On the Study of Chirality of Knots Through Polynomial Invariants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chirality in the Plane
Chirality in the plane Christian G. B¨ohmer1 and Yongjo Lee2 and Patrizio Neff3 October 15, 2019 Abstract It is well-known that many three-dimensional chiral material models become non-chiral when reduced to two dimensions. Chiral properties of the two-dimensional model can then be restored by adding appropriate two-dimensional chiral terms. In this paper we show how to construct a three-dimensional chiral energy function which can achieve two-dimensional chirality induced already by a chiral three-dimensional model. The key ingredient to this approach is the consideration of a nonlinear chiral energy containing only rotational parts. After formulating an appropriate energy functional, we study the equations of motion and find explicit soliton solutions displaying two-dimensional chiral properties. Keywords: chiral materials, planar models, Cosserat continuum, isotropy, hemitropy, centro- symmetry AMS 2010 subject classification: 74J35, 74A35, 74J30, 74A30 1 Introduction 1.1 Background A group of geometric symmetries which keeps at least one point fixed is called a point group. A point group in d-dimensional Euclidean space is a subgroup of the orthogonal group O(d). Naturally this leads to the distinction of rotations and improper rotations. Centrosymmetry corresponds to a point group which contains an inversion centre as one of its symmetry elements. Chiral symmetry is one example of non-centrosymmetry which is characterised by the fact that a geometric figure cannot be mapped into its mirror image by an element of the Euclidean group, proper rotations SO(d) and translations. This non-superimposability (or chirality) to its mirror image is best illustrated by the left and right hands: there is no way to map the left hand onto the right by simply rotating the left hand in the plane. -
Complete Invariant Graphs of Alternating Knots
Complete invariant graphs of alternating knots Christian Soulié First submission: April 2004 (revision 1) Abstract : Chord diagrams and related enlacement graphs of alternating knots are enhanced to obtain complete invariant graphs including chirality detection. Moreover, the equivalence by common enlacement graph is specified and the neighborhood graph is defined for general purpose and for special application to the knots. I - Introduction : Chord diagrams are enhanced to integrate the state sum of all flype moves and then produce an invariant graph for alternating knots. By adding local writhe attribute to these graphs, chiral types of knots are distinguished. The resulting chord-weighted graph is a complete invariant of alternating knots. Condensed chord diagrams and condensed enlacement graphs are introduced and a new type of graph of general purpose is defined : the neighborhood graph. The enlacement graph is enriched by local writhe and chord orientation. Hence this enhanced graph distinguishes mutant alternating knots. As invariant by flype it is also invariant for all alternating knots. The equivalence class of knots with the same enlacement graph is fully specified and extended mutation with flype of tangles is defined. On this way, two enhanced graphs are proposed as complete invariants of alternating knots. I - Introduction II - Definitions and condensed graphs II-1 Knots II-2 Sign of crossing points II-3 Chord diagrams II-4 Enlacement graphs II-5 Condensed graphs III - Realizability and construction III - 1 Realizability -
Ribbon Concordances and Doubly Slice Knots
Ribbon concordances and doubly slice knots Ruppik, Benjamin Matthias Advisors: Arunima Ray & Peter Teichner The knot concordance group Glossary Definition 1. A knot K ⊂ S3 is called (topologically/smoothly) slice if it arises as the equatorial slice of a (locally flat/smooth) embedding of a 2-sphere in S4. – Abelian invariants: Algebraic invari- Proposition. Under the equivalence relation “K ∼ J iff K#(−J) is slice”, the commutative monoid ants extracted from the Alexander module Z 3 −1 A (K) = H1( \ K; [t, t ]) (i.e. from the n isotopy classes of o connected sum S Z K := 1 3 , # := oriented knots S ,→S of knots homology of the universal abelian cover of the becomes a group C := K/ ∼, the knot concordance group. knot complement). The neutral element is given by the (equivalence class) of the unknot, and the inverse of [K] is [rK], i.e. the – Blanchfield linking form: Sesquilin- mirror image of K with opposite orientation. ear form on the Alexander module ( ) sm top Bl: AZ(K) × AZ(K) → Q Z , the definition Remark. We should be careful and distinguish the smooth C and topologically locally flat C version, Z[Z] because there is a huge difference between those: Ker(Csm → Ctop) is infinitely generated! uses that AZ(K) is a Z[Z]-torsion module. – Levine-Tristram-signature: For ω ∈ S1, Some classical structure results: take the signature of the Hermitian matrix sm top ∼ ∞ ∞ ∞ T – There are surjective homomorphisms C → C → AC, where AC = Z ⊕ Z2 ⊕ Z4 is Levine’s algebraic (1 − ω)V + (1 − ω)V , where V is a Seifert concordance group. -
A Knot-Vice's Guide to Untangling Knot Theory, Undergraduate
A Knot-vice’s Guide to Untangling Knot Theory Rebecca Hardenbrook Department of Mathematics University of Utah Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 1 / 26 What is Not a Knot? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 2 / 26 What is a Knot? 2 A knot is an embedding of the circle in the Euclidean plane (R ). 3 Also defined as a closed, non-self-intersecting curve in R . 2 Represented by knot projections in R . Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 3 / 26 Why Knots? Late nineteenth century chemists and physicists believed that a substance known as aether existed throughout all of space. Could knots represent the elements? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 4 / 26 Why Knots? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 5 / 26 Why Knots? Unfortunately, no. Nevertheless, mathematicians continued to study knots! Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 6 / 26 Current Applications Natural knotting in DNA molecules (1980s). Credit: K. Kimura et al. (1999) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 7 / 26 Current Applications Chemical synthesis of knotted molecules – Dietrich-Buchecker and Sauvage (1988). Credit: J. Guo et al. (2010) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 8 / 26 Current Applications Use of lattice models, e.g. the Ising model (1925), and planar projection of knots to find a knot invariant via statistical mechanics. Credit: D. Chicherin, V.P. -
A Symmetry Motivated Link Table
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2018 doi:10.20944/preprints201808.0265.v1 Peer-reviewed version available at Symmetry 2018, 10, 604; doi:10.3390/sym10110604 Article A Symmetry Motivated Link Table Shawn Witte1, Michelle Flanner2 and Mariel Vazquez1,2 1 UC Davis Mathematics 2 UC Davis Microbiology and Molecular Genetics * Correspondence: [email protected] Abstract: Proper identification of oriented knots and 2-component links requires a precise link 1 nomenclature. Motivated by questions arising in DNA topology, this study aims to produce a 2 nomenclature unambiguous with respect to link symmetries. For knots, this involves distinguishing 3 a knot type from its mirror image. In the case of 2-component links, there are up to sixteen possible 4 symmetry types for each topology. The study revisits the methods previously used to disambiguate 5 chiral knots and extends them to oriented 2-component links with up to nine crossings. Monte Carlo 6 simulations are used to report on writhe, a geometric indicator of chirality. There are ninety-two 7 prime 2-component links with up to nine crossings. Guided by geometrical data, linking number and 8 the symmetry groups of 2-component links, a canonical link diagram for each link type is proposed. 9 2 2 2 2 2 2 All diagrams but six were unambiguously chosen (815, 95, 934, 935, 939, and 941). We include complete 10 tables for prime knots with up to ten crossings and prime links with up to nine crossings. We also 11 prove a result on the behavior of the writhe under local lattice moves. -
On the Number of Unknot Diagrams Carolina Medina, Jorge Luis Ramírez Alfonsín, Gelasio Salazar
On the number of unknot diagrams Carolina Medina, Jorge Luis Ramírez Alfonsín, Gelasio Salazar To cite this version: Carolina Medina, Jorge Luis Ramírez Alfonsín, Gelasio Salazar. On the number of unknot diagrams. SIAM Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2019, 33 (1), pp.306-326. 10.1137/17M115462X. hal-02049077 HAL Id: hal-02049077 https://hal.archives-ouvertes.fr/hal-02049077 Submitted on 26 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the number of unknot diagrams Carolina Medina1, Jorge L. Ramírez-Alfonsín2,3, and Gelasio Salazar1,3 1Instituto de Física, UASLP. San Luis Potosí, Mexico, 78000. 2Institut Montpelliérain Alexander Grothendieck, Université de Montpellier. Place Eugèene Bataillon, 34095 Montpellier, France. 3Unité Mixte Internationale CNRS-CONACYT-UNAM “Laboratoire Solomon Lefschetz”. Cuernavaca, Mexico. October 17, 2017 Abstract Let D be a knot diagram, and let D denote the set of diagrams that can be obtained from D by crossing exchanges. If D has n crossings, then D consists of 2n diagrams. A folklore argument shows that at least one of these 2n diagrams is unknot, from which it follows that every diagram has finite unknotting number. -
Chirality and Projective Linear Groups
DISCRETE MATHEMATICS Discrete Mathematics 131 (1994) 221-261 Chirality and projective linear groups Egon Schultea,l, Asia IviC Weissb**,’ “Depurtment qf Mathematics, Northeastern Uniwrsity, Boston, MA 02115, USA bDepartment qf Mathematics and Statistics, York University, North York, Ontario, M3JIP3, Camda Received 24 October 1991; revised 14 September 1992 Abstract In recent years the term ‘chiral’ has been used for geometric and combinatorial figures which are symmetrical by rotation but not by reflection. The correspondence of groups and polytopes is used to construct infinite series of chiral and regular polytopes whose facets or vertex-figures are chiral or regular toroidal maps. In particular, the groups PSL,(Z,) are used to construct chiral polytopes, while PSL,(Z,[I]) and PSL,(Z,[w]) are used to construct regular polytopes. 1. Introduction Abstract polytopes are combinatorial structures that generalize the classical poly- topes. We are particularly interested in those that possess a high degree of symmetry. In this section, we briefly outline some definitions and basic results from the theory of abstract polytopes. For details we refer to [9,22,25,27]. An (abstract) polytope 9 ofrank n, or an n-polytope, is a partially ordered set with a strictly monotone rank function rank( .) with range { - 1, 0, . , n}. The elements of 9 with rankj are called j-faces of 8. The maximal chains (totally ordered subsets) of .P are calledJags. We require that 6P have a smallest (- 1)-face F_ 1, a greatest n-face F,, and that each flag contains exactly n+2 faces. Furthermore, we require that .Y be strongly flag-connected and that .P have the following homogeneity property: when- ever F<G, rank(F)=j- 1 and rank(G)=j+l, then there are exactly two j-faces H with FcH-cG. -
Coefficients of Homfly Polynomial and Kauffman Polynomial Are Not Finite Type Invariants
COEFFICIENTS OF HOMFLY POLYNOMIAL AND KAUFFMAN POLYNOMIAL ARE NOT FINITE TYPE INVARIANTS GYO TAEK JIN AND JUNG HOON LEE Abstract. We show that the integer-valued knot invariants appearing as the nontrivial coe±cients of the HOMFLY polynomial, the Kau®man polynomial and the Q-polynomial are not of ¯nite type. 1. Introduction A numerical knot invariant V can be extended to have values on singular knots via the recurrence relation V (K£) = V (K+) ¡ V (K¡) where K£, K+ and K¡ are singular knots which are identical outside a small ball in which they di®er as shown in Figure 1. V is said to be of ¯nite type or a ¯nite type invariant if there is an integer m such that V vanishes for all singular knots with more than m singular double points. If m is the smallest such integer, V is said to be an invariant of order m. q - - - ¡@- @- ¡- K£ K+ K¡ Figure 1 As the following proposition states, every nontrivial coe±cient of the Alexander- Conway polynomial is a ¯nite type invariant [1, 6]. Theorem 1 (Bar-Natan). Let K be a knot and let 2 4 2m rK (z) = 1 + a2(K)z + a4(K)z + ¢ ¢ ¢ + a2m(K)z + ¢ ¢ ¢ be the Alexander-Conway polynomial of K. Then a2m is a ¯nite type invariant of order 2m for any positive integer m. The coe±cients of the Taylor expansion of any quantum polynomial invariant of knots after a suitable change of variable are all ¯nite type invariants [2]. For the Jones polynomial we have Date: October 17, 2000 (561). -
Knots and Links in Lens Spaces
Alma Mater Studiorum Università di Bologna Dottorato di Ricerca in MATEMATICA Ciclo XXVI Settore Concorsuale di afferenza: 01/A2 Settore Scientifico disciplinare: MAT/03 Knots and links in lens spaces Tesi di Dottorato presentata da: Enrico Manfredi Coordinatore Dottorato: Relatore: Prof.ssa Prof. Giovanna Citti Michele Mulazzani Esame Finale anno 2014 Contents Introduction 1 1 Representation of lens spaces 9 1.1 Basic definitions . 10 1.2 A lens model for lens spaces . 11 1.3 Quotient of S3 model . 12 1.4 Genus one Heegaard splitting model . 14 1.5 Dehn surgery model . 15 1.6 Results about lens spaces . 17 2 Links in lens spaces 19 2.1 General definitions . 19 2.2 Mixed link diagrams . 22 2.3 Band diagrams . 23 2.4 Grid diagrams . 25 3 Disk diagram and Reidemeister-type moves 29 3.1 Disk diagram . 30 3.2 Generalized Reidemeister moves . 32 3.3 Standard form of the disk diagram . 36 3.4 Connection with band diagram . 38 3.5 Connection with grid diagram . 42 4 Group of links in lens spaces via Wirtinger presentation 47 4.1 Group of the link . 48 i ii CONTENTS 4.2 First homology group . 52 4.3 Relevant examples . 54 5 Twisted Alexander polynomials for links in lens spaces 57 5.1 The computation of the twisted Alexander polynomials . 57 5.2 Properties of the twisted Alexander polynomials . 59 5.3 Connection with Reidemeister torsion . 61 6 Lifting links from lens spaces to the 3-sphere 65 6.1 Diagram for the lift via disk diagrams . 66 6.2 Diagram for the lift via band and grid diagrams . -
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE P-Coloring Of
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE P-Coloring of Pretzel Knots A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mathematics By Robert Ostrander December 2013 The thesis of Robert Ostrander is approved: |||||||||||||||||| |||||||| Dr. Alberto Candel Date |||||||||||||||||| |||||||| Dr. Terry Fuller Date |||||||||||||||||| |||||||| Dr. Magnhild Lien, Chair Date California State University, Northridge ii Dedications I dedicate this thesis to my family and friends for all the help and support they have given me. iii Acknowledgments iv Table of Contents Signature Page ii Dedications iii Acknowledgements iv Abstract vi Introduction 1 1 Definitions and Background 2 1.1 Knots . .2 1.1.1 Composition of knots . .4 1.1.2 Links . .5 1.1.3 Torus Knots . .6 1.1.4 Reidemeister Moves . .7 2 Properties of Knots 9 2.0.5 Knot Invariants . .9 3 p-Coloring of Pretzel Knots 19 3.0.6 Pretzel Knots . 19 3.0.7 (p1, p2, p3) Pretzel Knots . 23 3.0.8 Applications of Theorem 6 . 30 3.0.9 (p1, p2, p3, p4) Pretzel Knots . 31 Appendix 49 v Abstract P coloring of Pretzel Knots by Robert Ostrander Master of Science in Mathematics In this thesis we give a brief introduction to knot theory. We define knot invariants and give examples of different types of knot invariants which can be used to distinguish knots. We look at colorability of knots and generalize this to p-colorability. We focus on 3-strand pretzel knots and apply techniques of linear algebra to prove theorems about p-colorability of these knots. -
Section 10.2. New Polynomial Invariants
10.2. New Polynomial Invariants 1 Section 10.2. New Polynomial Invariants Note. In this section we mention the Jones polynomial and give a recursion for- mula for the HOMFLY polynomial. We give an example of the computation of a HOMFLY polynomial. Note. Vaughan F. R. Jones introduced a new knot polynomial in: A Polynomial Invariant for Knots via von Neumann Algebra, Bulletin of the American Mathe- matical Society, 12, 103–111 (1985). A copy is available online at the AMS.org website (accessed 4/11/2021). This is now known as the Jones polynomial. It is also a knot invariant and so can be used to potentially distinguish between knots. Shortly after the appearance of Jones’ paper, it was observed that the recursion techniques used to find the Jones polynomial and Conway polynomial can be gen- eralized to a 2-variable polynomial that contains information beyond that of the Jones and Conway polynomials. Note. The 2-variable polynomial was presented in: P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, and A. Ocneanu, A New Polynomial of Knots and Links, Bul- letin of the American Mathematical Society, 12(2): 239–246 (1985). This paper is also available online at the AMS.org website (accessed 4/11/2021). Based on a permutation of the first letters of the names of the authors, this has become knows as the “HOMFLY polynomial.” 10.2. New Polynomial Invariants 2 Definition. The HOMFLY polynomial, PL(`, m), is given by the recursion formula −1 `PL+ (`, m) + ` PL− (`, m) = −mPLS (`, m), and the condition PU (`, m) = 1 for U the unknot. -
Restrictions on Homflypt and Kauffman Polynomials Arising from Local Moves
RESTRICTIONS ON HOMFLYPT AND KAUFFMAN POLYNOMIALS ARISING FROM LOCAL MOVES SANDY GANZELL, MERCEDES GONZALEZ, CHLOE' MARCUM, NINA RYALLS, AND MARIEL SANTOS Abstract. We study the effects of certain local moves on Homflypt and Kauffman polynomials. We show that all Homflypt (or Kauffman) polynomials are equal in a certain nontrivial quotient of the Laurent polynomial ring. As a consequence, we discover some new properties of these invariants. 1. Introduction The Jones polynomial has been widely studied since its introduction in [5]. Divisibility criteria for the Jones polynomial were first observed by Jones 3 in [6], who proved that 1 − VK is a multiple of (1 − t)(1 − t ) for any knot K. The first author observed in [3] that when two links L1 and L2 differ by specific local moves (e.g., crossing changes, ∆-moves, 4-moves, forbidden moves), we can find a fixed polynomial P such that VL1 − VL2 is always a multiple of P . Additional results of this kind were studied in [11] (Cn-moves) and [1] (double-∆-moves). The present paper follows the ideas of [3] to establish divisibility criteria for the Homflypt and Kauffman polynomials. Specifically, we examine the effect of certain local moves on these invariants to show that the difference of Homflypt polynomials for n-component links is always a multiple of a4 − 2a2 + 1 − a2z2, and the difference of Kauffman polynomials for knots is always a multiple of (a2 + 1)(a2 + az + 1). In Section 2 we define our main terms and recall constructions of the Hom- flypt and Kauffman polynomials that are used throughout the paper.