The Jones Polynomial Through Linear Algebra

Total Page:16

File Type:pdf, Size:1020Kb

The Jones Polynomial Through Linear Algebra The Jones polynomial through linear algebra Iain Moffatt University of South Alabama Workshop in Knot Theory Waterloo, 24th September 2011 I. Moffatt (South Alabama) UW 2011 1 / 39 What and why What we’ll see The construction of link invariants through R-matrices. (c.f. Reshetikhin-Turaev invariants, quantum invariants) Why this? Can do some serious math using material from Linear Algebra 1. Illustrates how math works in the wild: start with a problem you want to solve; figure out an easier problem that you can solve; build up from this to solve your original problem. See the interplay between algebra, combinatorics and topology! It’s my favourite bit of math! I. Moffatt (South Alabama) UW 2011 2 / 39 What we’re trying to do A knot is a circle, S1, sitting in 3-space R3. A link is a number of disjoint circles in 3-space R3. Knots and links are considered up to isotopy. This means you can “move then round in space, but you can’t cut or glue them”. I. Moffatt (South Alabama) UW 2011 3 / 39 What we’re trying to do A knot is a circle, S1, sitting in 3-space R3. A link is a number of disjoint circles in 3-space R3. Knots and links are considered up to isotopy. This means you can “move then round in space, but you can’t cut or glue them”. The fundamental problem in knot theory is to determine whether or not two links are isotopic. =? =? I. Moffatt (South Alabama) UW 2011 3 / 39 To do this we need knot invariants: F : Links (a set) such (Isotopy) ! that F(L) = F(L0) = L = L0, Aim: construct6 link invariants) 6 using linear algebra. What we’re trying to do Knots and links are considered up to isotopy. This means you can “move then round in space, but you can’t cut or glue them”. The fundamental problem in knot theory is to determine whether or not two links are isotopic. =? =? To do this we need knot invariants: F : Links (a set) such (Isotopy) ! that F(L) = F(L0) = L = L0, 6 ) 6 Aim: construct link invariants using linear algebra. I. Moffatt (South Alabama) UW 2011 3 / 39 Our toolkit: Linear algebra 1 The basics a vector space over C with basis v 1;:::; v n . V f g v v = Pn a v . 2 V () i=1 i i Pn j f : v = i=1 fi v i . V ! V () 2 1 n 3 f1 ··· f1 6 7 6 . 7 f linear matrix 6 . 7 4 . 5 $ 1 n fn ::: fn The direct product = (u; v) u; bv V × V f j 2 Vg λ(u; v) + (u0; v 0) = (λu + u0; λv + v 0) The dual ∗ ∗ V = Hom( ; C) = f : C f linear V i Vi f V! j g basis v v (v ) = δ ; ; i = 1;:::; n f j j i j g I. Moffatt (South Alabama) UW 2011 4 / 39 Making life easier: link diagrams Working with 3-D objects is tricky. To make life easy we draw knots on the plane. A link diagram is a drawing of a link on the plane. Link diagrams are considered up to the Reidemeister moves Knot diagrams Reidemeister moves = = RI RII RIII = project plane onto Theorem Links Diagrams = (Isotopy) (R moves) − I. Moffatt (South Alabama) UW 2011 5 / 39 An example [link] I. Moffatt (South Alabama) UW 2011 6 / 39 The first idea: let’s form a map Our goal Links − We want to construct a knot polynomial J : C[t; t 1]. (Isotopy) ! How do we get started? Diagrams − Work with link diagrams look for J : C[t; t 1]. (R−moves) ! Motivated by algebra: define; the map on the “generators” of a diagram. I. Moffatt (South Alabama) UW 2011 7 / 39 The first idea: let’s form a map Our goal Links − We want to construct a knot polynomial J : C[t; t 1]. (Isotopy) ! How do we get started? Diagrams − Work with link diagrams look for J : C[t; t 1]. (R−moves) ! Motivated by algebra: define; the map on the “generators” of a diagram. Figure-eight knot Generators I. Moffatt (South Alabama) UW 2011 7 / 39 Cutting down the number of generators The large number of generators is making life difficult. Can we reduce their number? Use the following redrawing of the figure eight knot. Generators Made out of Figure-eight knot A standard position Fewer generators needed called a braid closure • I. Moffatt (South Alabama) UW 2011 8 / 39 Braids and braid closures All of the ‘interesting’ structure is contained in a part of a diagram called a braid: interesting boring Braid Closure element Closure of a braid A braid: is an intertwining strings attached to top and bottom "bars" such that each string never "turns back up": I. Moffatt (South Alabama) UW 2011 9 / 39 Putting link diagrams in the standard form Alexander’s Theorem: obtaining a braid from a link Choose a point X. Whenever an arc travels counter-clockwise pull it over the base point. Cut open the link to get a braid. X X X Theorem Every link diagram can be written as a braid closure. I. Moffatt (South Alabama) UW 2011 10 / 39 Braids Theorem Every link diagram can be written as a braid closure. Rather than working with links, we can work with braids. Braids have only three generators: Generators: A braid We now have generators! If, we want to work with braids, we need to know: How do the generators generate braids? When are braids equivalent? When do braids represent the same links? I. Moffatt (South Alabama) UW 2011 11 / 39 Braids Theorem Every link diagram can be written as a braid closure. Rather than working with links, we can work with braids. Braids have only three generators: Generators: A braid We now have generators! If, we want to work with braids, we need to know: How do the generators generate braids? When are braids equivalent? When do braids represent the same links? I. Moffatt (South Alabama) UW 2011 11 / 39 Operations on braids Composition Tensor product σ σ σ = σ σ = σ σ σ ⊗ n strings n strings n strings n strings m strings (n+m) strings stack up place beside I. Moffatt (South Alabama) UW 2011 12 / 39 Operations on braids Composition Tensor product σ σ σ = σ σ = σ σ σ ⊗ n strings n strings n strings n strings m strings (n+m) strings stack up place beside With these operations every braid can beGenerators: built from . • ⊗ ⊗ =( ⊗ ) ( ⊗ ) ( ⊗ ) ( ⊗ ) ⊗ ⊗ We now have generators and generating operations! , I. Moffatt (South Alabama) UW 2011 12 / 39 Braid equivalence Different diagrams can represent the same braid: = = = .... Braids are considered up to the following moves B-moves = = = = These can be written algebraically using “ ” and “ ”. ◦ ⊗ I. Moffatt (South Alabama) UW 2011 13 / 39 The Markov moves We want to study links using braids, we need to know when braids represent the same link. = I. Moffatt (South Alabama) UW 2011 14 / 39 The Markov moves We want to study links using braids, we need to know when braids represent the same link. The Markov moves (M-moves) = σ σ σ σ σ = = = σ σ (n+1) strings n strings (n+1) strings MI-move MII-move I. Moffatt (South Alabama) UW 2011 14 / 39 Markov’s Theorem Markov’s Theorem Braids describe equal links related by B-moves and M-moves. () Links Diagrams Braids = = (Isotopy) (R moves) (B-moves; M-moves) − Sufficiency is easy, e.g. σ σ σ σ σ σ σ σ = = == = =σ === σ σ =σ σ σ σ (n+1) strings n strings (n+1) strings BraidsMI-move related by B-moves closuresMII-move related by R-moves. Necessity is hard. ; I. Moffatt (South Alabama) UW 2011 15 / 39 Summary So far: Links − We want to construct J : C[q; q 1]. (Isotopy) ! Too hard! Let’s make it easier. We have shown that every link can be represented by a braid: Links Diagrams Braids We have seen (Isotopy) = (R−moves) = (B-moves;M-moves) . Braids − Thus enough to construct J : C[q; q 1] (B-moves;M-moves) ! Easier as braids are generated by under and . ⊗ ◦ I. Moffatt (South Alabama) UW 2011 16 / 39 Summary So far: Links − We want to construct J : C[q; q 1]. (Isotopy) ! Too hard! Let’s make it easier. We have shown that every link can be represented by a braid: Links Diagrams Braids We have seen (Isotopy) = (R−moves) = (B-moves;M-moves) . Braids − Thus enough to construct J : C[q; q 1] (B-moves;M-moves) ! Easier as braids are generated by under and . ⊗ ◦ I. Moffatt (South Alabama) UW 2011 16 / 39 Summary So far: Links − We want to construct J : C[q; q 1]. (Isotopy) ! Too hard! Let’s make it easier. We have shown that every link can be represented by a braid: X X X Links Diagrams Braids We have seen (Isotopy) = (R−moves) = (B-moves;M-moves) . Braids − Thus enough to construct J : C[q; q 1] (B-moves;M-moves) ! Easier as braids are generated by under and . ⊗ ◦ I. Moffatt (South Alabama) UW 2011 16 / 39 Summary So far: Links − We want to construct J : C[q; q 1]. (Isotopy) ! Too hard! Let’s make it easier. We have shown that every link can be represented by a braid: X X X Links Diagrams Braids We have seen (Isotopy) = (R−moves) = (B-moves;M-moves) . Braids − Thus enough to construct J : C[q; q 1] (B-moves;M-moves) ! Easier as braids are generated by under and .
Recommended publications
  • Jones Polynomial for Graphs of Twist Knots
    Available at Applications and Applied http://pvamu.edu/aam Mathematics: Appl. Appl. Math. An International Journal ISSN: 1932-9466 (AAM) Vol. 14, Issue 2 (December 2019), pp. 1269 – 1278 Jones Polynomial for Graphs of Twist Knots 1Abdulgani ¸Sahinand 2Bünyamin ¸Sahin 1Faculty of Science and Letters 2Faculty of Science Department Department of Mathematics of Mathematics Agrı˘ Ibrahim˙ Çeçen University Selçuk University Postcode 04100 Postcode 42130 Agrı,˘ Turkey Konya, Turkey [email protected] [email protected] Received: January 1, 2019; Accepted: March 16, 2019 Abstract We frequently encounter knots in the flow of our daily life. Either we knot a tie or we tie a knot on our shoes. We can even see a fisherman knotting the rope of his boat. Of course, the knot as a mathematical model is not that simple. These are the reflections of knots embedded in three- dimensional space in our daily lives. In fact, the studies on knots are meant to create a complete classification of them. This has been achieved for a large number of knots today. But we cannot say that it has been terminated yet. There are various effective instruments while carrying out all these studies. One of these effective tools is graphs. Graphs are have made a great contribution to the development of algebraic topology. Along with this support, knot theory has taken an important place in low dimensional manifold topology. In 1984, Jones introduced a new polynomial for knots. The discovery of that polynomial opened a new era in knot theory. In a short time, this polynomial was defined by algebraic arguments and its combinatorial definition was made.
    [Show full text]
  • Arxiv:1608.01812V4 [Math.GT] 8 Nov 2018 Hc Ssrne Hntehmytplnma.Teindeterm the Polynomial
    A NEW TWO-VARIABLE GENERALIZATION OF THE JONES POLYNOMIAL D. GOUNDAROULIS AND S. LAMBROPOULOU Abstract. We present a new 2-variable generalization of the Jones polynomial that can be defined through the skein relation of the Jones polynomial. The well-definedness of this invariant is proved both algebraically and diagrammatically as well as via a closed combinatorial formula. This new invariant is able to distinguish more pairs of non-isotopic links than the original Jones polynomial, such as the Thistlethwaite link from the unlink with two components. 1. Introduction In the last ten years there has been a new spark of interest for polynomial invariants for framed and classical knots and links. One of the concepts that appeared was that of the framization of a knot algebra, which was first proposed by J. Juyumaya and the second author in [22, 23]. In their original work, they constructed new 2-variable polynomial invariants for framed and classical links via the Yokonuma–Hecke algebras Yd,n(u) [34], which are quotients of the framed braid group . The algebras Y (u) can be considered as framizations of the Iwahori–Hecke Fn d,n algebra of type A, Hn(u), and for d = 1, Y1,n(u) coincides with Hn(u). They used the Juyumaya trace [18] with parameters z,x1,...,xd−1 on Yd,n(u) and the so-called E-condition imposed on the framing parameters xi, 1 i d 1. These new invariants and especially those for classical links had to be compared to other≤ ≤ known− invariants like the Homflypt polynomial [30, 29, 11, 31].
    [Show full text]
  • A Remarkable 20-Crossing Tangle Shalom Eliahou, Jean Fromentin
    A remarkable 20-crossing tangle Shalom Eliahou, Jean Fromentin To cite this version: Shalom Eliahou, Jean Fromentin. A remarkable 20-crossing tangle. 2016. hal-01382778v2 HAL Id: hal-01382778 https://hal.archives-ouvertes.fr/hal-01382778v2 Preprint submitted on 16 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A REMARKABLE 20-CROSSING TANGLE SHALOM ELIAHOU AND JEAN FROMENTIN Abstract. For any positive integer r, we exhibit a nontrivial knot Kr with r− r (20·2 1 +1) crossings whose Jones polynomial V (Kr) is equal to 1 modulo 2 . Our construction rests on a certain 20-crossing tangle T20 which is undetectable by the Kauffman bracket polynomial pair mod 2. 1. Introduction In [6], M. B. Thistlethwaite gave two 2–component links and one 3–component link which are nontrivial and yet have the same Jones polynomial as the corre- sponding unlink U 2 and U 3, respectively. These were the first known examples of nontrivial links undetectable by the Jones polynomial. Shortly thereafter, it was shown in [2] that, for any integer k ≥ 2, there exist infinitely many nontrivial k–component links whose Jones polynomial is equal to that of the k–component unlink U k.
    [Show full text]
  • Coefficients of Homfly Polynomial and Kauffman Polynomial Are Not Finite Type Invariants
    COEFFICIENTS OF HOMFLY POLYNOMIAL AND KAUFFMAN POLYNOMIAL ARE NOT FINITE TYPE INVARIANTS GYO TAEK JIN AND JUNG HOON LEE Abstract. We show that the integer-valued knot invariants appearing as the nontrivial coe±cients of the HOMFLY polynomial, the Kau®man polynomial and the Q-polynomial are not of ¯nite type. 1. Introduction A numerical knot invariant V can be extended to have values on singular knots via the recurrence relation V (K£) = V (K+) ¡ V (K¡) where K£, K+ and K¡ are singular knots which are identical outside a small ball in which they di®er as shown in Figure 1. V is said to be of ¯nite type or a ¯nite type invariant if there is an integer m such that V vanishes for all singular knots with more than m singular double points. If m is the smallest such integer, V is said to be an invariant of order m. q - - - ¡@- @- ¡- K£ K+ K¡ Figure 1 As the following proposition states, every nontrivial coe±cient of the Alexander- Conway polynomial is a ¯nite type invariant [1, 6]. Theorem 1 (Bar-Natan). Let K be a knot and let 2 4 2m rK (z) = 1 + a2(K)z + a4(K)z + ¢ ¢ ¢ + a2m(K)z + ¢ ¢ ¢ be the Alexander-Conway polynomial of K. Then a2m is a ¯nite type invariant of order 2m for any positive integer m. The coe±cients of the Taylor expansion of any quantum polynomial invariant of knots after a suitable change of variable are all ¯nite type invariants [2]. For the Jones polynomial we have Date: October 17, 2000 (561).
    [Show full text]
  • Alexander Polynomial, Finite Type Invariants and Volume of Hyperbolic
    ISSN 1472-2739 (on-line) 1472-2747 (printed) 1111 Algebraic & Geometric Topology Volume 4 (2004) 1111–1123 ATG Published: 25 November 2004 Alexander polynomial, finite type invariants and volume of hyperbolic knots Efstratia Kalfagianni Abstract We show that given n > 0, there exists a hyperbolic knot K with trivial Alexander polynomial, trivial finite type invariants of order ≤ n, and such that the volume of the complement of K is larger than n. This contrasts with the known statement that the volume of the comple- ment of a hyperbolic alternating knot is bounded above by a linear function of the coefficients of the Alexander polynomial of the knot. As a corollary to our main result we obtain that, for every m> 0, there exists a sequence of hyperbolic knots with trivial finite type invariants of order ≤ m but ar- bitrarily large volume. We discuss how our results fit within the framework of relations between the finite type invariants and the volume of hyperbolic knots, predicted by Kashaev’s hyperbolic volume conjecture. AMS Classification 57M25; 57M27, 57N16 Keywords Alexander polynomial, finite type invariants, hyperbolic knot, hyperbolic Dehn filling, volume. 1 Introduction k i Let c(K) denote the crossing number and let ∆K(t) := Pi=0 cit denote the Alexander polynomial of a knot K . If K is hyperbolic, let vol(S3 \ K) denote the volume of its complement. The determinant of K is the quantity det(K) := |∆K(−1)|. Thus, in general, we have k det(K) ≤ ||∆K (t)|| := X |ci|. (1) i=0 It is well know that the degree of the Alexander polynomial of an alternating knot equals twice the genus of the knot.
    [Show full text]
  • Deep Learning the Hyperbolic Volume of a Knot
    Physics Letters B 799 (2019) 135033 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Deep learning the hyperbolic volume of a knot ∗ Vishnu Jejjala a,b, Arjun Kar b, , Onkar Parrikar b,c a Mandelstam Institute for Theoretical Physics, School of Physics, NITheP, and CoE-MaSS, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa b David Rittenhouse Laboratory, University of Pennsylvania, 209 S 33rd Street, Philadelphia, PA 19104, USA c Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA a r t i c l e i n f o a b s t r a c t Article history: An important conjecture in knot theory relates the large-N, double scaling limit of the colored Jones Received 8 October 2019 polynomial J K ,N (q) of a knot K to the hyperbolic volume of the knot complement, Vol(K ). A less studied Accepted 14 October 2019 question is whether Vol(K ) can be recovered directly from the original Jones polynomial (N = 2). In this Available online 28 October 2019 report we use a deep neural network to approximate Vol(K ) from the Jones polynomial. Our network Editor: M. Cveticˇ is robust and correctly predicts the volume with 97.6% accuracy when training on 10% of the data. Keywords: This points to the existence of a more direct connection between the hyperbolic volume and the Jones Machine learning polynomial. Neural network © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 3 Topological field theory (http://creativecommons.org/licenses/by/4.0/).
    [Show full text]
  • Alternating Knots
    ALTERNATING KNOTS WILLIAM W. MENASCO Abstract. This is a short expository article on alternating knots and is to appear in the Concise Encyclopedia of Knot Theory. Introduction Figure 1. P.G. Tait's first knot table where he lists all knot types up to 7 crossings. (From reference [6], courtesy of J. Hoste, M. Thistlethwaite and J. Weeks.) 3 ∼ A knot K ⊂ S is alternating if it has a regular planar diagram DK ⊂ P(= S2) ⊂ S3 such that, when traveling around K , the crossings alternate, over-under- over-under, all the way along K in DK . Figure1 show the first 15 knot types in P. G. Tait's earliest table and each diagram exhibits this alternating pattern. This simple arXiv:1901.00582v1 [math.GT] 3 Jan 2019 definition is very unsatisfying. A knot is alternating if we can draw it as an alternating diagram? There is no mention of any geometric structure. Dissatisfied with this characterization of an alternating knot, Ralph Fox (1913-1973) asked: "What is an alternating knot?" black white white black Figure 2. Going from a black to white region near a crossing. 1 2 WILLIAM W. MENASCO Let's make an initial attempt to address this dissatisfaction by giving a different characterization of an alternating diagram that is immediate from the over-under- over-under characterization. As with all regular planar diagrams of knots in S3, the regions of an alternating diagram can be colored in a checkerboard fashion. Thus, at each crossing (see figure2) we will have \two" white regions and \two" black regions coming together with similarly colored regions being kitty-corner to each other.
    [Show full text]
  • Signatures of Links and Finite Type Invariants of Cyclic Branched Covers
    SIGNATURES OF LINKS AND FINITE TYPE INVARIANTS OF CYCLIC BRANCHED COVERS STAVROS GAROUFALIDIS Dedicated to Mel Rothenberg. Abstract. Recently, Mullins calculated the Casson-Walker invariant of the 2-fold cyclic branched cover of an oriented link in S3 in terms of its Jones polynomial and its signature, under the assumption that the 2-fold branched cover is a rational homology 3-sphere. Using elementary principles, we provide a similar calculation for the general case. In addition, we calculate the LMO invariant of the p-fold branched cover of twisted knots in S3 in terms of the Kontsevich integral of the knot. Contents 1. Introduction 1 2. A reduction of Theorem 1 3 3. Some linear algebra 4 4. ProofofTheorem1 5 4.1. The Casson-Walker-Lescop invariant of 3-manifolds 5 4.2. A construction of 2-fold branched covers 6 4.3. Proof of Claim 2.1 7 5. ProofofTheorem2 8 References 10 1. Introduction Given an oriented link L in (oriented) S3, one can associate to it a family of (oriented) p 3-manifolds, namely its p-fold cyclic branched covers ΣL,wherepis a positive integer. Using these 3-manifolds, one can associate a family of integer-valued invariants of the link L, namely its p-signatures, σp(L). These signatures, being concordance invariants, play a key role in the approach to link theory via surgery theory. On the other hand, any numerical invariant of 3-manifolds, evaluated at the p-fold branched cover, gives numerical invariants of oriented links. The seminal ideas of mathematical physics, initiated by Witten [Wi] have recently produced two axiomatizations (and construc- tions) of numerical invariants of links and 3-manifolds; one under the name of topological Date: This edition: September 1, 1998; First edition: November 10, 1997 .
    [Show full text]
  • Restrictions on Homflypt and Kauffman Polynomials Arising from Local Moves
    RESTRICTIONS ON HOMFLYPT AND KAUFFMAN POLYNOMIALS ARISING FROM LOCAL MOVES SANDY GANZELL, MERCEDES GONZALEZ, CHLOE' MARCUM, NINA RYALLS, AND MARIEL SANTOS Abstract. We study the effects of certain local moves on Homflypt and Kauffman polynomials. We show that all Homflypt (or Kauffman) polynomials are equal in a certain nontrivial quotient of the Laurent polynomial ring. As a consequence, we discover some new properties of these invariants. 1. Introduction The Jones polynomial has been widely studied since its introduction in [5]. Divisibility criteria for the Jones polynomial were first observed by Jones 3 in [6], who proved that 1 − VK is a multiple of (1 − t)(1 − t ) for any knot K. The first author observed in [3] that when two links L1 and L2 differ by specific local moves (e.g., crossing changes, ∆-moves, 4-moves, forbidden moves), we can find a fixed polynomial P such that VL1 − VL2 is always a multiple of P . Additional results of this kind were studied in [11] (Cn-moves) and [1] (double-∆-moves). The present paper follows the ideas of [3] to establish divisibility criteria for the Homflypt and Kauffman polynomials. Specifically, we examine the effect of certain local moves on these invariants to show that the difference of Homflypt polynomials for n-component links is always a multiple of a4 − 2a2 + 1 − a2z2, and the difference of Kauffman polynomials for knots is always a multiple of (a2 + 1)(a2 + az + 1). In Section 2 we define our main terms and recall constructions of the Hom- flypt and Kauffman polynomials that are used throughout the paper.
    [Show full text]
  • Knot Theory and the Alexander Polynomial
    Knot Theory and the Alexander Polynomial Reagin Taylor McNeill Submitted to the Department of Mathematics of Smith College in partial fulfillment of the requirements for the degree of Bachelor of Arts with Honors Elizabeth Denne, Faculty Advisor April 15, 2008 i Acknowledgments First and foremost I would like to thank Elizabeth Denne for her guidance through this project. Her endless help and high expectations brought this project to where it stands. I would Like to thank David Cohen for his support thoughout this project and through- out my mathematical career. His humor, skepticism and advice is surely worth the $.25 fee. I would also like to thank my professors, peers, housemates, and friends, particularly Kelsey Hattam and Katy Gerecht, for supporting me throughout the year, and especially for tolerating my temporary insanity during the final weeks of writing. Contents 1 Introduction 1 2 Defining Knots and Links 3 2.1 KnotDiagramsandKnotEquivalence . ... 3 2.2 Links, Orientation, and Connected Sum . ..... 8 3 Seifert Surfaces and Knot Genus 12 3.1 SeifertSurfaces ................................. 12 3.2 Surgery ...................................... 14 3.3 Knot Genus and Factorization . 16 3.4 Linkingnumber.................................. 17 3.5 Homology ..................................... 19 3.6 TheSeifertMatrix ................................ 21 3.7 TheAlexanderPolynomial. 27 4 Resolving Trees 31 4.1 Resolving Trees and the Conway Polynomial . ..... 31 4.2 TheAlexanderPolynomial. 34 5 Algebraic and Topological Tools 36 5.1 FreeGroupsandQuotients . 36 5.2 TheFundamentalGroup. .. .. .. .. .. .. .. .. 40 ii iii 6 Knot Groups 49 6.1 TwoPresentations ................................ 49 6.2 The Fundamental Group of the Knot Complement . 54 7 The Fox Calculus and Alexander Ideals 59 7.1 TheFreeCalculus ...............................
    [Show full text]
  • How Can We Say 2 Knots Are Not the Same?
    How can we say 2 knots are not the same? SHRUTHI SRIDHAR What’s a knot? A knot is a smooth embedding of the circle S1 in IR3. A link is a smooth embedding of the disjoint union of more than one circle Intuitively, it’s a string knotted up with ends joined up. We represent it on a plane using curves and ‘crossings’. The unknot A ‘figure-8’ knot A ‘wild’ knot (not a knot for us) Hopf Link Two knots or links are the same if they have an ambient isotopy between them. Representing a knot Knots are represented on the plane with strands and crossings where 2 strands cross. We call this picture a knot diagram. Knots can have more than one representation. Reidemeister moves Operations on knot diagrams that don’t change the knot or link Reidemeister moves Theorem: (Reidemeister 1926) Two knot diagrams are of the same knot if and only if one can be obtained from the other through a series of Reidemeister moves. Crossing Number The minimum number of crossings required to represent a knot or link is called its crossing number. Knots arranged by crossing number: Knot Invariants A knot/link invariant is a property of a knot/link that is independent of representation. Trivial Examples: • Crossing number • Knot Representations / ~ where 2 representations are equivalent via Reidemester moves Tricolorability We say a knot is tricolorable if the strands in any projection can be colored with 3 colors such that every crossing has 1 or 3 colors and or the coloring uses more than one color.
    [Show full text]
  • Kontsevich's Integral for the Kauffman Polynomial Thang Tu Quoc Le and Jun Murakami
    T.T.Q. Le and J. Murakami Nagoya Math. J. Vol. 142 (1996), 39-65 KONTSEVICH'S INTEGRAL FOR THE KAUFFMAN POLYNOMIAL THANG TU QUOC LE AND JUN MURAKAMI 1. Introduction Kontsevich's integral is a knot invariant which contains in itself all knot in- variants of finite type, or Vassiliev's invariants. The value of this integral lies in an algebra d0, spanned by chord diagrams, subject to relations corresponding to the flatness of the Knizhnik-Zamolodchikov equation, or the so called infinitesimal pure braid relations [11]. For a Lie algebra g with a bilinear invariant form and a representation p : g —» End(V) one can associate a linear mapping WQtβ from dQ to C[[Λ]], called the weight system of g, t, p. Here t is the invariant element in g ® g corresponding to the bilinear form, i.e. t = Σa ea ® ea where iea} is an orthonormal basis of g with respect to the bilinear form. Combining with Kontsevich's integral we get a knot invariant with values in C [[/*]]. The coefficient of h is a Vassiliev invariant of degree n. On the other hand, for a simple Lie algebra g, t ^ g ® g as above, and a fi- nite dimensional irreducible representation p, there is another knot invariant, con- structed from the quantum i?-matrix corresponding to g, t, p. Here i?-matrix is the image of the universal quantum i?-matrix lying in °Uq(φ ^^(g) through the representation p. The construction is given, for example, in [17, 18, 20]. The in- variant is a Laurent polynomial in q, by putting q — exp(h) we get a formal series in h.
    [Show full text]