Pp 170-180 Mcdonald.PMD
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Materialsupplementary Material
10.1071/BT13149_AC © CSIRO 2013 Australian Journal of Botany 2013, 61(6), 436–445 SUPPLEMENTARY MATERIAL Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records Joseph T. MillerA,E, Daniel J. MurphyB, Simon Y. W. HoC, David J. CantrillB and David SeiglerD ACentre for Australian National Biodiversity Research, CSIRO Plant Industry, GPO Box 1600 Canberra, ACT 2601, Australia. BRoyal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Vic. 3141, Australia. CSchool of Biological Sciences, Edgeworth David Building, University of Sydney, Sydney, NSW 2006, Australia. DDepartment of Plant Biology, University of Illinois, Urbana, IL 61801, USA. ECorresponding author. Email: [email protected] Table S1 Materials used in the study Taxon Dataset Genbank Acacia abbreviata Maslin 2 3 JF420287 JF420065 JF420395 KC421289 KC796176 JF420499 Acacia adoxa Pedley 2 3 JF420044 AF523076 AF195716 AF195684; AF195703 Acacia ampliceps Maslin 1 KC421930 EU439994 EU811845 Acacia anceps DC. 2 3 JF420244 JF420350 JF419919 JF420130 JF420456 Acacia aneura F.Muell. ex Benth 2 3 JF420259 JF420036 JF420366 JF419935 JF420146 KF048140 Acacia aneura F.Muell. ex Benth. 1 2 3 JF420293 JF420402 KC421323 JQ248740 JF420505 Acacia baeuerlenii Maiden & R.T.Baker 2 3 JF420229 JQ248866 JF420336 JF419909 JF420115 JF420448 Acacia beckleri Tindale 2 3 JF420260 JF420037 JF420367 JF419936 JF420147 JF420473 Acacia cochlearis (Labill.) H.L.Wendl. 2 3 KC283897 KC200719 JQ943314 AF523156 KC284140 KC957934 Acacia cognata Domin 2 3 JF420246 JF420022 JF420352 JF419921 JF420132 JF420458 Acacia cultriformis A.Cunn. ex G.Don 2 3 JF420278 JF420056 JF420387 KC421263 KC796172 JF420494 Acacia cupularis Domin 2 3 JF420247 JF420023 JF420353 JF419922 JF420133 JF420459 Acacia dealbata Link 2 3 JF420269 JF420378 KC421251 KC955787 JF420485 Acacia dealbata Link 2 3 KC283375 KC200761 JQ942686 KC421315 KC284195 Acacia deanei (R.T.Baker) M.B.Welch, Coombs 2 3 JF420294 JF420403 KC421329 KC955795 & McGlynn JF420506 Acacia dempsteri F.Muell. -
Seed Ecology Iii
SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst -
Assessment of Dalwallinu Shire Wattles Considered Prospective for Human Food
Assessment of Dalwallinu Shire Wattles considered prospective for human food A Report Produced For The Shire of Dalwallinu By Bruce Maslin and Jordan Reid December 2008 1 2 Assessment of Dalwallinu Shire Wattles considered prospective for human food By Bruce Maslin & Jordan Reid Western Australian Herbarium, Department of Environment and Conservation, Kensington, W.A. Preamble Following a request from Mr Robert Nixon, President of the Dalwallinu Shire Council, and a meeting with Shire Councillors McFarlane, Carter, Dinnie and Sanderson, CEO Crispin and Brent Parkinson, we undertook a quick assessment of the Acacia flora of the Dalwallinu Shire with a view to identifying those species that might have potential for cultivation as a source of commercial quantities of seed for human consumption. The work was conducted between 2-5 December 2008. Introduction There are about 80 different Acacia (Wattle) species that occur in the Shire of Dalwallinu. Ten of these species were included in Edible Wattle Seeds of Southern Australia (Maslin et al. 1998) as having some potential for development as new crop plants as a source of seed for human consumption. From the outset it is recommended that readers familiarize themselves with Maslin et al. (1998) and Simpson & Chudleigh (2001) because these two works provide much valuable information relevant to the domestication of Acacia as human food crop in low rainfall areas. Little or no attempt has been made here to reproduce the information contained in these works (we have simply focused on identifying those species in the Dalwallinu Shire that we consider as prospective for development as new seed crops). -
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Northwest Highlands Bioregion Technical Descriptions
Department of Environment and Science Regional Ecosystem Technical Descriptions Technical descriptions provide a detailed description of the full range in structure and floristic composition of regional ecosystems (e.g. 1.1.10) and their component vegetation communities (e.g. 1.11.10a, 1.11.10b). The descriptions are compiled using site survey data from the Queensland Herbarium’s CORVEG database. Distribution maps, representative images (if available) and the pre-clearing and remnant area (hectares) of each vegetation community derived from the regional ecosystem mapping (spatial) data are included. The technical descriptions should be used in conjunction with the fields from the regional ecosystem description database (REDD) for a full description of the regional ecosystem. Quantitative site data from relatively undisturbed sites are extracted from CORVEG and summarized to provide information specific to each vegetation community. Technical descriptions include the attributes: tree canopy height and cover and native plant species composition of the predominant layer, which are used to assess the remnant status of vegetation under the Vegetation Management Act 1999. However, as technical descriptions reflect the full range in structure and floristic composition across the climatic, natural disturbance and geographic range of the regional ecosystem, local reference sites should be used where possible (Neldner et al. 2005 section 3.3.3). The technical descriptions are subject to review and are updated as additional data becomes available. -
MVG 16 Acacia Shrublands DRAFT
MVG 16 - ACACIA SHRUBLANDS Acacia hillii, Tanami Desert, NT (Photo: D. Keith) Overview The overstorey of MVG 16 is dominated by multi-stemmed acacia shrubs. The most widespread species is Acacia aneura (mulga). Mulga vegetation takes on a variety of structural expressions and is consequently classified partly within MVG 16 where the overstorey is dominated by multi-stemmed shrubs, partly within MVG 6 in accordance with the Kyoto Protocol definition of forest cover in Australia (trees > 2 m tall and crown cover > 20%, foliage projective cover > 10%); and partly within MVG 13 where the woody dominants are predominantly single-stemmed, but with crown cover less than 20%. Occurs where annual rainfall is below 250mm in southern Australia and below 350mm in northern Australia (Hodgkinson 2002; Foulkes et al. 2014). Species composition varies along rainfall gradients, with substrate and rainfall seasonality (Beadle 1981; Johnson and Burrows 1994). Transitions into MVG 13 Acacia woodlands with higher rainfall and varying soil types. Is most commonly found on red earth soils (Hodgkinson 2002). Facts and figures Major Vegetation Group MVG 16 - Acacia Shrublands Major Vegetation Subgroups 20. Stony mulga woodlands and shrublands NSW, (number of NVIS descriptions) NT, QLD, SA, WA 23. Sandplain Acacia woodlands and shrublands NSW, NT, QLD, SA, WA Typical NVIS structural formations Shrubland (tall, mid,) Open shrubland (tall, mid,) Sparse shrubland (tall, mid,) Number of IBRA regions 53 Most extensive in IBRA region Est. pre-1750 and present : Great Victoria Desert (WA and SA) Estimated pre-1750 extent (km2) 865 845 Present extent (km2) 851 274 Area protected (km2) 85 444 Acacia ligulata (sandhill wattle), SA (Photo: M. -
Albizia Chevalieri, And
学位論文 Studies on bioactive compounds from Cameroonian medicinal plants, Acacia albida and Albizia chevalieri, and Japanese endophytes Xylaria sp. (カメルーン産薬用植物 Acacia albida と Albizia chevalieri と日本で分離された植物内生菌類 Xylaria sp.の生理活性物質に関する研究) Abdou Tchoukoua Dedication To My late mom DJEBBA M. Odile i Acknowledgments Acknowledgments This thesis was successful with the support of a number of people to whom I am greatly indebted. I would like to express my sincere gratitude to my supervisors, Prof. Dr. Yoshihito Shiono (Yamagata University, Japan) and Prof. Ngadjui T. Bonaventure (University of Yaounde I, Cameroon) for the guidance, support, and motivation during all the time of my research in their labs. Their help will always be deeply appreciated. I would also like to thank the JSPS-Ronpaku Program for financial support in Japan. I wish to express my gratitude to Prof. M. Hashimoto, Prof. Y. Tokuji, Prof. K. Kimura, and Prof. T. Koseki, for their participation as judging committee. I wish to thank all the people with whom I have worked and contributed to the development of this work. Great thanks to Prof. Dr. Özgen Çaliskan for my sojourn in her lab, and to Dr. Ibrahim Horo in offering his expertise in isolation of saponins. I wish to thank Prof. K. Kimura for analyses of biological activities. I thank Drs Eunsang Kwon and Hiroyuki Momma for measurements of ESI-MS spectra. I am particularly grateful to Dr. T. Tabopda for his contribution to the success of this investigation. It has been a pleasure working with you. I thank the staff members of the Department of Organic Chemistry of the University of Yaounde I for my university education. -
South West Queensland QLD Page 1 of 89 21-Jan-11 Species List for NRM Region South West Queensland, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt
plants Article Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt Rania A. Hassan * and Rim S. Hamdy Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; [email protected] * Correspondence: [email protected] Abstract: For the first time, an updated checklist of Acacia, Senegalia and Vachellia species in Egypt is provided, focusing on the exotic species. Taking into consideration the retypification of genus Acacia ratified at the Melbourne International Botanical Congress (IBC, 2011), a process of reclassification has taken place worldwide in recent years. The review of Acacia and its segregates in Egypt became necessary in light of the available information cited in classical works during the last century. In Egypt, various taxa formerly placed in Acacia s.l., have been transferred to Acacia s.s., Acaciella, Senegalia, Parasenegalia and Vachellia. The present study is a contribution towards clarifying the nomenclatural status of all recorded species of Acacia and its segregate genera. This study recorded 144 taxa (125 species and 19 infraspecific taxa). Only 14 taxa (four species and 10 infraspecific taxa) are indigenous to Egypt (included now under Senegalia and Vachellia). The other 130 taxa had been introduced to Egypt during the last century. Out of the 130 taxa, 79 taxa have been recorded in literature. The focus of this study is the remaining 51 exotic taxa that have been traced as living species in Egyptian gardens or as herbarium specimens in Egyptian herbaria. The studied exotic taxa are accommodated under Acacia s.s. (24 taxa), Senegalia (14 taxa) and Vachellia (13 taxa). -
Species Summary
Acacia jennerae LC Taxonomic Authority: Maiden Global Assessment Regional Assessment Region: Global Endemic to region Synonyms Common Names Racosperma jennera (Maiden) Pedley COONAVITTRA WATTLE English Upper Level Taxonomy Kingdom: PLANTAE Phylum: TRACHEOPHYTA Class: MAGNOLIOPSIDA Order: FABALES Family: LEGUMINOSAE Lower Level Taxonomy Rank: Infra- rank name: Plant Hybrid Subpopulation: Authority: In the past the species has commonly been confused with Acacia microbotrya; their ranges overlap in the Burakin–Trayning area in Western Australia. A. jennerae is normally distinguished by its straighter phyllodes with more numerous glands and its funicle (Orchard and Wilson 2001). General Information Distribution Acacia jennerae is endemic to Australia, distributed from near Kununoppin in Western Australia, through South Australia and the Northern Territory to Wilcannia in New South Wales, and the Simpson Desert in far south-west Queensland (Orchard and Wilson 2001). Range Size Elevation Biogeographic Realm Area of Occupancy: Upper limit: 900 Afrotropical Extent of Occurrence: Lower limit: 60 Antarctic Map Status: Depth Australasian Upper limit: Neotropical Lower limit: Oceanian Depth Zones Palearctic Shallow photic Bathyl Hadal Indomalayan Photic Abyssal Nearctic Population Total population size is not known but it was recently collected in 2002. Total Population Size Minimum Population Size: Maximum Population Size: Habitat and Ecology A tall shrub or tree that has the habit of a small mallee eucalypt that is sporadic in arid and semi-arid areas. It grows in mallee and savannah woodland. System Movement pattern Crop Wild Relative Terrestrial Freshwater Nomadic Congregatory/Dispersive Is the species a wild relative of a crop? Marine Migratory Altitudinally migrant Growth From Definition Shrub - large Perennial shrub (>1m), also termed a Phanerophyte (>1m) Tree - large Large tree, also termed a Phanerophyte (>1m) Threats There are no major threats known to this widespread species. -
A Vegetation and Flora Survey of the Brockman Syncline 4 Project Area, Near Tom Price
AA VVeeggeettaattiioonn aanndd FFlloorraa SSuurrvveeyy ooff tthhee BBrroocckkmmaann SSyynncclliinnee 44 PPrroojjeecctt AArreeaa,, nneeaarr TToomm PPrriiccee Prepared for Hamersley Iron Pty Ltd Prepared by JJuulllyy 22000055 Biota Environmental Sciences Pty Ltd A Vegetation and Flora Survey of the Brockman Syncline 4 Project Area, near Tom Price © Biota Environmental Sciences Pty Ltd 2005 ABN 49 092 687 119 14 View Street North Perth Western Australia 6006 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 271 Prepared by: Michi Maier Checked by: Garth Humphreys This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. Cube:Current:271 (Brockman 4 Biological):Doc:flora:flora_survey_7.doc 2 A Vegetation and Flora Survey of the Brockman Syncline 4 Project Area, near Tom Price A Vegetation and Flora Survey of the Brockman Syncline 4 Project Area, near Tom Price Contents 1.0 Summary 6 1.1 Background 6 1.2 Vegetation 6 1.3 Flora 7 1.4 Management Recommendations 7 2.0 Introduction 9 2.1 Background to the BS4 Project and Location of the Project Area 9 2.2 Scope and Objectives of this Study 9 2.3 Purpose of this Report 12 2.4 Existing Environment 12 3.0 Methodology 18 3.1 Desktop -
Supplementary Materialsupplementary Material
Supplementary Materials 10.1071/RJ16076_AC © CSIRO 2017 Supplementary Material: Rangeland Journal, 2017, 39(1), 85–95. Assessing the invasion threat of non-native plant species in protected areas using Herbarium specimen and ecological survey data. A case study in two rangeland bioregions in Queensland Michael R. NgugiA,B and Victor John NeldnerA AQueensland Herbarium, Department of Science Information Technology and Innovation, Mt Coot- tha Road, Toowong, Qld 4066, Australia. BCorresponding author. Email: [email protected] Table S1. List of native species in Cape York Peninsula and Desert Uplands bioregions Cape York Peninsula native Species Desert Uplands native Species Abelmoschus ficulneus Abelmoschus ficulneus Abelmoschus moschatus subsp. Tuberosus Abildgaardia ovata Abildgaardia ovata Abildgaardia vaginata Abildgaardia vaginata Abutilon arenarium Abrodictyum brassii Abutilon calliphyllum Abrodictyum obscurum Abutilon fraseri Abroma molle Abutilon hannii Abrophyllum ornans Abutilon leucopetalum Abrus precatorius L. subsp. precatorius Abutilon malvifolium Abutilon albescens Abutilon nobile Domin Abutilon auritum Abutilon otocarpum Abutilon micropetalum Abutilon oxycarpum Acacia armillata Abutilon oxycarpum Acacia armitii Abutilon oxycarpum var. incanum Acacia aulacocarpa Abutilon oxycarpum var. subsagittatum Acacia auriculiformis Acacia acradenia Acacia brassii Acacia adsurgens Acacia calyculata Acacia aneura F.Muell. ex Benth. var. aneura Acacia celsa Acacia aneura var. major Pedley Acacia chisholmii Acacia angusta Maiden