Ribbon Concordances and Doubly Slice Knots
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Slicing Bing Doubles
Algebraic & Geometric Topology 6 (2006) 3001–999 3001 Slicing Bing doubles DAVID CIMASONI Bing doubling is an operation which produces a 2–component boundary link B.K/ from a knot K. If K is slice, then B.K/ is easily seen to be boundary slice. In this paper, we investigate whether the converse holds. Our main result is that if B.K/ is boundary slice, then K is algebraically slice. We also show that the Rasmussen invariant can tell that certain Bing doubles are not smoothly slice. 57M25; 57M27 Introduction Bing doubling [2] is a standard construction which, given a knot K in S 3 , produces a 2–component oriented link B.K/ as illustrated below. (See Section 1 for a precise definition.) K B.K/ Figure 1: The figure eight knot and its Bing double It is easy to check that if the knot K is slice, then the link B.K/ is slice. Does the converse hold ? An affirmative answer to this question seems out of reach. However, a result obtained independently by S Harvey [9] and P Teichner [22] provides a first step in this direction. 1 Recall that the Levine–Tristram signature of a knot K is the function K S ޚ 1 W ! defined as follows: for ! S , K .!/ is given by the signature of the Hermitian 2 matrix .1 !/A .1 !/A , where A is a Seifert matrix for K and A denotes the C transposed matrix. Published: December 2006 DOI: 10.2140/agt.2006.6.3001 3002 David Cimasoni Theorem (Harvey [9], Teichner [22]) If B.K/ is slice, then the integral over S 1 of the Levine–Tristram signature of K is zero. -
A Knot-Vice's Guide to Untangling Knot Theory, Undergraduate
A Knot-vice’s Guide to Untangling Knot Theory Rebecca Hardenbrook Department of Mathematics University of Utah Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 1 / 26 What is Not a Knot? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 2 / 26 What is a Knot? 2 A knot is an embedding of the circle in the Euclidean plane (R ). 3 Also defined as a closed, non-self-intersecting curve in R . 2 Represented by knot projections in R . Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 3 / 26 Why Knots? Late nineteenth century chemists and physicists believed that a substance known as aether existed throughout all of space. Could knots represent the elements? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 4 / 26 Why Knots? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 5 / 26 Why Knots? Unfortunately, no. Nevertheless, mathematicians continued to study knots! Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 6 / 26 Current Applications Natural knotting in DNA molecules (1980s). Credit: K. Kimura et al. (1999) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 7 / 26 Current Applications Chemical synthesis of knotted molecules – Dietrich-Buchecker and Sauvage (1988). Credit: J. Guo et al. (2010) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 8 / 26 Current Applications Use of lattice models, e.g. the Ising model (1925), and planar projection of knots to find a knot invariant via statistical mechanics. Credit: D. Chicherin, V.P. -
On the Number of Unknot Diagrams Carolina Medina, Jorge Luis Ramírez Alfonsín, Gelasio Salazar
On the number of unknot diagrams Carolina Medina, Jorge Luis Ramírez Alfonsín, Gelasio Salazar To cite this version: Carolina Medina, Jorge Luis Ramírez Alfonsín, Gelasio Salazar. On the number of unknot diagrams. SIAM Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2019, 33 (1), pp.306-326. 10.1137/17M115462X. hal-02049077 HAL Id: hal-02049077 https://hal.archives-ouvertes.fr/hal-02049077 Submitted on 26 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the number of unknot diagrams Carolina Medina1, Jorge L. Ramírez-Alfonsín2,3, and Gelasio Salazar1,3 1Instituto de Física, UASLP. San Luis Potosí, Mexico, 78000. 2Institut Montpelliérain Alexander Grothendieck, Université de Montpellier. Place Eugèene Bataillon, 34095 Montpellier, France. 3Unité Mixte Internationale CNRS-CONACYT-UNAM “Laboratoire Solomon Lefschetz”. Cuernavaca, Mexico. October 17, 2017 Abstract Let D be a knot diagram, and let D denote the set of diagrams that can be obtained from D by crossing exchanges. If D has n crossings, then D consists of 2n diagrams. A folklore argument shows that at least one of these 2n diagrams is unknot, from which it follows that every diagram has finite unknotting number. -
Knots: a Handout for Mathcircles
Knots: a handout for mathcircles Mladen Bestvina February 2003 1 Knots Informally, a knot is a knotted loop of string. You can create one easily enough in one of the following ways: • Take an extension cord, tie a knot in it, and then plug one end into the other. • Let your cat play with a ball of yarn for a while. Then find the two ends (good luck!) and tie them together. This is usually a very complicated knot. • Draw a diagram such as those pictured below. Such a diagram is a called a knot diagram or a knot projection. Trefoil and the figure 8 knot 1 The above two knots are the world's simplest knots. At the end of the handout you can see many more pictures of knots (from Robert Scharein's web site). The same picture contains many links as well. A link consists of several loops of string. Some links are so famous that they have names. For 2 2 3 example, 21 is the Hopf link, 51 is the Whitehead link, and 62 are the Bor- romean rings. They have the feature that individual strings (or components in mathematical parlance) are untangled (or unknotted) but you can't pull the strings apart without cutting. A bit of terminology: A crossing is a place where the knot crosses itself. The first number in knot's \name" is the number of crossings. Can you figure out the meaning of the other number(s)? 2 Reidemeister moves There are many knot diagrams representing the same knot. For example, both diagrams below represent the unknot. -
Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures
Fibered knots and potential counterexamples to the Property 2R and Slice-Ribbon Conjectures with Bob Gompf and Abby Thompson June 2011 Berkeley FreedmanFest Theorem (Gabai 1987) If surgery on a knot K ⊂ S3 gives S1 × S2, then K is the unknot. Question: If surgery on a link L of n components gives 1 2 #n(S × S ), what is L? Homology argument shows that each pair of components in L is algebraically unlinked and the surgery framing on each component of L is the 0-framing. Conjecture (Naive) 1 2 If surgery on a link L of n components gives #n(S × S ), then L is the unlink. Why naive? The result of surgery is unchanged when one component of L is replaced by a band-sum to another. So here's a counterexample: The 4-dimensional view of the band-sum operation: Integral surgery on L ⊂ S3 $ 2-handle addition to @B4. Band-sum operation corresponds to a 2-handle slide U' V' U V Effect on dual handles: U slid over V $ V 0 slid over U0. The fallback: Conjecture (Generalized Property R) 3 1 2 If surgery on an n component link L ⊂ S gives #n(S × S ), then, perhaps after some handle-slides, L becomes the unlink. Conjecture is unknown even for n = 2. Questions: If it's not true, what's the simplest counterexample? What's the simplest knot that could be part of a counterexample? A potential counterexample must be slice in some homotopy 4-ball: 3 S L 3-handles L 2-handles Slice complement is built from link complement by: attaching copies of (D2 − f0g) × D2 to (D2 − f0g) × S1, i. -
Fibered Ribbon Disks
FIBERED RIBBON DISKS KYLE LARSON AND JEFFREY MEIER Abstract. We study the relationship between fibered ribbon 1{knots and fibered ribbon 2{knots by studying fibered slice disks with handlebody fibers. We give a characterization of fibered homotopy-ribbon disks and give analogues of the Stallings twist for fibered disks and 2{knots. As an application, we produce infinite families of distinct homotopy-ribbon disks with homotopy equivalent exteriors, with potential relevance to the Slice-Ribbon Conjecture. We show that any fibered ribbon 2{ knot can be obtained by doubling infinitely many different slice disks (sometimes in different contractible 4{manifolds). Finally, we illustrate these ideas for the examples arising from spinning fibered 1{knots. 1. Introduction A knot K is fibered if its complement fibers over the circle (with the fibration well-behaved near K). Fibered knots have a long and rich history of study (for both classical knots and higher-dimensional knots). In the classical case, a theorem of Stallings ([Sta62], see also [Neu63]) states that a knot is fibered if and only if its group has a finitely generated commutator subgroup. Stallings [Sta78] also gave a method to produce new fibered knots from old ones by twisting along a fiber, and Harer [Har82] showed that this twisting operation and a type of plumbing is sufficient to generate all fibered knots in S3. Another special class of knots are slice knots. A knot K in S3 is slice if it bounds a smoothly embedded disk in B4 (and more generally an n{knot in Sn+2 is slice if it bounds a disk in Bn+3). -
RASMUSSEN INVARIANTS of SOME 4-STRAND PRETZEL KNOTS Se
Honam Mathematical J. 37 (2015), No. 2, pp. 235{244 http://dx.doi.org/10.5831/HMJ.2015.37.2.235 RASMUSSEN INVARIANTS OF SOME 4-STRAND PRETZEL KNOTS Se-Goo Kim and Mi Jeong Yeon Abstract. It is known that there is an infinite family of general pretzel knots, each of which has Rasmussen s-invariant equal to the negative value of its signature invariant. For an instance, homo- logically σ-thin knots have this property. In contrast, we find an infinite family of 4-strand pretzel knots whose Rasmussen invariants are not equal to the negative values of signature invariants. 1. Introduction Khovanov [7] introduced a graded homology theory for oriented knots and links, categorifying Jones polynomials. Lee [10] defined a variant of Khovanov homology and showed the existence of a spectral sequence of rational Khovanov homology converging to her rational homology. Lee also proved that her rational homology of a knot is of dimension two. Rasmussen [13] used Lee homology to define a knot invariant s that is invariant under knot concordance and additive with respect to connected sum. He showed that s(K) = σ(K) if K is an alternating knot, where σ(K) denotes the signature of−K. Suzuki [14] computed Rasmussen invariants of most of 3-strand pret- zel knots. Manion [11] computed rational Khovanov homologies of all non quasi-alternating 3-strand pretzel knots and links and found the Rasmussen invariants of all 3-strand pretzel knots and links. For general pretzel knots and links, Jabuka [5] found formulas for their signatures. Since Khovanov homologically σ-thin knots have s equal to σ, Jabuka's result gives formulas for s invariant of any quasi- alternating− pretzel knot. -
Knot Cobordisms, Bridge Index, and Torsion in Floer Homology
KNOT COBORDISMS, BRIDGE INDEX, AND TORSION IN FLOER HOMOLOGY ANDRAS´ JUHASZ,´ MAGGIE MILLER AND IAN ZEMKE Abstract. Given a connected cobordism between two knots in the 3-sphere, our main result is an inequality involving torsion orders of the knot Floer homology of the knots, and the number of local maxima and the genus of the cobordism. This has several topological applications: The torsion order gives lower bounds on the bridge index and the band-unlinking number of a knot, the fusion number of a ribbon knot, and the number of minima appearing in a slice disk of a knot. It also gives a lower bound on the number of bands appearing in a ribbon concordance between two knots. Our bounds on the bridge index and fusion number are sharp for Tp;q and Tp;q#T p;q, respectively. We also show that the bridge index of Tp;q is minimal within its concordance class. The torsion order bounds a refinement of the cobordism distance on knots, which is a metric. As a special case, we can bound the number of band moves required to get from one knot to the other. We show knot Floer homology also gives a lower bound on Sarkar's ribbon distance, and exhibit examples of ribbon knots with arbitrarily large ribbon distance from the unknot. 1. Introduction The slice-ribbon conjecture is one of the key open problems in knot theory. It states that every slice knot is ribbon; i.e., admits a slice disk on which the radial function of the 4-ball induces no local maxima. -
Knot Theory and the Alexander Polynomial
Knot Theory and the Alexander Polynomial Reagin Taylor McNeill Submitted to the Department of Mathematics of Smith College in partial fulfillment of the requirements for the degree of Bachelor of Arts with Honors Elizabeth Denne, Faculty Advisor April 15, 2008 i Acknowledgments First and foremost I would like to thank Elizabeth Denne for her guidance through this project. Her endless help and high expectations brought this project to where it stands. I would Like to thank David Cohen for his support thoughout this project and through- out my mathematical career. His humor, skepticism and advice is surely worth the $.25 fee. I would also like to thank my professors, peers, housemates, and friends, particularly Kelsey Hattam and Katy Gerecht, for supporting me throughout the year, and especially for tolerating my temporary insanity during the final weeks of writing. Contents 1 Introduction 1 2 Defining Knots and Links 3 2.1 KnotDiagramsandKnotEquivalence . ... 3 2.2 Links, Orientation, and Connected Sum . ..... 8 3 Seifert Surfaces and Knot Genus 12 3.1 SeifertSurfaces ................................. 12 3.2 Surgery ...................................... 14 3.3 Knot Genus and Factorization . 16 3.4 Linkingnumber.................................. 17 3.5 Homology ..................................... 19 3.6 TheSeifertMatrix ................................ 21 3.7 TheAlexanderPolynomial. 27 4 Resolving Trees 31 4.1 Resolving Trees and the Conway Polynomial . ..... 31 4.2 TheAlexanderPolynomial. 34 5 Algebraic and Topological Tools 36 5.1 FreeGroupsandQuotients . 36 5.2 TheFundamentalGroup. .. .. .. .. .. .. .. .. 40 ii iii 6 Knot Groups 49 6.1 TwoPresentations ................................ 49 6.2 The Fundamental Group of the Knot Complement . 54 7 The Fox Calculus and Alexander Ideals 59 7.1 TheFreeCalculus ............................... -
Maximum Knotted Switching Sequences
Maximum Knotted Switching Sequences Tom Milnor August 21, 2008 Abstract In this paper, we define the maximum knotted switching sequence length of a knot projection and investigate some of its properties. In par- ticular, we examine the effects of Reidemeister and flype moves on maxi- mum knotted switching sequences, show that every knot has projections having a full sequence, and show that all minimal alternating projections of a knot have the same length maximum knotted switching sequence. Contents 1 Introduction 2 1.1 Basic definitions . 2 1.2 Changing knot projections . 3 2 Maximum knotted switching sequences 4 2.1 Immediate bounds . 4 2.2 Not all maximal knotted switching sequences are maximum . 5 2.3 Composite knots . 5 2.4 All knots have a projection with a full sequence . 6 2.5 An infinite family of knots with projections not having full se- quences . 6 3 The effects of Reidemeister moves on the maximum knotted switching sequence length of a knot projection 7 3.1 Type I Reidemeister moves . 7 3.2 Type II Reidemeister moves . 8 3.3 Alternating knots and Type II Reidemeister moves . 9 3.4 The Conway polynomial and Type II Reidemeister moves . 13 3.5 Type III Reidemeister moves . 15 4 The maximum sequence length of minimal alternating knot pro- jections 16 4.1 Flype moves . 16 1 1 Introduction 1.1 Basic definitions A knot is a smooth embedding of S1 into R3 or S3. A knot is said to be an unknot if it is isotopic to S1 ⊂ R3. Otherwise it is knotted. -
Slices of Surfaces in the Four-Sphere
SLICES OF SURFACES IN THE FOUR-SPHERE Clayton Kim McDonald A dissertation submitted to the Faculty of the department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy Boston College Morrissey College of Arts and Sciences Graduate School March 2021 © 2021 Clayton Kim McDonald SLICES OF SURFACES IN THE FOUR-SPHERE Clayton Kim McDonald Advisor: Prof. Joshua Greene In this dissertation, we discuss cross sectional slices of embedded surfaces in the four-sphere, and give various constructive and obstructive results, in particular focus- ing on cross sectional slices of unknotted surfaces. One case of note is that of doubly slice Montesinos links, for which we give a partial classification. Acknowledgments I am grateful for my advisor Joshua Greene and his support and guidance these past six years. I would also like to thank Duncan McCoy and Maggie Miller for helpful conversations. Lastly, I would like to thank my family and thank my brother Vaughan for being my partner on our journey through academic mathematics. i This dissertation is dedicated to the Boston College math department for being a warm and friendly group to do math with. ii Contents 1 Introduction 1 1.1 Generalizations of double slicing . .1 1.2 Double slicing with more than two components . .4 1.3 Embedding Seifert fibered spaces. .5 2 Surface Slicing Constructions 7 2.1 Double slice genus . .7 2.2 Doubly slice knots . 17 2.3 Doubly slice odd pretzels . 18 2.3.1 The model example . 19 2.3.2 The general case . 20 2.3.3 Encoding the problem as combinatorial notation . -
Knot and Link Tricolorability Danielle Brushaber Mckenzie Hennen Molly Petersen Faculty Mentor: Carolyn Otto University of Wisconsin-Eau Claire
Knot and Link Tricolorability Danielle Brushaber McKenzie Hennen Molly Petersen Faculty Mentor: Carolyn Otto University of Wisconsin-Eau Claire Problem & Importance Colorability Tables of Characteristics Theorem: For WH 51 with n twists, WH 5 is tricolorable when Knot Theory, a field of Topology, can be used to model Original Knot The unknot is not tricolorable, therefore anything that is tri- 1 colorable cannot be the unknot. The prime factors of the and understand how enzymes (called topoisomerases) work n = 3k + 1 where k ∈ N ∪ {0}. in DNA processes to untangle or repair strands of DNA. In a determinant of the knot or link provides the colorability. For human cell nucleus, the DNA is linear, so the knots can slip off example, if a knot’s determinant is 21, it is 3-colorable (tricol- orable), and 7-colorable. This is known by the theorem that Proof the end, and it is difficult to recognize what the enzymes do. Consider WH 5 where n is the number of the determinant of a knot is 0 mod n if and only if the knot 1 However, the DNA in mitochon- full positive twists. n is n-colorable. dria is circular, along with prokary- Link Colorability Det(L) Unknot/Link (n = 1...n = k) otic cells (bacteria), so the enzyme L Number Theorem: If det(L) = 0, then L is WOLOG, let WH 51 be colored in this way, processes are more noticeable in 3 3 3 1 n 1 n-colorable for all n. excluding coloring the twist component. knots in this type of DNA.