is 2. Methodology transferred on every rising edge of the clock whereas in double data rate (DDR) SDRAM’s the data is 2.1 DDR-SDRAM transferred on every rising edge and every falling edge DDR SDRAM Controller module receives addresses of the clock and as a result the throughput is increased. and control signals from the BUS Master. The DDR SDRAM Controllers are faster and efficient than Controller generates command signals and based on its counterparts. They allow data transfer at a faster rate these signals the data is either read or written to a without much increase in clock frequency and bus width. Same Commands as for Standard SDRAM 507 International Journal of Pure and Applied Mathematics Special Issue • READ In the i_PRE state, the main control module will • WRITE generate the PRECHARGE command. The • ACTIVATE PRECHARGE command generated during this state • PRECHARGE will be applied to all the banks in the device. Once the • REFRESH PRECHARGE command is generated by the • MRS (Mode Register Set) initialization FSM, it will switch to the next state. The Added next state in the design of initialization FSM is two • EMRS (Extended MRS) AUTO REFRESH commands. These refresh • Phase Shift the Data Strobe commands are generated to refresh the DRAM • Resynchronize the Data memory. After the two refresh state, the initialization A. Main control module FSM will switch to i_MRS state. During this state LOAD MODE REGISTER command is generated to The DDR SDRAM Controller has to undergo configure the DDR SDRAM to a specific mode of an initialization process by a sequence of command operation. signals before the normal memory access . The After satisfying the i_tMRD timing delay the initialization finite state machine in the main control initialization FSM will switch to i_ready state. The module is responsible for the initialization of the DDR initialization FSM will remain in the i_ready state for SDRAM controller. Figure shows the state diagram of normal memory access. And also, when the the initialization FSM (INIT_FSM). Whenever reset initialization FSM switches to i_ready state signal signal is high, the initialization FSM will switch to sys_INIT_DONE is set to high to indicate that DDR i_IDLE state. Once the reset signal goes low, the SDRAM controller initialization is completed. The controller has to wait for 200us clock stabilization i_PRE, i_AR1, i_AR2, i_EMRS and i_MRS states are delay. This is constantly checked by sys_dly_200us used for issuing DDR commands. signal and a high on the sys_dly_200us will indicate CMD_FSM handles the read, write and refresh of that the clock stabilization delay is complete. The DDR the SDRAM. The CMD_FSM state machine is initialization sequence will begin immediately after the initialized to c_IDLE during reset. After reset, clock/power stabilization is complete and then the CMD_FSM stays in c_IDLE as long as INIT_FSM will change its state from i_IDLE to i_NOP sys_INIT_DONE is low which indicates the SDRAM state. From the i_NOP state, the initialization FSM will initialization sequence is not yet completed. When the switch to the i_PRE state on the next clock cycle. sys_INIT_DONE is high, it indicates the system initialization is complete. The controller will now wait for latch_ref_req, sys_INIT_DONE signals and will enter auto refresh, read and write mode depending upon these signals. When the initialization is complete and when the latch_ref_req goes high the controller will refresh by entering into refresh state. After the refresh is complete, when the latch_ref_req and sys_ADSn signal goes low, the controller will go to active state. The ACTIVE command will be issued for each read or write access to open the row. 2.2 Ddr3-Sdram Double statistics charge kind 3 SDRAM (DDR3 Figure 1: DDR SDRAM controller system SDRAM) is a type of synchronous dynamic random-get right of entry to reminiscence (SDRAM) with a high bandwidth ("double records fee") interface, and has been in use considering 2007. It is the higher-pace successor to DDR and DDR2 and predecessor to DDR4 synchronous dynamic random-get admission to memory (SDRAM) chips. DDR3 SDRAM is neither forward nor backward compatible with any earlier form of random-access memory (RAM) due to specific signaling voltages, timings, and other factors. Figure 2. Clock pulses command operations of DDR3 is a DRAM interface specification. The real DDRSDRAM DRAM arrays that store the records are much like in advance kinds, with comparable performance. 508 International Journal of Pure and Applied Mathematics Special Issue The primary gain of DDR3 SDRAM over its on the DDR commands that helps in selecting strobe and spot predecessor, DDR2 SDRAM, is its capability to chip selection in our approach are Mode Register Set, transfer information at two times the fee (8 instances Refresh, PRECHARGE, calibration. From this we the speed of its inner memory arrays), permitting better access different states Intialise, Idle, Read, Write and bandwidth or height statistics quotes. With transfers in pause modes. keeping with cycle of a quadrupled clock sign, a sixty four-bit wide DDR3 module may attain a switch price (in megabytes consistent with 2nd, MB/s) of as much as 64 instances the memory clock pace (in MHz). With statistics being transferred sixty four bits at a time in keeping with reminiscence module, DDR3 SDRAM gives a switch price of (reminiscence clock fee) × four (for bus clock multiplier) × 2 (for information rate) × 64 (number of bits transferred) / eight (quantity of bits/byte). Thus with a reminiscence clock frequency of 100 MHz, DDR3 SDRAM offers a maximum switch fee of 6400 MB/s. The DDR3 popular lets in DRAM chip capacities of up to eight gibibits, and up to 4 ranks of 64 bits every for a complete most of 16 GiB in keeping with DDR3 DIMM. Because of a hardware challenge no longer constant till Ivy Bridge-E in 2013, maximum older Intel CPUs simplest aid up to 4 gbit chips for 8 Figure 4 operations of DDR3SDRAM GiB DIMMs (Intel's Core 2 DDR3 chipsets best aid up to 2 gbits).
Recommended publications
  • ASIC Implementation of DDR SDRAM Memory Controller
    © 2016 IJEDR | Volume 4, Issue 4 | ISSN: 2321-9939 ASIC Implementation of DDR SDRAM Memory Controller Ramagiri Ramya, Naganaik M.Tech Scholar, ASST.PROF, HOD of ECE BRIG-IC, Hyderabad ________________________________________________________________________________________________________ Abstract - A Dedicated Memory Controller is of prime importance in applications that do not contain microprocessors (high-end applications). The Memory Controller provides command signals for memory refresh, read and write operation and initialization of SDRAM. Our work will focus on ASIC Design methodology of Double Data Rate (DDR) SDRAM Controller that is located between the DDR SDRAM and Bus Master. The Controller simplifies the SDRAM command interface to standard system read/write interface and also optimizes the access time of read/write cycle. Keywords - DDR SDRAM Controller, Read/Write Data path, Cadence RTL Compiler. ________________________________________________________________________________________________________ I. INTRODUCTION Memory devices are almost found in all systems and nowadays high speed and high performance memories are in great demand. For better throughput and speed, the controllers are to be designed with clock frequency in the range of megahertz. As the clock speed of the controller is increasing, the design challenges are also becoming complex. Therefore the next generation memory devices require very high speed controllers like double data rate and quad data rate memory controllers. In this paper, the double data rate SDRAM Controller is implemented using ASIC methodology. Synchronous DRAM (SDRAM) is preferred in embedded system memory design because of its speed and pipelining capability. In high-end applications, like microprocessors there will be specific built in peripherals to provide the interface to the SDRAM. But for other applications, the system designer must design a specific memory controller to provide command signals for memory refresh, read and write operation and initialization of SDRAM.
    [Show full text]
  • 2GB DDR3 SDRAM 72Bit SO-DIMM
    Apacer Memory Product Specification 2GB DDR3 SDRAM 72bit SO-DIMM Speed Max CAS Component Number of Part Number Bandwidth Density Organization Grade Frequency Latency Composition Rank 0C 78.A2GCB.AF10C 8.5GB/sec 1066Mbps 533MHz CL7 2GB 256Mx72 256Mx8 * 9 1 Specifications z Support ECC error detection and correction z On DIMM Thermal Sensor: YES z Density:2GB z Organization – 256 word x 72 bits, 1rank z Mounting 9 pieces of 2G bits DDR3 SDRAM sealed FBGA z Package: 204-pin socket type small outline dual in line memory module (SO-DIMM) --- PCB height: 30.0mm --- Lead pitch: 0.6mm (pin) --- Lead-free (RoHS compliant) z Power supply: VDD = 1.5V + 0.075V z Eight internal banks for concurrent operation ( components) z Interface: SSTL_15 z Burst lengths (BL): 8 and 4 with Burst Chop (BC) z /CAS Latency (CL): 6,7,8,9 z /CAS Write latency (CWL): 5,6,7 z Precharge: Auto precharge option for each burst access z Refresh: Auto-refresh, self-refresh z Refresh cycles --- Average refresh period 7.8㎲ at 0℃ < TC < +85℃ 3.9㎲ at +85℃ < TC < +95℃ z Operating case temperature range --- TC = 0℃ to +95℃ z Serial presence detect (SPD) z VDDSPD = 3.0V to 3.6V Apacer Memory Product Specification Features z Double-data-rate architecture; two data transfers per clock cycle. z The high-speed data transfer is realized by the 8 bits prefetch pipelined architecture. z Bi-directional differential data strobe (DQS and /DQS) is transmitted/received with data for capturing data at the receiver. z DQS is edge-aligned with data for READs; center aligned with data for WRITEs.
    [Show full text]
  • Dual-DIMM DDR2 and DDR3 SDRAM Board Design Guidelines, External
    5. Dual-DIMM DDR2 and DDR3 SDRAM Board Design Guidelines June 2012 EMI_DG_005-4.1 EMI_DG_005-4.1 This chapter describes guidelines for implementing dual unbuffered DIMM (UDIMM) DDR2 and DDR3 SDRAM interfaces. This chapter discusses the impact on signal integrity of the data signal with the following conditions in a dual-DIMM configuration: ■ Populating just one slot versus populating both slots ■ Populating slot 1 versus slot 2 when only one DIMM is used ■ On-die termination (ODT) setting of 75 Ω versus an ODT setting of 150 Ω f For detailed information about a single-DIMM DDR2 SDRAM interface, refer to the DDR2 and DDR3 SDRAM Board Design Guidelines chapter. DDR2 SDRAM This section describes guidelines for implementing a dual slot unbuffered DDR2 SDRAM interface, operating at up to 400-MHz and 800-Mbps data rates. Figure 5–1 shows a typical DQS, DQ, and DM signal topology for a dual-DIMM interface configuration using the ODT feature of the DDR2 SDRAM components. Figure 5–1. Dual-DIMM DDR2 SDRAM Interface Configuration (1) VTT Ω RT = 54 DDR2 SDRAM DIMMs (Receiver) Board Trace FPGA Slot 1 Slot 2 (Driver) Board Trace Board Trace Note to Figure 5–1: (1) The parallel termination resistor RT = 54 Ω to VTT at the FPGA end of the line is optional for devices that support dynamic on-chip termination (OCT). © 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries.
    [Show full text]
  • A Modern Primer on Processing in Memory
    A Modern Primer on Processing in Memory Onur Mutlua,b, Saugata Ghoseb,c, Juan Gomez-Luna´ a, Rachata Ausavarungnirund SAFARI Research Group aETH Z¨urich bCarnegie Mellon University cUniversity of Illinois at Urbana-Champaign dKing Mongkut’s University of Technology North Bangkok Abstract Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks: (1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms, especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the data-intensive server and energy-constrained mobile systems of today. At the same time, conventional memory technology is facing many technology scaling challenges in terms of reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic, the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an evidence of this trend.
    [Show full text]
  • AN 436: Using DDR3 SDRAM in Stratix III and Stratix IV Devices.Pdf
    AN 436: Using DDR3 SDRAM in Stratix III and Stratix IV Devices © November 2008 AN-436-4.0 Introduction DDR3 SDRAM is the latest generation of DDR SDRAM technology, with improvements that include lower power consumption, higher data bandwidth, enhanced signal quality with multiple on-die termination (ODT) selection and output driver impedance control. DDR3 SDRAM brings higher memory performance to a broad range of applications, such as PCs, embedded processor systems, image processing, storage, communications, and networking. Although DDR2 SDRAM is currently the more popular SDRAM, to save system power and increase system performance you should consider using DDR3 SDRAM. DDR3 SDRAM offers lower power by using 1.5 V for the supply and I/O voltage compared to the 1.8-V supply and I/O voltage used by DDR2 SDRAM. DDR3 SDRAM also has better maximum throughput compared to DDR2 SDRAM by increasing the data rate per pin and the number of banks (8 banks are standard). 1 The Altera® ALTMEMPHY megafunction and DDR3 SDRAM high-performance controller only support local interfaces running at half the rate of the memory interface. Altera Stratix® III and Stratix IV devices support DDR3 SDRAM interfaces with dedicated DQS, write-, and read-leveling circuitry. Table 1 displays the maximum clock frequency for DDR3 SDRAM in Stratix III devices. Table 1. DDR3 SDRAM Maximum Clock Frequency Supported in Stratix III Devices (Note 1), (2) Speed Grade fMAX (MHz) –2 533 (3) –3 and I3 400 –4, 4L, and I4L at 1.1 V 333 (4), (5) –4, 4L, and I4L at 0.9 V Not supported Notes to Table 1: (1) Numbers are preliminary until characterization is final.
    [Show full text]
  • CPU Clock Rate DRAM Access Latency Growing
    CPU clock rate . Apple II – MOS 6502 (1975) 1~2MHz . Original IBM PC (1981) – Intel 8080 4.77MHz CS/COE1541: Introduction to . Intel 486 50MHz Computer Architecture . DEC Alpha Memory hierarchy • EV4 (1991) 100~200MHz • EV5 (1995) 266~500MHz • EV6 (1998) 450~600MHz Sangyeun Cho • EV67 (1999) 667~850MHz Computer Science Department University of Pittsburgh . Today’s processors – 2~5GHz CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh 2 DRAM access latency Growing gap . How long would it take to fetch a memory block from main memory? • Time to determine that data is not on-chip (cache miss resolution time) • Time to talk to memory controller (possibly on a separate chip) • Possible queuing delay at memory controller • Time for opening a DRAM row • Time for selecting a portion in the selected row (CAS latency) • Time to transfer data from DRAM to CPU Possibly through a separate chip • Time to fill caches as needed . The total latency can be anywhere from 100~400 CPU cycles CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh 3 4 Idea of memory hierarchy Memory hierarchy goals . To create an illusion of “fast and large” main memory Smaller CPU Faster Regs • As fast as a small SRAM-based memory More expensive per byte • As large (and cheap) as DRAM-based memory L1 cache . To provide CPU with necessary data and instructions as SRAM quickly as possible • Frequently used data must be placed near CPU L2 cache • “Cache hit” when CPU finds its data in cache SRAM • Cache hit rate = # of cache hits/# cache accesses • Avg.
    [Show full text]
  • High Bandwidth Memory for Graphics Applications Contents
    High Bandwidth Memory for Graphics Applications Contents • Differences in Requirements: System Memory vs. Graphics Memory • Timeline of Graphics Memory Standards • GDDR2 • GDDR3 • GDDR4 • GDDR5 SGRAM • Problems with GDDR • Solution ‐ Introduction to HBM • Performance comparisons with GDDR5 • Benchmarks • Hybrid Memory Cube Differences in Requirements System Memory Graphics Memory • Optimized for low latency • Optimized for high bandwidth • Short burst vector loads • Long burst vector loads • Equal read/write latency ratio • Low read/write latency ratio • Very general solutions and designs • Designs can be very haphazard Brief History of Graphics Memory Types • Ancient History: VRAM, WRAM, MDRAM, SGRAM • Bridge to modern times: GDDR2 • The first modern standard: GDDR4 • Rapidly outclassed: GDDR4 • Current state: GDDR5 GDDR2 • First implemented with Nvidia GeForce FX 5800 (2003) • Midway point between DDR and ‘true’ DDR2 • Stepping stone towards DDR‐based graphics memory • Second‐generation GDDR2 based on DDR2 GDDR3 • Designed by ATI Technologies , first used by Nvidia GeForce FX 5700 (2004) • Based off of the same technological base as DDR2 • Lower heat and power consumption • Uses internal terminators and a 32‐bit bus GDDR4 • Based on DDR3, designed by Samsung from 2005‐2007 • Introduced Data Bus Inversion (DBI) • Doubled prefetch size to 8n • Used on ATI Radeon 2xxx and 3xxx, never became commercially viable GDDR5 SGRAM • Based on DDR3 SDRAM memory • Inherits benefits of GDDR4 • First used in AMD Radeon HD 4870 video cards (2008) • Current
    [Show full text]
  • DDR3 SODIMM Product Datasheet
    DDR3 SODIMM Product Datasheet 廣 穎 電 通 股 份 有 限 公 司 Silicon Power Computer & Communications Inc. TEL: 886-2 8797-8833 FAX: 886-2 8751-6595 台北市114內湖區洲子街106號7樓 7F, No.106, ZHO-Z ST. NEIHU DIST, 114, TAIPEI, TAIWAN, R.O.C This document is a general product description and is subject to change without notice DDR3 SODIMM Product Datasheet Index Index...................................................................................................................................................................... 2 Revision History ................................................................................................................................................ 3 Description .......................................................................................................................................................... 4 Features ............................................................................................................................................................... 5 Pin Assignments................................................................................................................................................ 7 Pin Description................................................................................................................................................... 8 Environmental Requirements......................................................................................................................... 9 Absolute Maximum DC Ratings....................................................................................................................
    [Show full text]
  • 512MB (X64, SR) 204-Pin DDR3 SODIMM Features DDR3 SDRAM SODIMM MT4JSF6464H – 512MB
    512MB (x64, SR) 204-Pin DDR3 SODIMM Features DDR3 SDRAM SODIMM MT4JSF6464H – 512MB Features Figure 1: 204-Pin SODIMM (MO-268 R/C C) • DDR3 functionality and operations supported as PCB height: 30.0mm (1.18in) defined in the component data sheet • 204-pin, small-outline dual in-line memory module (SODIMM) • Fast data transfer rates: PC3-12800, PC3-10600, PC3-8500, or PC3-6400 • 512MB (64 Meg x 64) • VDD = 1.5V ±0.075V • VDDSPD = 3.0–3.6V • Nominal and dynamic on-die termination (ODT) for Options Marking 1 data, strobe, and mask signals • Operating temperature – Commercial (0°C ≤ T ≤ +70°C) None • Single rank A – Industrial (–40°C ≤ T ≤ +85°C) I • On-board I2C temperature sensor with integrated A Package serial presence-detect (SPD) EEPROM • – 204-pin DIMM (lead-free) Y 8 internal device banks • • Frequency/CAS latency • Fixed burst chop (BC) of 4 and burst length (BL) of 8 – 1.25ns @ CL = 11 (DDR3-1600) -1G6 via the mode register set (MRS) – 1.5ns @ CL = 9 (DDR3-1333) -1G4 • Selectable BC4 or BL8 on-the-fly (OTF) – 1.87ns @ CL = 7 (DDR3-1066) -1G1 • Gold edge contacts Notes: 1. Contact Micron for industrial temperature • Lead-free module offerings. • Fly-by topology 2. Not recommended for new designs. • Terminated control, command, and address bus Table 1: Key Timing Parameters Speed Industry Data Rate (MT/s) tRCD tRP tRC Grade Nomenclature CL = 11 CL = 10 CL = 9 CL = 8 CL = 7 CL = 6 CL = 5 (ns) (ns) (ns) -1G6 PC3-12800 1600 1333 1333 1066 1066 800 667 13.125 13.125 48.125 -1G4 PC3-10600 – 1333 1333 1066 1066 800 667 13.125 13.125 49.125 -1G1 PC3-8500 – – – 1066 1066 800 667 13.125 13.125 50.625 -1G0 PC3-8500 – – – 1066 – 800 667 15 15 52.5 -80B PC3-6400 – – – – – 800 667 15 15 52.5 PDF: 09005aef82b2f090 Micron Technology, Inc.
    [Show full text]
  • Swissbit SMT Memory Product Guide Rev1.9.Pub
    SWISSMEMORY™ Industrial Product Line DRAM Memory Products Solutions for Industrial and Embedded Applications Surface Mount Technology (SMT) DDR3 DDR2 DDR SDRAM DRAM Visit us at www.swissbit.com Version 1.9 - 01/2009 DDR3 SDRAM TECHNOLOGY SDRAM DDR3 modules are Swissbit’s most recent Double Data Rate products to market. DDR3 is the memory choice for performance driven systems with clock frequencies of 400 to 800MHz and data rates of 800 to 1600 Mb per second. In addition to DDR3’s improved performance in dual- and multi-core systems, it also provides increased efficiency with lower power consumption. DDR3 power consumption is approximately 20% or more lower than its predecessor at 1.35V to 1.5V as compared to the 1.8V of DDR2. Swissbit offers DDR3’s unmatched combination of high bandwidth and density with lower power consumption in the variety of module packages. Density Swissbit PN Data Rate (MT/s) - CL Height # IC’s IC Org Rank DDR3 SDRAM UDIMM (240 pin) 512MB (64Mx64) SGU06464C1CB1xx-ssR 800-CL5 / 1066-CL7 / 1333-CL9 1.18" (29.97mm) 4 64Mx16 1 1GB (128Mx64) SGU12864D1BB1xx-ssR 800-CL5 / 1066-CL7 / 1333-CL9 1.18" (29.97mm) 8 128Mx8 1 2GB (256Mx64) SGU25664E1BB2xx-ssR 800-CL5 / 1066-CL7 / 1333-CL9 1.18" (29.97mm) 16 128Mx8 2 DDR3 SDRAM UDIMM w/ ECC (240 pin) 512MB (64Mx72) SGU06472H1CB1xx-ssR 800-CL5 / 1066-CL7 / 1333-CL9 1.18" (29.97mm) 5 64Mx16 1 1GB (128Mx72) SGU12872F1BB1xx-ssR 800-CL5 / 1066-CL7 / 1333-CL9 1.18" (29.97mm) 9 128Mx8 1 2GB (256Mx72) SGU25672G1BB2xx-ssR 800-CL5 / 1066-CL7 / 1333-CL9 1.18" (29.97mm) 18 128Mx8 2 DDR3 SDRAM
    [Show full text]
  • Machxo2 LPDDR SDRAM Controller IP Core User's Guide
    MachXO2™ LPDDR SDRAM Controller IP Core User’s Guide February 2014 IPUG92_01.3 Table of Contents Chapter 1. Introduction .......................................................................................................................... 4 Introduction ........................................................................................................................................................... 4 Quick Facts ........................................................................................................................................................... 4 Features ................................................................................................................................................................ 4 Chapter 2. Functional Description ........................................................................................................ 5 Overview ............................................................................................................................................................... 5 Initialization Block......................................................................................................................................... 5 Read Training Block..................................................................................................................................... 6 Data Control Block ....................................................................................................................................... 6 LPDDR I/Os ................................................................................................................................................
    [Show full text]
  • ¡ Semiconductor MSM5718C50/Md5764802this Version: Feb
    E2G1059-39-21 ¡ Semiconductor MSM5718C50/MD5764802This version: Feb. 1999 ¡ Semiconductor Previous version: Nov. 1998 MSM5718C50/MD5764802 18Mb (2M ´ 9) & 64Mb (8M ´ 8) Concurrent RDRAM DESCRIPTION The 18/64-Megabit Concurrent Rambus™ DRAMs (RDRAM®) are extremely high-speed CMOS DRAMs organized as 2M or 8M words by 8 or 9 bits. They are capable of bursting unlimited lengths of data at 1.67 ns per byte (13.3 ns per eight bytes). The use of Rambus Signaling Level (RSL) technology permits 600 MHz transfer rates while using conventional system and board design methodologies. Low effective latency is attained by operating the two or four 2KB sense amplifiers as high speed caches, and by using random access mode (page mode) to facilitate large block transfers. Concurrent (simultaneous) bank operations permit high effective bandwidth using interleaved transactions. RDRAMs are general purpose high-performance memory devices suitable for use in a broad range of applications including PC and consumer main memory, graphics, video, and any other application where high-performance at low cost is required. FEATURES • Compatible with Base RDRAMs • 600 MB/s peak transfer rate per RDRAM • Rambus Signaling Level (RSL) interface • Synchronous, concurrent protocol for block-oriented, interleaved (overlapped) transfers • 480 MB/s effective bandwidth for random 32 byte transfers from one RDRAM • 13 active signals require just 32 total pins on the controller interface (including power) • 3.3 V operation • Additional/multiple Rambus Channels each provide an additional 600 MB/s bandwidth • Two or four 2KByte sense amplifiers may be operated as caches for low latency access • Random access mode enables any burst order at full bandwidth within a page • Graphics features include write-per-bit and mask-per-bit operations • Available in horizontal surface mount plastic package (SHP32-P-1125-0.65-K) 1/45 ¡ Semiconductor MSM5718C50/MD5764802 PART NUMBERS The 18- and 64-Megabit RDRAMs are available in horizontal surface mount plastic package (SHP), with 533 and 600 MHz clock rate.
    [Show full text]