The Characterization of Jones Polynomial for Some Knots
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jones Polynomial for Graphs of Twist Knots
Available at Applications and Applied http://pvamu.edu/aam Mathematics: Appl. Appl. Math. An International Journal ISSN: 1932-9466 (AAM) Vol. 14, Issue 2 (December 2019), pp. 1269 – 1278 Jones Polynomial for Graphs of Twist Knots 1Abdulgani ¸Sahinand 2Bünyamin ¸Sahin 1Faculty of Science and Letters 2Faculty of Science Department Department of Mathematics of Mathematics Agrı˘ Ibrahim˙ Çeçen University Selçuk University Postcode 04100 Postcode 42130 Agrı,˘ Turkey Konya, Turkey [email protected] [email protected] Received: January 1, 2019; Accepted: March 16, 2019 Abstract We frequently encounter knots in the flow of our daily life. Either we knot a tie or we tie a knot on our shoes. We can even see a fisherman knotting the rope of his boat. Of course, the knot as a mathematical model is not that simple. These are the reflections of knots embedded in three- dimensional space in our daily lives. In fact, the studies on knots are meant to create a complete classification of them. This has been achieved for a large number of knots today. But we cannot say that it has been terminated yet. There are various effective instruments while carrying out all these studies. One of these effective tools is graphs. Graphs are have made a great contribution to the development of algebraic topology. Along with this support, knot theory has taken an important place in low dimensional manifold topology. In 1984, Jones introduced a new polynomial for knots. The discovery of that polynomial opened a new era in knot theory. In a short time, this polynomial was defined by algebraic arguments and its combinatorial definition was made. -
Arxiv:1608.01812V4 [Math.GT] 8 Nov 2018 Hc Ssrne Hntehmytplnma.Teindeterm the Polynomial
A NEW TWO-VARIABLE GENERALIZATION OF THE JONES POLYNOMIAL D. GOUNDAROULIS AND S. LAMBROPOULOU Abstract. We present a new 2-variable generalization of the Jones polynomial that can be defined through the skein relation of the Jones polynomial. The well-definedness of this invariant is proved both algebraically and diagrammatically as well as via a closed combinatorial formula. This new invariant is able to distinguish more pairs of non-isotopic links than the original Jones polynomial, such as the Thistlethwaite link from the unlink with two components. 1. Introduction In the last ten years there has been a new spark of interest for polynomial invariants for framed and classical knots and links. One of the concepts that appeared was that of the framization of a knot algebra, which was first proposed by J. Juyumaya and the second author in [22, 23]. In their original work, they constructed new 2-variable polynomial invariants for framed and classical links via the Yokonuma–Hecke algebras Yd,n(u) [34], which are quotients of the framed braid group . The algebras Y (u) can be considered as framizations of the Iwahori–Hecke Fn d,n algebra of type A, Hn(u), and for d = 1, Y1,n(u) coincides with Hn(u). They used the Juyumaya trace [18] with parameters z,x1,...,xd−1 on Yd,n(u) and the so-called E-condition imposed on the framing parameters xi, 1 i d 1. These new invariants and especially those for classical links had to be compared to other≤ ≤ known− invariants like the Homflypt polynomial [30, 29, 11, 31]. -
A Remarkable 20-Crossing Tangle Shalom Eliahou, Jean Fromentin
A remarkable 20-crossing tangle Shalom Eliahou, Jean Fromentin To cite this version: Shalom Eliahou, Jean Fromentin. A remarkable 20-crossing tangle. 2016. hal-01382778v2 HAL Id: hal-01382778 https://hal.archives-ouvertes.fr/hal-01382778v2 Preprint submitted on 16 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A REMARKABLE 20-CROSSING TANGLE SHALOM ELIAHOU AND JEAN FROMENTIN Abstract. For any positive integer r, we exhibit a nontrivial knot Kr with r− r (20·2 1 +1) crossings whose Jones polynomial V (Kr) is equal to 1 modulo 2 . Our construction rests on a certain 20-crossing tangle T20 which is undetectable by the Kauffman bracket polynomial pair mod 2. 1. Introduction In [6], M. B. Thistlethwaite gave two 2–component links and one 3–component link which are nontrivial and yet have the same Jones polynomial as the corre- sponding unlink U 2 and U 3, respectively. These were the first known examples of nontrivial links undetectable by the Jones polynomial. Shortly thereafter, it was shown in [2] that, for any integer k ≥ 2, there exist infinitely many nontrivial k–component links whose Jones polynomial is equal to that of the k–component unlink U k. -
Coefficients of Homfly Polynomial and Kauffman Polynomial Are Not Finite Type Invariants
COEFFICIENTS OF HOMFLY POLYNOMIAL AND KAUFFMAN POLYNOMIAL ARE NOT FINITE TYPE INVARIANTS GYO TAEK JIN AND JUNG HOON LEE Abstract. We show that the integer-valued knot invariants appearing as the nontrivial coe±cients of the HOMFLY polynomial, the Kau®man polynomial and the Q-polynomial are not of ¯nite type. 1. Introduction A numerical knot invariant V can be extended to have values on singular knots via the recurrence relation V (K£) = V (K+) ¡ V (K¡) where K£, K+ and K¡ are singular knots which are identical outside a small ball in which they di®er as shown in Figure 1. V is said to be of ¯nite type or a ¯nite type invariant if there is an integer m such that V vanishes for all singular knots with more than m singular double points. If m is the smallest such integer, V is said to be an invariant of order m. q - - - ¡@- @- ¡- K£ K+ K¡ Figure 1 As the following proposition states, every nontrivial coe±cient of the Alexander- Conway polynomial is a ¯nite type invariant [1, 6]. Theorem 1 (Bar-Natan). Let K be a knot and let 2 4 2m rK (z) = 1 + a2(K)z + a4(K)z + ¢ ¢ ¢ + a2m(K)z + ¢ ¢ ¢ be the Alexander-Conway polynomial of K. Then a2m is a ¯nite type invariant of order 2m for any positive integer m. The coe±cients of the Taylor expansion of any quantum polynomial invariant of knots after a suitable change of variable are all ¯nite type invariants [2]. For the Jones polynomial we have Date: October 17, 2000 (561). -
Alexander Polynomial, Finite Type Invariants and Volume of Hyperbolic
ISSN 1472-2739 (on-line) 1472-2747 (printed) 1111 Algebraic & Geometric Topology Volume 4 (2004) 1111–1123 ATG Published: 25 November 2004 Alexander polynomial, finite type invariants and volume of hyperbolic knots Efstratia Kalfagianni Abstract We show that given n > 0, there exists a hyperbolic knot K with trivial Alexander polynomial, trivial finite type invariants of order ≤ n, and such that the volume of the complement of K is larger than n. This contrasts with the known statement that the volume of the comple- ment of a hyperbolic alternating knot is bounded above by a linear function of the coefficients of the Alexander polynomial of the knot. As a corollary to our main result we obtain that, for every m> 0, there exists a sequence of hyperbolic knots with trivial finite type invariants of order ≤ m but ar- bitrarily large volume. We discuss how our results fit within the framework of relations between the finite type invariants and the volume of hyperbolic knots, predicted by Kashaev’s hyperbolic volume conjecture. AMS Classification 57M25; 57M27, 57N16 Keywords Alexander polynomial, finite type invariants, hyperbolic knot, hyperbolic Dehn filling, volume. 1 Introduction k i Let c(K) denote the crossing number and let ∆K(t) := Pi=0 cit denote the Alexander polynomial of a knot K . If K is hyperbolic, let vol(S3 \ K) denote the volume of its complement. The determinant of K is the quantity det(K) := |∆K(−1)|. Thus, in general, we have k det(K) ≤ ||∆K (t)|| := X |ci|. (1) i=0 It is well know that the degree of the Alexander polynomial of an alternating knot equals twice the genus of the knot. -
Section 10.2. New Polynomial Invariants
10.2. New Polynomial Invariants 1 Section 10.2. New Polynomial Invariants Note. In this section we mention the Jones polynomial and give a recursion for- mula for the HOMFLY polynomial. We give an example of the computation of a HOMFLY polynomial. Note. Vaughan F. R. Jones introduced a new knot polynomial in: A Polynomial Invariant for Knots via von Neumann Algebra, Bulletin of the American Mathe- matical Society, 12, 103–111 (1985). A copy is available online at the AMS.org website (accessed 4/11/2021). This is now known as the Jones polynomial. It is also a knot invariant and so can be used to potentially distinguish between knots. Shortly after the appearance of Jones’ paper, it was observed that the recursion techniques used to find the Jones polynomial and Conway polynomial can be gen- eralized to a 2-variable polynomial that contains information beyond that of the Jones and Conway polynomials. Note. The 2-variable polynomial was presented in: P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, and A. Ocneanu, A New Polynomial of Knots and Links, Bul- letin of the American Mathematical Society, 12(2): 239–246 (1985). This paper is also available online at the AMS.org website (accessed 4/11/2021). Based on a permutation of the first letters of the names of the authors, this has become knows as the “HOMFLY polynomial.” 10.2. New Polynomial Invariants 2 Definition. The HOMFLY polynomial, PL(`, m), is given by the recursion formula −1 `PL+ (`, m) + ` PL− (`, m) = −mPLS (`, m), and the condition PU (`, m) = 1 for U the unknot. -
Deep Learning the Hyperbolic Volume of a Knot
Physics Letters B 799 (2019) 135033 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Deep learning the hyperbolic volume of a knot ∗ Vishnu Jejjala a,b, Arjun Kar b, , Onkar Parrikar b,c a Mandelstam Institute for Theoretical Physics, School of Physics, NITheP, and CoE-MaSS, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa b David Rittenhouse Laboratory, University of Pennsylvania, 209 S 33rd Street, Philadelphia, PA 19104, USA c Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA a r t i c l e i n f o a b s t r a c t Article history: An important conjecture in knot theory relates the large-N, double scaling limit of the colored Jones Received 8 October 2019 polynomial J K ,N (q) of a knot K to the hyperbolic volume of the knot complement, Vol(K ). A less studied Accepted 14 October 2019 question is whether Vol(K ) can be recovered directly from the original Jones polynomial (N = 2). In this Available online 28 October 2019 report we use a deep neural network to approximate Vol(K ) from the Jones polynomial. Our network Editor: M. Cveticˇ is robust and correctly predicts the volume with 97.6% accuracy when training on 10% of the data. Keywords: This points to the existence of a more direct connection between the hyperbolic volume and the Jones Machine learning polynomial. Neural network © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 3 Topological field theory (http://creativecommons.org/licenses/by/4.0/). -
Signatures of Links and Finite Type Invariants of Cyclic Branched Covers
SIGNATURES OF LINKS AND FINITE TYPE INVARIANTS OF CYCLIC BRANCHED COVERS STAVROS GAROUFALIDIS Dedicated to Mel Rothenberg. Abstract. Recently, Mullins calculated the Casson-Walker invariant of the 2-fold cyclic branched cover of an oriented link in S3 in terms of its Jones polynomial and its signature, under the assumption that the 2-fold branched cover is a rational homology 3-sphere. Using elementary principles, we provide a similar calculation for the general case. In addition, we calculate the LMO invariant of the p-fold branched cover of twisted knots in S3 in terms of the Kontsevich integral of the knot. Contents 1. Introduction 1 2. A reduction of Theorem 1 3 3. Some linear algebra 4 4. ProofofTheorem1 5 4.1. The Casson-Walker-Lescop invariant of 3-manifolds 5 4.2. A construction of 2-fold branched covers 6 4.3. Proof of Claim 2.1 7 5. ProofofTheorem2 8 References 10 1. Introduction Given an oriented link L in (oriented) S3, one can associate to it a family of (oriented) p 3-manifolds, namely its p-fold cyclic branched covers ΣL,wherepis a positive integer. Using these 3-manifolds, one can associate a family of integer-valued invariants of the link L, namely its p-signatures, σp(L). These signatures, being concordance invariants, play a key role in the approach to link theory via surgery theory. On the other hand, any numerical invariant of 3-manifolds, evaluated at the p-fold branched cover, gives numerical invariants of oriented links. The seminal ideas of mathematical physics, initiated by Witten [Wi] have recently produced two axiomatizations (and construc- tions) of numerical invariants of links and 3-manifolds; one under the name of topological Date: This edition: September 1, 1998; First edition: November 10, 1997 . -
The Jones Polynomial Through Linear Algebra
The Jones polynomial through linear algebra Iain Moffatt University of South Alabama Workshop in Knot Theory Waterloo, 24th September 2011 I. Moffatt (South Alabama) UW 2011 1 / 39 What and why What we’ll see The construction of link invariants through R-matrices. (c.f. Reshetikhin-Turaev invariants, quantum invariants) Why this? Can do some serious math using material from Linear Algebra 1. Illustrates how math works in the wild: start with a problem you want to solve; figure out an easier problem that you can solve; build up from this to solve your original problem. See the interplay between algebra, combinatorics and topology! It’s my favourite bit of math! I. Moffatt (South Alabama) UW 2011 2 / 39 What we’re trying to do A knot is a circle, S1, sitting in 3-space R3. A link is a number of disjoint circles in 3-space R3. Knots and links are considered up to isotopy. This means you can “move then round in space, but you can’t cut or glue them”. I. Moffatt (South Alabama) UW 2011 3 / 39 What we’re trying to do A knot is a circle, S1, sitting in 3-space R3. A link is a number of disjoint circles in 3-space R3. Knots and links are considered up to isotopy. This means you can “move then round in space, but you can’t cut or glue them”. The fundamental problem in knot theory is to determine whether or not two links are isotopic. =? =? I. Moffatt (South Alabama) UW 2011 3 / 39 To do this we need knot invariants: F : Links (a set) such (Isotopy) ! that F(L) = F(L0) = L = L0, Aim: construct6 link invariants) 6 using linear algebra. -
How Can We Say 2 Knots Are Not the Same?
How can we say 2 knots are not the same? SHRUTHI SRIDHAR What’s a knot? A knot is a smooth embedding of the circle S1 in IR3. A link is a smooth embedding of the disjoint union of more than one circle Intuitively, it’s a string knotted up with ends joined up. We represent it on a plane using curves and ‘crossings’. The unknot A ‘figure-8’ knot A ‘wild’ knot (not a knot for us) Hopf Link Two knots or links are the same if they have an ambient isotopy between them. Representing a knot Knots are represented on the plane with strands and crossings where 2 strands cross. We call this picture a knot diagram. Knots can have more than one representation. Reidemeister moves Operations on knot diagrams that don’t change the knot or link Reidemeister moves Theorem: (Reidemeister 1926) Two knot diagrams are of the same knot if and only if one can be obtained from the other through a series of Reidemeister moves. Crossing Number The minimum number of crossings required to represent a knot or link is called its crossing number. Knots arranged by crossing number: Knot Invariants A knot/link invariant is a property of a knot/link that is independent of representation. Trivial Examples: • Crossing number • Knot Representations / ~ where 2 representations are equivalent via Reidemester moves Tricolorability We say a knot is tricolorable if the strands in any projection can be colored with 3 colors such that every crossing has 1 or 3 colors and or the coloring uses more than one color. -
Rotationally Symmetric Rose Links
Rose-Hulman Undergraduate Mathematics Journal Volume 14 Issue 1 Article 3 Rotationally Symmetric Rose Links Amelia Brown Simpson College, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Brown, Amelia (2013) "Rotationally Symmetric Rose Links," Rose-Hulman Undergraduate Mathematics Journal: Vol. 14 : Iss. 1 , Article 3. Available at: https://scholar.rose-hulman.edu/rhumj/vol14/iss1/3 Rose- Hulman Undergraduate Mathematics Journal Rotationally Symmetric Rose Links Amelia Browna Volume 14, No. 1, Spring 2013 Sponsored by Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN 47803 Email: [email protected] a http://www.rose-hulman.edu/mathjournal Simpson College Rose-Hulman Undergraduate Mathematics Journal Volume 14, No. 1, Spring 2013 Rotationally Symmetric Rose Links Amelia Brown Abstract. This paper is an introduction to rose links and some of their properties. We used a series of invariants to distinguish some rose links that are rotationally symmetric. We were able to distinguish all 3-component rose links and narrow the bounds on possible distinct 4 and 5-component rose links to between 2 and 8, and 2 and 16, respectively. An algorithm for drawing rose links and a table of rose links with up to five components are included. Acknowledgements: The initial cursory observations on rose links were made during the 2011 Dr. Albert H. and Greta A. Bryan Summer Research Program at Simpson College in conjunction with fellow students Michael Comer and Jes Toyne, with Dr. William Schellhorn serving as research advisor. The research presented in this paper, including developing the definitions and related concepts about rose links and applying invariants, was conducted as a part of the author's senior research project at Simpson College, again under the advisement of Dr. -
Jones Polynomial of Knots
KNOTS AND THE JONES POLYNOMIAL MATH 180, SPRING 2020 Your task as a group, is to research the topics and questions below, write up clear notes as a group explaining these topics and the answers to the questions, and then make a video presenting your findings. Your video and notes will be presented to the class to teach them your findings. Make sure that in your notes and video you give examples and intuition, along with formal definitions, theorems, proofs, or calculations. Make sure that you point out what the is most important take away message, and what aspects may be tricky or confusing to understand at first. You will need to work together as a group. You should all work on Problem 1. Each member of the group must be responsible for one full example from problem 2. Then you can split up problem 3-7 as you wish. 1. Resources The primary resource for this project is The Knot Book by Colin Adams, Chapter 6.1 (page 147-155). An Introduction to Knot Theory by Raymond Lickorish Chapter 3, could also be helpful. You may also look at other resources online about knot theory and the Jones polynomial. Make sure to cite the sources you use. If you find it useful and you are comfortable, you can try to write some code to help you with computations. 2. Topics and Questions As you research, you may find more examples, definitions, and questions, which you defi- nitely should feel free to include in your notes and/or video, but make sure you at least go through the following discussion and questions.