www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 67), pp: 111551-111566 Research Paper Identification of novel diagnostic biomarkers for thyroid carcinoma Xiliang Wang1,2, Qing Zhang1, Zhiming Cai1, Yifan Dai3 and Lisha Mou1 1Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China 2Department of Biochemistry in Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China 3Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China Correspondence to: Lisha Mou, email:
[email protected] Keywords: thyroid carcinoma; bioinformatics; dysregulation network; biomarker Received: June 27, 2017 Accepted: November 19, 2017 Published: December 04, 2017 Copyright: Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Thyroid carcinoma (THCA) is the most universal endocrine malignancy worldwide. Unfortunately, a limited number of large-scale analyses have been performed to identify biomarkers for THCA. Here, we conducted a meta-analysis using 505 THCA patients and 59 normal controls from The Cancer Genome Atlas. After identifying differentially expressed long non-coding RNA (lncRNA) and protein coding genes (PCG), we found vast difference in various lncRNA-PCG co-expressed pairs in THCA. A dysregulation network with scale-free topology was constructed. Four molecules (LA16c-380H5.2, RP11-203J24.8, MLF1 and SDC4) could potentially serve as diagnostic biomarkers of THCA with high sensitivity and specificity.