Any Tangle Extends to Non-Mutant Knots with the Same Jones Polynomial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jones Polynomial for Graphs of Twist Knots
Available at Applications and Applied http://pvamu.edu/aam Mathematics: Appl. Appl. Math. An International Journal ISSN: 1932-9466 (AAM) Vol. 14, Issue 2 (December 2019), pp. 1269 – 1278 Jones Polynomial for Graphs of Twist Knots 1Abdulgani ¸Sahinand 2Bünyamin ¸Sahin 1Faculty of Science and Letters 2Faculty of Science Department Department of Mathematics of Mathematics Agrı˘ Ibrahim˙ Çeçen University Selçuk University Postcode 04100 Postcode 42130 Agrı,˘ Turkey Konya, Turkey [email protected] [email protected] Received: January 1, 2019; Accepted: March 16, 2019 Abstract We frequently encounter knots in the flow of our daily life. Either we knot a tie or we tie a knot on our shoes. We can even see a fisherman knotting the rope of his boat. Of course, the knot as a mathematical model is not that simple. These are the reflections of knots embedded in three- dimensional space in our daily lives. In fact, the studies on knots are meant to create a complete classification of them. This has been achieved for a large number of knots today. But we cannot say that it has been terminated yet. There are various effective instruments while carrying out all these studies. One of these effective tools is graphs. Graphs are have made a great contribution to the development of algebraic topology. Along with this support, knot theory has taken an important place in low dimensional manifold topology. In 1984, Jones introduced a new polynomial for knots. The discovery of that polynomial opened a new era in knot theory. In a short time, this polynomial was defined by algebraic arguments and its combinatorial definition was made. -
Arxiv:1608.01812V4 [Math.GT] 8 Nov 2018 Hc Ssrne Hntehmytplnma.Teindeterm the Polynomial
A NEW TWO-VARIABLE GENERALIZATION OF THE JONES POLYNOMIAL D. GOUNDAROULIS AND S. LAMBROPOULOU Abstract. We present a new 2-variable generalization of the Jones polynomial that can be defined through the skein relation of the Jones polynomial. The well-definedness of this invariant is proved both algebraically and diagrammatically as well as via a closed combinatorial formula. This new invariant is able to distinguish more pairs of non-isotopic links than the original Jones polynomial, such as the Thistlethwaite link from the unlink with two components. 1. Introduction In the last ten years there has been a new spark of interest for polynomial invariants for framed and classical knots and links. One of the concepts that appeared was that of the framization of a knot algebra, which was first proposed by J. Juyumaya and the second author in [22, 23]. In their original work, they constructed new 2-variable polynomial invariants for framed and classical links via the Yokonuma–Hecke algebras Yd,n(u) [34], which are quotients of the framed braid group . The algebras Y (u) can be considered as framizations of the Iwahori–Hecke Fn d,n algebra of type A, Hn(u), and for d = 1, Y1,n(u) coincides with Hn(u). They used the Juyumaya trace [18] with parameters z,x1,...,xd−1 on Yd,n(u) and the so-called E-condition imposed on the framing parameters xi, 1 i d 1. These new invariants and especially those for classical links had to be compared to other≤ ≤ known− invariants like the Homflypt polynomial [30, 29, 11, 31]. -
Mutant Knots and Intersection Graphs 1 Introduction
Mutant knots and intersection graphs S. V. CHMUTOV S. K. LANDO We prove that if a finite order knot invariant does not distinguish mutant knots, then the corresponding weight system depends on the intersection graph of a chord diagram rather than on the diagram itself. Conversely, if we have a weight system depending only on the intersection graphs of chord diagrams, then the composition of such a weight system with the Kontsevich invariant determines a knot invariant that does not distinguish mutant knots. Thus, an equivalence between finite order invariants not distinguishing mutants and weight systems depending on intersections graphs only is established. We discuss relationship between our results and certain Lie algebra weight systems. 57M15; 57M25 1 Introduction Below, we use standard notions of the theory of finite order, or Vassiliev, invariants of knots in 3-space; their definitions can be found, for example, in [6] or [14], and we recall them briefly in Section 2. All knots are assumed to be oriented. Two knots are said to be mutant if they differ by a rotation of a tangle with four endpoints about either a vertical axis, or a horizontal axis, or an axis perpendicular to the paper. If necessary, the orientation inside the tangle may be replaced by the opposite one. Here is a famous example of mutant knots, the Conway (11n34) knot C of genus 3, and Kinoshita–Terasaka (11n42) knot KT of genus 2 (see [1]). C = KT = Note that the change of the orientation of a knot can be achieved by a mutation in the complement to a trivial tangle. -
A Remarkable 20-Crossing Tangle Shalom Eliahou, Jean Fromentin
A remarkable 20-crossing tangle Shalom Eliahou, Jean Fromentin To cite this version: Shalom Eliahou, Jean Fromentin. A remarkable 20-crossing tangle. 2016. hal-01382778v2 HAL Id: hal-01382778 https://hal.archives-ouvertes.fr/hal-01382778v2 Preprint submitted on 16 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A REMARKABLE 20-CROSSING TANGLE SHALOM ELIAHOU AND JEAN FROMENTIN Abstract. For any positive integer r, we exhibit a nontrivial knot Kr with r− r (20·2 1 +1) crossings whose Jones polynomial V (Kr) is equal to 1 modulo 2 . Our construction rests on a certain 20-crossing tangle T20 which is undetectable by the Kauffman bracket polynomial pair mod 2. 1. Introduction In [6], M. B. Thistlethwaite gave two 2–component links and one 3–component link which are nontrivial and yet have the same Jones polynomial as the corre- sponding unlink U 2 and U 3, respectively. These were the first known examples of nontrivial links undetectable by the Jones polynomial. Shortly thereafter, it was shown in [2] that, for any integer k ≥ 2, there exist infinitely many nontrivial k–component links whose Jones polynomial is equal to that of the k–component unlink U k. -
Coefficients of Homfly Polynomial and Kauffman Polynomial Are Not Finite Type Invariants
COEFFICIENTS OF HOMFLY POLYNOMIAL AND KAUFFMAN POLYNOMIAL ARE NOT FINITE TYPE INVARIANTS GYO TAEK JIN AND JUNG HOON LEE Abstract. We show that the integer-valued knot invariants appearing as the nontrivial coe±cients of the HOMFLY polynomial, the Kau®man polynomial and the Q-polynomial are not of ¯nite type. 1. Introduction A numerical knot invariant V can be extended to have values on singular knots via the recurrence relation V (K£) = V (K+) ¡ V (K¡) where K£, K+ and K¡ are singular knots which are identical outside a small ball in which they di®er as shown in Figure 1. V is said to be of ¯nite type or a ¯nite type invariant if there is an integer m such that V vanishes for all singular knots with more than m singular double points. If m is the smallest such integer, V is said to be an invariant of order m. q - - - ¡@- @- ¡- K£ K+ K¡ Figure 1 As the following proposition states, every nontrivial coe±cient of the Alexander- Conway polynomial is a ¯nite type invariant [1, 6]. Theorem 1 (Bar-Natan). Let K be a knot and let 2 4 2m rK (z) = 1 + a2(K)z + a4(K)z + ¢ ¢ ¢ + a2m(K)z + ¢ ¢ ¢ be the Alexander-Conway polynomial of K. Then a2m is a ¯nite type invariant of order 2m for any positive integer m. The coe±cients of the Taylor expansion of any quantum polynomial invariant of knots after a suitable change of variable are all ¯nite type invariants [2]. For the Jones polynomial we have Date: October 17, 2000 (561). -
Alexander Polynomial, Finite Type Invariants and Volume of Hyperbolic
ISSN 1472-2739 (on-line) 1472-2747 (printed) 1111 Algebraic & Geometric Topology Volume 4 (2004) 1111–1123 ATG Published: 25 November 2004 Alexander polynomial, finite type invariants and volume of hyperbolic knots Efstratia Kalfagianni Abstract We show that given n > 0, there exists a hyperbolic knot K with trivial Alexander polynomial, trivial finite type invariants of order ≤ n, and such that the volume of the complement of K is larger than n. This contrasts with the known statement that the volume of the comple- ment of a hyperbolic alternating knot is bounded above by a linear function of the coefficients of the Alexander polynomial of the knot. As a corollary to our main result we obtain that, for every m> 0, there exists a sequence of hyperbolic knots with trivial finite type invariants of order ≤ m but ar- bitrarily large volume. We discuss how our results fit within the framework of relations between the finite type invariants and the volume of hyperbolic knots, predicted by Kashaev’s hyperbolic volume conjecture. AMS Classification 57M25; 57M27, 57N16 Keywords Alexander polynomial, finite type invariants, hyperbolic knot, hyperbolic Dehn filling, volume. 1 Introduction k i Let c(K) denote the crossing number and let ∆K(t) := Pi=0 cit denote the Alexander polynomial of a knot K . If K is hyperbolic, let vol(S3 \ K) denote the volume of its complement. The determinant of K is the quantity det(K) := |∆K(−1)|. Thus, in general, we have k det(K) ≤ ||∆K (t)|| := X |ci|. (1) i=0 It is well know that the degree of the Alexander polynomial of an alternating knot equals twice the genus of the knot. -
Section 10.2. New Polynomial Invariants
10.2. New Polynomial Invariants 1 Section 10.2. New Polynomial Invariants Note. In this section we mention the Jones polynomial and give a recursion for- mula for the HOMFLY polynomial. We give an example of the computation of a HOMFLY polynomial. Note. Vaughan F. R. Jones introduced a new knot polynomial in: A Polynomial Invariant for Knots via von Neumann Algebra, Bulletin of the American Mathe- matical Society, 12, 103–111 (1985). A copy is available online at the AMS.org website (accessed 4/11/2021). This is now known as the Jones polynomial. It is also a knot invariant and so can be used to potentially distinguish between knots. Shortly after the appearance of Jones’ paper, it was observed that the recursion techniques used to find the Jones polynomial and Conway polynomial can be gen- eralized to a 2-variable polynomial that contains information beyond that of the Jones and Conway polynomials. Note. The 2-variable polynomial was presented in: P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, and A. Ocneanu, A New Polynomial of Knots and Links, Bul- letin of the American Mathematical Society, 12(2): 239–246 (1985). This paper is also available online at the AMS.org website (accessed 4/11/2021). Based on a permutation of the first letters of the names of the authors, this has become knows as the “HOMFLY polynomial.” 10.2. New Polynomial Invariants 2 Definition. The HOMFLY polynomial, PL(`, m), is given by the recursion formula −1 `PL+ (`, m) + ` PL− (`, m) = −mPLS (`, m), and the condition PU (`, m) = 1 for U the unknot. -
Deep Learning the Hyperbolic Volume of a Knot
Physics Letters B 799 (2019) 135033 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Deep learning the hyperbolic volume of a knot ∗ Vishnu Jejjala a,b, Arjun Kar b, , Onkar Parrikar b,c a Mandelstam Institute for Theoretical Physics, School of Physics, NITheP, and CoE-MaSS, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa b David Rittenhouse Laboratory, University of Pennsylvania, 209 S 33rd Street, Philadelphia, PA 19104, USA c Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA a r t i c l e i n f o a b s t r a c t Article history: An important conjecture in knot theory relates the large-N, double scaling limit of the colored Jones Received 8 October 2019 polynomial J K ,N (q) of a knot K to the hyperbolic volume of the knot complement, Vol(K ). A less studied Accepted 14 October 2019 question is whether Vol(K ) can be recovered directly from the original Jones polynomial (N = 2). In this Available online 28 October 2019 report we use a deep neural network to approximate Vol(K ) from the Jones polynomial. Our network Editor: M. Cveticˇ is robust and correctly predicts the volume with 97.6% accuracy when training on 10% of the data. Keywords: This points to the existence of a more direct connection between the hyperbolic volume and the Jones Machine learning polynomial. Neural network © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 3 Topological field theory (http://creativecommons.org/licenses/by/4.0/). -
Signatures of Links and Finite Type Invariants of Cyclic Branched Covers
SIGNATURES OF LINKS AND FINITE TYPE INVARIANTS OF CYCLIC BRANCHED COVERS STAVROS GAROUFALIDIS Dedicated to Mel Rothenberg. Abstract. Recently, Mullins calculated the Casson-Walker invariant of the 2-fold cyclic branched cover of an oriented link in S3 in terms of its Jones polynomial and its signature, under the assumption that the 2-fold branched cover is a rational homology 3-sphere. Using elementary principles, we provide a similar calculation for the general case. In addition, we calculate the LMO invariant of the p-fold branched cover of twisted knots in S3 in terms of the Kontsevich integral of the knot. Contents 1. Introduction 1 2. A reduction of Theorem 1 3 3. Some linear algebra 4 4. ProofofTheorem1 5 4.1. The Casson-Walker-Lescop invariant of 3-manifolds 5 4.2. A construction of 2-fold branched covers 6 4.3. Proof of Claim 2.1 7 5. ProofofTheorem2 8 References 10 1. Introduction Given an oriented link L in (oriented) S3, one can associate to it a family of (oriented) p 3-manifolds, namely its p-fold cyclic branched covers ΣL,wherepis a positive integer. Using these 3-manifolds, one can associate a family of integer-valued invariants of the link L, namely its p-signatures, σp(L). These signatures, being concordance invariants, play a key role in the approach to link theory via surgery theory. On the other hand, any numerical invariant of 3-manifolds, evaluated at the p-fold branched cover, gives numerical invariants of oriented links. The seminal ideas of mathematical physics, initiated by Witten [Wi] have recently produced two axiomatizations (and construc- tions) of numerical invariants of links and 3-manifolds; one under the name of topological Date: This edition: September 1, 1998; First edition: November 10, 1997 . -
The Jones Polynomial Through Linear Algebra
The Jones polynomial through linear algebra Iain Moffatt University of South Alabama Workshop in Knot Theory Waterloo, 24th September 2011 I. Moffatt (South Alabama) UW 2011 1 / 39 What and why What we’ll see The construction of link invariants through R-matrices. (c.f. Reshetikhin-Turaev invariants, quantum invariants) Why this? Can do some serious math using material from Linear Algebra 1. Illustrates how math works in the wild: start with a problem you want to solve; figure out an easier problem that you can solve; build up from this to solve your original problem. See the interplay between algebra, combinatorics and topology! It’s my favourite bit of math! I. Moffatt (South Alabama) UW 2011 2 / 39 What we’re trying to do A knot is a circle, S1, sitting in 3-space R3. A link is a number of disjoint circles in 3-space R3. Knots and links are considered up to isotopy. This means you can “move then round in space, but you can’t cut or glue them”. I. Moffatt (South Alabama) UW 2011 3 / 39 What we’re trying to do A knot is a circle, S1, sitting in 3-space R3. A link is a number of disjoint circles in 3-space R3. Knots and links are considered up to isotopy. This means you can “move then round in space, but you can’t cut or glue them”. The fundamental problem in knot theory is to determine whether or not two links are isotopic. =? =? I. Moffatt (South Alabama) UW 2011 3 / 39 To do this we need knot invariants: F : Links (a set) such (Isotopy) ! that F(L) = F(L0) = L = L0, Aim: construct6 link invariants) 6 using linear algebra. -
ON TANGLES and MATROIDS 1. Introduction Two Binary Operations on Matroids, the Two-Sum and the Tensor Product, Were Introduced I
ON TANGLES AND MATROIDS STEPHEN HUGGETT School of Mathematics and Statistics University of Plymouth, Plymouth PL4 8AA, Devon ABSTRACT Given matroids M and N there are two operations M ⊕2 N and M ⊗ N. When M and N are the cycle matroids of planar graphs these operations have interesting interpretations on the corresponding link diagrams. In fact, given a planar graph there are two well-established methods of generating an alternating link diagram, and in each case the Tutte polynomial of the graph is related to polynomial invariant (Jones or homfly) of the link. Switching from one of these methods to the other corresponds in knot theory to tangle insertion in the link diagrams, and in combinatorics to the tensor product of the cycle matroids of the graphs. Keywords: tangles, knots, Jones polynomials, Tutte polynomials, matroids 1. Introduction Two binary operations on matroids, the two-sum and the tensor product, were introduced in [13] and [4]. In the case when the matroids are the cycle matroids of graphs these give rise to corresponding operations on graphs. Strictly speaking, however, these operations on graphs are not in general well defined, being sensitive to the Whitney twist. Consider the two-sum for a moment: when it is well defined it can be seen simply in terms of the replacement of an edge by a new subgraph: a special case of this is the operation leading to the homeomorphic graphs studied in [11]. Planar graphs define alternating link diagrams, and so the two-sum and tensor product operations are defined on these too: they correspond to insertions of tangles. -
TANGLES for KNOTS and LINKS 1. Introduction It Is
TANGLES FOR KNOTS AND LINKS ZACHARY ABEL 1. Introduction It is often useful to discuss only small \pieces" of a link or a link diagram while disregarding everything else. For example, the Reidemeister moves describe manipulations surrounding at most 3 crossings, and the skein relations for the Jones and Conway polynomials discuss modifications on one crossing at a time. Tangles may be thought of as small pieces or a local pictures of knots or links, and they provide a useful language to describe the above manipulations. But the power of tangles in knot and link theory extends far beyond simple diagrammatic convenience, and this article provides a short survey of some of these applications. 2. Tangles As Used in Knot Theory Formally, we define a tangle as follows (in this article, everything is in the PL category): Definition 1. A tangle is a pair (A; t) where A =∼ B3 is a closed 3-ball and t is a proper 1-submanifold with @t 6= ;. Note that t may be disconnected and may contain closed loops in the interior of A. We consider two tangles (A; t) and (B; u) equivalent if they are isotopic as pairs of embedded manifolds. An n-string tangle consists of exactly n arcs and 2n boundary points (and no closed loops), and the trivial n-string 2 tangle is the tangle (B ; fp1; : : : ; png) × [0; 1] consisting of n parallel, unintertwined segments. See Figure 1 for examples of tangles. Note that with an appropriate isotopy any tangle (A; t) may be transformed into an equivalent tangle so that A is the unit ball in R3, @t = A \ t lies on the great circle in the xy-plane, and the projection (x; y; z) 7! (x; y) is a regular projection for t; thus, tangle diagrams as shown in Figure 1 are justified for all tangles.