16thDecember2010 TheChairman MurrayDarlingBasinAuthority GPOBox1801 City2601 Re. Volume 1 and Volume 2 (Parts I to III) of: Guide to the Proposed Basin Plan. Murray- Darling Basin Authority 2010. Recommendations. • Becauseitisbasedonflawed,biasedandalarmist’‘science’theProposedBasinPlan shouldberejectedinitsentirety. • TheWaterAct(2007)(Cwth)shouldberepealed.TheActhassetouttocircumvent clauseswithintheAustralianConstitutionintendedtogiveeffecttotherightsofthe States.ThissetstheprecedentthattheCommonwealthmaymakeinternational agreementsthatpurposefullyerodetheintentionoftheAustralianConstitution,thus underminingAustralia’sdemocraticprocess. • The‘nationalinterest’servedbytheCommonwealthtakingcontroloftheBasin’s waterresourcesfromtheStateshasnotbeenelucidatedinanyofthePlandocuments. Itprobablydoesnotexist,anditshouldnotbeafactorindecidingtheoutcomeof MDBA’sdeliberations. Summary findings. IhavereviewedaspectsoftherecentlyreleasedGuide to the Proposed Basin Planandthe detailedresultsofmyreviewareattached. Ihavefound:

1. No hard evidence exists that the ecology of the Basin is ‘near collapse’ because of alleged over allocation of water, predominantly to irrigation. • ThereportsandpapersthatIreviewedarebiased,alarmistand‘message’focussed. Simplystated,‘thescience’hasbeenbought(atconsiderablecost)tosupportflawedand sociallydetrimental‘policy’. o Moreemphasishasbeengiventoprojections–thefuture,thanhasbeengivento therealityofthepresentanditsimmediatepast.Itisinthelightofthissupposed ‘future’thattheProposedPlandrawsitsurgency. o Theprojected‘future’isafantasy;itmaynotarise,anditmaynotexistinthe alarmistsensethatiscontinuouslyportrayed. • Theoftquotedmajorauditreporton‘catchmentshealth’1(20042007)isbasedon guesswork.

1NorrisR,ProsserI,YoungB.ListonP,BauerN,DaviesN,DyerF,LinkeS,ThomsM(2001).Theassessmentof rivercondition(ARC).AnauditoftheecologicalconditionofAustralianRivers.FinalReportsubmittedtothe NationalLandandWaterResourcesAuditOffice,September2001. o Eventhoughtherewereabsolutelynodataavailableforthetime,itusesasits comparativebaselinetheconditionofcatchmentsastheywerein1770(pre European)! o Catchmenthealthisamovie,notasingle‘photograph’,especiallyaframe capturedduringthemidphaseof.Stufffrommodelledauditsisnotdata. Itbelongsinthevirtualworld;ithasnodynamics,notimerelevance,nohistory andthereforenobelievability. o Themodellingprocess,designedtoshowthat‘most’catchmentsareinapoor state,makeamockeryofdatarichresearchanditdoesnotaddressthecapacityof socalled‘degraded’systemstorevivethemselvesonceoverarchingconditions (mainlydrought)change.

2. For a rainfall-driven ‘working’ river system, evidence that the Murray Darling Basin it is not managed appropriately (by the States) is lacking. • CyclesoffloodsanddroughthavealwaysbeenanaturalfeatureoftheBasin,andequally thesehaveshapeditsinterlinkedriverine,wetlandanddrylandecology. o Theuseofwaterforirrigationhasnotchangedtherainfallandevaporation regimes,whicharetheoverarchingdriversoftheBasin’swaterbalance. o ‘River’arelessseverenowthantheywouldhavebeenhadirrigation infrastructure(andtheSnowyMountainsScheme)notbeendeveloped.The ProposedBasinPlanconvenientlyignoresthatthesewererisky,Nationbuilding stepsforAustralia,whichintheirtime,werevitaldevelopmentsin‘moving Australiaforward’. o Environmentalismconvenientlyignoresthatthegreatestcontributiontoits currentstatusinAustraliahasbeenthepragmaticovercomingoflimitationstoall formsofprimaryproduction.IrrigatedagricultureintheMDBhasbeenanon goingpartofthesolution,nottheproblem. o TheProposedPlananditssupportingdocumentationhaveconsistentlypresented a‘glasshalfempty’pictureoftheBasin.TheBasinisinfactmorethana“glass¾ full”.Itismeetingduralrolesofproducingfoodandfibre,whileproviding, withinitsnaturalcapacity,unmeasuredecosystemservices. o Politically,thepost2000drought,whichhasbeenanormalevent,hasbeenused todrivemessagesofdespair;breakdown;dysfunctionand‘collapse’–messages drivenhomebyspeculativemodellingandalarmism,andsupportedgenerously byantiagriculturespecialinterest‘green’groups. • Hype,andmarketingofbrandedideashavedominatedmuchofthepublicdiscussion,to thedetrimentofresearchandcareful,balancedandconsideredunderstandingofthetrue position.

3. The ‘science’ that I examined is flawed; much is data-free; it is biased; it is over- managed and presented as spin, particularly by CSIRO and the Wentworth Group. • Thereisoverdependenceonmodels. o Somemodellingexercisespurporttorepresentprocessesthattheycannotemulate withanydegreeofstatisticalconfidenceattheirscaleofimplementation. • Itisaleapoffaithtobelievethata‘conceptualmodel’thatincludesqualitative,semi quantitativeandquantitativecomponents,including,inputsfromothermodels,results inanabsoluteunambiguouserrorfree‘answer’. o IntheProposedBasinPlan,manyofthepressreleasesthathavegonebothbefore andafteritwasreleased,arelitteredwithspeculative‘facts’.

4. Scientists in CSIRO, Universities and State agencies have lost the independence and freedom that in times past, made these organizations strong, responsive and trustworthy. • Sciencehasbecomefocused,‘secret’businesswherescientificdissentisdiscouraged, andopendiscussionofitscraftnotpermitted.Itisnotnecessarilycarriedoutforthe publicgood.

5. If it is the case that The Coorong, Lower Lakes and Murray-Mouth are one of Australia’s most important wetlands, and are the main focus, and indeed the excuse for Commonwealth intervention in the proposed reforms, consideration needs to be given to removal of the Barrages BEFORE using precious water from the uplands of the Basin to achieve the same ends. • It is clear from commentary, that if there is a single action that would have a positive impact on the ecology of the end-of-system lakes, it would be to decommission the structures that prevent the lakes from interacting with the ocean, as they have in the past, and should in the future. o Thisactionwouldlargelynegatehavingtorunlargevolumesoffreshwaterdown theriversfromthealpineareasofNSWand,simplytokeepwaterthat shouldbebrackishandsaline,relativelyfresh;thentodumpitintothesea.

6. I am a retired scientist, with broad-based interest and some expertise in natural resource management; landscape hydrology; soils, agronomy and ecology.

I am disconcerted by the Proposed Murray-Darling Basin Plan. The plan under-values data; it subverts true ‘science’; it is politically-driven; thus despite all the community passion that its proponents have invoked, beyond reducing food production it is unlikely to make much difference in respect of its projected intentions.

However, as an individual I do not have the capacity to exhaustively review the hundreds of documents, some, many hundreds of pages long, that have been produced to justify/support the Proposed Plan.

The material and reports that I have accessed are referenced as footnotes in this report, however, time has been pressing, and in some cases I have not given the attention to issues that they may have deserved. • ItissuspiciousthatIhavefoundnodocumentsthatarecriticalorunsupportive,ofthe ProposedPlan,despitesoundandjustifiablereasonsforcynicismandmistrustofboth the‘science’andthepoliticalprocess. • Ihavealsonotbeenabletolocateevenlybalanced,overarchingreviewsofcritical issuessuchasecology;farmdams;forestry;modelling;errorsanduncertainties; communityimpactsetc.

7. It would not be unreasonable to expect MDBA and its predecessor organisation MDBC, to have some objective in-house capacity for over-sight of all the so-called science and its social, economic and ecological implications. However, everything seems to have been out-sourced. As a consequence, there are many critical questions that have not been asked; and ‘science’ that has either been too-easily believed, or not sufficiently well evaluated. • Itwouldnotbeunreasonabletosuggestthateverybodyinvolvedinthisprocessis marchingtoanalreadyagreedtoagendaandoutcome,andthatwhateverobjections orcriticismsareraisedwillbepolitelyignored. ObviouslyMDBA/MDBCandtheNationalWaterCommissionhavecommittedverylargesums ofpublicmoneyintothe‘scienceindustry’thathasbeencultivatedspecificallytosupportthe Plan’sagenda.Itismyfirmbeliefthatthewholecommunityhasbeenmisledandletdownby this‘selectivescience’process,whichhasimplicationswellbeyondtheBasin. Untilallthedisclaimersarestrippedaway,andthescienceisexposedtorigorousindependent scrutiny,theplanshouldsimplyberejected. Yoursfaithfully, Dr.WH(Bill)Johnston

A science-based response to the Guide to the Proposed Murray-Darling Basin Plan. Dr.WH(Bill)Johnston

Introduction. TheProposedMurrayDarlingBasinplandoesnotdeservethesupportofeitherthecommunities thatlove,liveandworkintheBasin,ortheAustraliancommunityatlarge. Itisbasedonshorttermappraisalsof‘condition’;speculativemodellingofmanyinteracting, errorpronepresumptions;anditdrawserrorfreeconclusions,whicharenotstatistically confidentpredictions,buteitherforecastsorprojections,basedonthemodelsbeing‘right’or nothingelsechanging. Itisan‘alarmist’plan,looselyshroudedinclimatechangerhetoric;supportedbytheconstant chatterofpressreleases;strategicallyreleased‘newreports’thatoffernoconclusiveevidence; andthatconvenientlyignorethenaturalnessofnaturalevents,suchasfloodsanddroughts. AlthoughreleaseofthePlanwasdelayeduntilafterthe2010FederalElection,ithasnotescaped theunplannedendingofthepost2000Basinwidedrought.Basindroughtshavealwaysended; usuallysignalledbysignificantrainfalls.Thepost2000droughthasbeennoexception. Now,afterjustasingleseasonofreplenishingrainsthathavecontinuedintoearlysummer,the majorcontributingstoragesalongtheupperMurray;Murrumbidgee;Lachlan;Macquarieand mostnorthernrivers,areatornearcapacity.Thequestionneedstobeasked–nowthatnature has‘savedtheBasin’(asshealwayshasinthepast),do we really need this plan anyway? Withtheknowledgeofallitsshamandinaccuracies,theGovernment,theMurrayDarlingBasin Authorityandtheirchiefadvisors(awellfinanced,confoundedgroupincludingCSIROandThe WentworthGroup;StateDepartments;severalUniversitiesandprivateorganisationssuchas SinclairKnightMertz)universallydisclaimresponsibilityfortheaccuracy,use,futureuseand implicationsoftheir‘work’. Typicaldisclaimersstate: “…Theopinions,commentsandanalysis(includingthoseofthirdparties)expressedinthisdocument areforconsultationpurposesonly…”(The Guide to the Basin Plan).

(“Advice on defining climate scenarios for use in the Murray-Darling Basin Authority Basin Plan Modelling” (MDBA Technical Report Series: Basin Plan: BP01)). “TheresultsandanalysescontainedinthisReportarebasedonanumberoftechnical,circumstantialorotherwise specifiedassumptionsandparameters.Theusermustmakeitsownassessmentofthesuitabilityforitsuseofthe informationormaterialcontainedinorgeneratedfromtheReport.Totheextentpermittedbylaw,CSIROexcludesall liabilitytoanypartyforexpenses,losses,damagesandcostsarisingdirectlyorindirectlyfromusingthisReport” (CSIRO (2010) Climate variability and change in south-eastern Australia: A synthesis of findings from Phase 1 of the South Eastern Australian Climate Initiative (SEACI). Toparaphrasearecentcommentinrelationtotheproposedminingtax“ if you can’t trust Government, then who can you trust ?” Theoverarchingquestionis: if august institutions such as CSIRO, MDBA and the Commonwealth will not stand by their work, why should the community be swayed by it or believe in it? BasedonobservingthemanipulationsofGovernmentoveraprofessionallifetimedevotedto researchandextensioninnaturalresourcemanagement,IhavesummarisedinBox1a hypotheticalbutfactualschemeofengagementbetweenthecommunityandGovernment.

Box 1. A schematic representation of Government engagement with the community over contentious issues.

Step1 ThereisaperceivedproblemboughttotheGovernment’sattentionbyintenseinterestgrouplobbying(mostly ‘industry’or‘green’);usuallyvia.commissioned‘newreports’. Step2 Theissueisseizedonasapoliticalimperative,usuallybecausetheGovernment(atwhateverlevel)canincreasethe levelofpoweritcanwield. TheGovernment,seeinganadvantage,advisersthathasa‘political’answer Itdevelopsastrategytolanditonthepeople Announcestheseriousnessoftheproblemandthatithasfoundthemoney(usually$billions)to‘fix’it(usually bywayofamoreanalysisorfeasibilitystudies;rarelybydirectactionatthisstage!) Step3 TheGovernmentseeks‘independent’advice Setsup,supportsorfavoursquasipolitical/scientific/industrygroupstofermentitspoliticalanswer(e.g.Unions; TheWentworthGroupofConcernedScientists;AustralianIndustryGroupetc.) Fundsorganisations(e.g.CSIRO;universities;Accesseconomics;SKM)tosupportandlendcredencetoits politicalposition. Setsinplacemechanismstohandledissentingviews(Thankyoufo ryourinterest…weseethatyousupportthe Governmentsapproach…Yoursfaithfully..TheGovernment.) Step4 TheGovernmentsetsuphandpicked‘independent’notablepersons;advisorygroups;committees;boardsor authoritiesthatwilladvisebyrecommendingtheGovernmentspoliticalpositionastheonlyanswertotheperceived problem. Step5 Many,manyreportsareprepared(eachwithapressrelease),followedbygreenpapersandwhitepapers.Theseare supportedbyapubliccallforsubmissionsandresponses(tobe receivedusuallywithindaysorweeks).Forewarned, andinsynchrony,theintheloopquasipolitical/scientificgroupsthattheGovernmentsupportedinthefirstplace,are prominentinadvocatingtheGovernmentsposition.Asthestrategyfindsitfeet,supportedbythelimpnessof popularisedpress,theheadlineofthedaybecomes..“Anewreporthasfound….”. Step6 Aspartoftheoverall‘package’,Governmentlargely‘backburns’orignoresdissentingviews.Researchthatmaynot directlysupporttheGovernments‘political’positionisdiscouraged/unfunded/woundup.(Thevolumeofmaterialin the‘…newreports..”isplannedtobeoverwhelmingtounresourceddissentersanyway!) Step7 Thereportsgetatickbythe‘independent’committees/boards/authorities;theGovernment,beingthearbiteroflast resorthastoact;soregardlessofitsaccuracy,merit,integrityorlongertermconsequences,thepoliticalsolution (Step1)ispassedintolaw. Step8 Thepeopleatlargearefacedwith,orhavetopayfor,theconsequencesofanintractable,politicallymotivatedbad decisionthatfavoursitssupportinginterestgroups.Peoplewhoareaffectedeitherhavetosimplygoaway,orthey arepaidoff! Step9 TheGovernment,applaudedbyitsindustry‘partners’,specialinterestgroupsand‘independent’advisors,“looksto thefuture”;it“movesforward”.Departmentsarerenamed,splitup,mergedanddisappearfromthepublic consciousness.Theircontactdetailssuchaspostaladdresses,telephonenumbers;webaddressesallchange;theyl ose connectivitywiththepast.Thebasisofdecisionmaking–thereports,submissionsetc.arelostinthearchive‘ether’ bybeingmadehardorimpossibletofind.Insomecases,inordertoerasethepast,ActsofParliamentarechangedby regulationsothatMinisterialaccountabilitybecomesuntraceable. Step10 Thereisanotherelectionaboutpolice,hospitalsandschools.Democraticprocess,governanceanddeviousnessof Governmentaremomentarilyforgotten.

The Proposed Basin Plan currently sits at about Step 6 of this hypothesised scheme. This submission calls for the current Proposed Basin Plan to be abandoned as a bad idea backed by a confusing array of biased ‘science’. Marketmechanisms,suchasseekingefficienciesinwateruseacrosstheBasinthatresultin ‘saving’water,shouldbesupportedandencouraged. However, the water ‘saved’ should be returned to the communities that saved it in the first place. It should be used to support food production by generating expanded productive agricultural activity. This is the only way that existing communities can grow in a sustainable way, and that agriculture can effectively expand and meet the needs of a growing world. The‘green’agendaisoneeyed;the‘science’behindtheagendaisespeciallybiased.Tackling worldpopulationgrowthbyreducingorstabilisingfoodproductionfromAustralia’sfoodbowl issimplybizarre. Strategically,Australiadoesnotneedmillionsofstarvingpeopleoutsideitsimmediateborders, arearmedwithnothingmorethanthousandsofleakyboats.Increasingfoodproductionwhile tacklingpopulationgrowthbydealingwithitasaspecificissuewithinAustralia’saideffort wouldleaveusinamuchstrongerstrategicpositionthaniftheNationbecamedependenton significantimportsofbasicfoodtypes.

The alarmist ecosystem collapse theory has no basis. • Ecologically, the Murray-Darling Basin is not in immanent threat of collapse. If itwerepronetocollapse,itwouldhavedonesolongago.Speciescomeandgowith theseasonsandthecycles,andtheecologyweseetodayreflectsitscapacitytoadapt; itwillprobablyalwaysbeinasateofflux,whichisoneofitsstrengths. (Agricultureisalsosensitivetoeventsandcycles.Inthelatestdrought,while preciouswaterwentwestandsouthtofeedecosystems,farmersboremuchpain; financially,structurallyandpsychologically.) • Throughout the Basin, there are ecosystem refuges everywhere. Nationalparks; farmdamshighinseasonallyaridmidrainfallcatchments,watercourseskeptwetby continuousriverflows,andephemeralandpermanentlywetlakesallproviderefuges. Fromtimetotime,someneedtobehelped,astheyhaveoverpastdroughtperiods, butmostlytheyshouldbelefttoadapt,astheywill,totheirchangingcircumstances. • Indicators are positive .Forexample,salinity(atMorgan)isdeclining.Duringthe mostrecent(2000to2010)drought,whileirrigatedagricultureacrossmostofNSW wasseverelydisrupted,majorBasinriversdidnotceasetoflow. WhileBurrinjuckandHumedamsandothersdeclinedtolowlevels,andvariousprofessorsand theWentworthGroupjumpedupanddownabouttheCoorongandclosureoftheMurraymouth, touristsstillflockedtoMilduraandpaddlesteamersstillpuffedupanddowntheMurrayat Echuca. Onehundredyearsorsoago,beforethedamswerebuilt,evidenceisthattheriverwouldhave rundryattheseplaces.Everything,includingpaddleboatsandagriculture,aswellastheBasin’s ecologywouldhavehadnooptionbuttoshutdownandwaitoutthelengthylowandnoflow periods. ClearlythemainissuefortheLowerLakes,CoorongamdMurrayMoutharetheBarrages.The lakesbehindtheBarragesdonotneedtobefloodedwithexpensive,scarce,freshwatersent thousandsofkilometressouthalongtheMurrayfromthealpineareasofVictoriaandNewSouth Walestosimplyfillavoidortobedumpedintotheocean. Returning the lower-lakes to nature must involve removing the Barrages. Thecollateral advantageofdoingthiswouldbethatirrigatedagriculturewouldhavetomoveupstreamwhere becauselesswaterwouldbelosttoevaporationduringitsnaturalcoursesouth,morefreshwater wouldbeaccessible.

Comments on the planning process.

Whilethe260page Proposed Basin Plan (Volume1)hasbeendevelopedovermanyyearsby manypeople,thoseinterestedinreviewingitandproviding‘feedback’havebeenallowedonlya smallperiodoftimeinwhichtodoso.The3partsofthe Technical Background (Volume2) consistingofatotalof1,188pageswasreleasedseveralweeksafterVolume1,leavinglesstime forreview. Clearlyitisnotpossibletoreviewallthisinformationandchaseuppossiblycontentious referencematerialwithinthetimeframe. So….I’velookedatsomeofthematerial,especiallysomeofmodellingwork;I’vegathered someeasytoaccessdata:climatedatafromtheBureauofMeteorology(BOM)website (http://www.bom.gov.au/ );gaugingdatafromNSWDepartmentofWaterwebsite (http://waterinfo.nsw.gov.au/ ),Vicwaterdata.net (http://www.vicwaterdata.net/vicwaterdata/home.aspx )andotheraccessiblesources.I’ve gatheredcommentsandlookedatreviewsinnewspapers,including The Land andI’ve undertakenotherwebbasedsearchesforspecificinformation.

The process that I adopted. Myanalysisofdatawasrestrictedmainlytoportrayalofpatternsandchange.Ihavenothad timenoraccesstosoftwaretoundertakestatisticalanalysis.Trendhasbeeninvestigatedusing residualmassorCUSUM(cumulatedsumofresiduals–residualsbeingthedifferencebetweena datavalueandthelongtermaverage)curves.Thisisarelativelyoldfashionedhydrological approach.CUSUMcurveshavethepropertythatresidualsaredistributedaroundthelongterm average;theycommenceandendonthe Y=0axis;successivepositivedifferencesareindicated byrisingtrendswhilesuccessivenegativedifferencestrenddownwards.Stepchangescanbe analysed,butIhavenotdonethis. The almost-exclusive dependence of the Proposed Basin Plan on modelling is particularly contentious . Despite the complexity of many models, the assumptions underlying them, and ‘conclusions’ resulting from their application to ‘science’ are in most cases simplistic and contestable. Modelled‘results’areNOTdata,yettherearenumerousexamplesthroughouttheMDBA(and itspredecessortheMurrayDarlingBasinCommission(MDBC))literaturewheremodelsfeed intomodelsthatfeedintomodels. Modelsareessentiallyassumptiondriven,butincreasinglytheyarebeingportrayedasde-facto science,whichtheyarenot. Modellersoftentakeasmidgeofdata,makeupwhattheydon’tknow,then,andproduceanun qualifiedambit‘answer’,whichbecomeswidelyquotedasunambiguously‘true’beyondany reasonabledoubt 2.

2Scientificenquiryisanalogoustothecommonlawprincipleof‘innocentunlessprovenguiltybeyondreasonable doubt’.Whilethelawmayuseajudgeandjurytotestitscase,scientistsusestatisticstotesttheirs.Thescientific ‘nul’argument(hypothesis)isthatthereisnodifferencebetween2means;noassociationbetweenvariables;no ‘treatment’effectinadesignedexperiment.Statisticalanalysistestswhetherthenulargumentshouldstand (differencesarenotstatisticallysignificant(fromthenulposition)orthecounterargumentthat‘treatment’effects Therearenoerrorbarsorconfidenceintervalsassociatedwithmodelled‘data’.Forexample, PagexviitoxviiiofVolume1oftheGuide(MDBA2010)containsstatisticsrelatingtothe Basin’swaterresources–500,000GL/yearaveragerainfall;inflow32,800GL;recharge26,500 GLetc.;allmodelled‘data’,providedwithoutreservation.Table1providesacrosstabulationof statisticsdrawnmainlyfrom(MDBA2010),butalsoothersources,sotheyareallsimilarly scaledandequallycomparable. Table 1. A concise summary and cross-tabulation of equivalent units for modelled data given in the Guide to the Basin Plan (pages xvii and xviii). Note that areas given in different publications are not the same Basinarea(km 2) 3 Crabb(1997) . MDBA(2010) 4 1,061,469 1,042,730 Statistic mmequivalent GL GL Rainfalllongterm(BOM)mm 467.2 495,918 487,163 RainfalllongtermMDBA(mm) 457.0 485,091 476,528 RainfallMDBA19972006(mm) 469.0 497,829 489,040 Inflow 31.5 33,389 32,800 GWrecharge 25.4 26,976 26,500 Consumptionsurfacewatertotal 13.1 13,946 13,700 Consumption–watercourse 10.5 11,137 10,940 Consumption–interception 2.6 2,789 2,740 Consumptiongroundwater 1.6 1,731 1,700 Consumption–total 14.8 15,677 15,400 Surface water Currentvolumetotheenvironment 18.3 19,443 19,100 Upperadditionalenv.Need 7.3 7,737 7,600 Loweradditionalenv.Need 2.9 3,054 3,000 Uppertotalenv.Need 25.6 27,180 26,700 Lowertotalenv.Need 21.2 22,497 22,100 Groundwater Upperadditionalenv.Need 0.2 231 227 Loweradditionalenv.Need 0.1 101 99 Giventhat‘average’rainfallisskewedbyinfrequentextremevalues,andthatacrosstheMDB rainfallisgeographicallyskewed,arethevaluesintheGuideaspreciseasimplied? Becauseofthedifficultyofmeasuringorestimatingrecharge,evaporation,inflowsandother waterbalanceterms,errorsaboutanestimatedvaluemaybeconsiderable.Thishasenormous implicationsforsharingwater.Forexample,inTable1,thedifferenceinrainfallbetweenlong shouldstand.Statisticsprovidesameasureorprobability( P)(usually Plessthan0.05)ofdifferences,associations etc.ofnotbeingduetochance. 3CrabbP(1997)“MurrayDarlingBasinResources”.MurraydarlingBasinCommission,CanberraACT. 4“GuidetotheproposedBasinPlanVolume:Overview”MDBA2010. termBOMandMDBAestimatesis10,635GL.Thatisalmostequivalenttotheestimated (modelled)watercoursediversions! Themain(unaddressed)problemisthatverysmallnumbers–suchas2.6mmofequivalent interception,aremultipliedbyverylargenumbers[(Basinarea(1,042,730km 2)*100togive hectares;*10,000togivesquaremetres;*mmtogivelitres;dividedby10 9togiveGL]. Becauseofthis,verysmallestimationerrors,automaticallyalsobecomeverylargenumbers! Forinstance,itcanbecalculatedthatanerrorequivalentto12mmofrainfallinanyofthe Basin’swaterbalanceterms(evaporation,recharge,runofforrainfall)multipliedbyitsareaof 1,061,496km 2equals12,738GL.Figure2.5intheGuide(p.21)indicatesthistobeaboutthe sameasthetotalestimatedwatercoursediversionsfrom1984toabout2001! Errorsofthismagnitudearelikely;12mmisjust2.5%oftheBasinsestimatedannualrainfall;it fallswithintheerrorrangeofmeasuringannualrainfall(+/0.2mm/measurement);itcould easilybeaccountedforinestimatedevaporation,aswellasintheestimationofrecharge.Failing todealwithestimationerrorinthedocumentationthat‘advises’theProposedBasinPlan,gives allthebroadstatisticsadistinctlyrubberyfeel(seeTable2forcoverageofsomeoftheissues.). (ManyBasinreportsuseareacalculationsderivedfrom2Dtopographicmaps.Thesemaps assumea‘flat’landscape.Hollows,gulliesandvalleyshavealargeimpactonhydrological processesandin‘folded’landscapes,iftheyareignored,landsurfaceareasbecomevastly underestimated.(Rechargeor‘leakage”ofwaterbelowtherootzoneforinstanceoccursatthe scaleofgroundsurfacearea–not2Dcartographicarea.)) Atthescalethatallthis‘science’isdone,evensmallerrorsbecomemultipliedupbythevery largeareasthatareinvolved.Sowheredotheerrors(measurementerrors,estimationerrors, modellingmistakes)go–dotheypropagateallthroughthemodels?Aretheyignored;rounded outsomehow?Doweabsolutelyknowthat20outof23catchmentswithintheBasinarein ‘poor’toverypoor‘health’;orthataveragerainfallisabsolutely500,000GL/yr(471.033mm)?

The proposed Basin Plan has a long reach. EveryAustralianwillbeaffectedtosomeextentbyplannedchangestowaterallocationswithin theMurrayDarlingBasin(MDB). Althoughthe2millionpeoplewholiveintheBasinwillbeaffectedmostacutely,includingthe manyprimaryproducersandtheirfamilieswhoselivelihoodsareunderthreat;peopleoutsidethe Basin,andthosewithinthatarenotdirectlyengagedintheprimaryproductionchainwillalso bearbrunt. Forexample,thePlanenvisagessome$12.6billionwillallocatedfromthewidereconomyunder the“WaterfortheFuture”program;andanother$4billiontoachieveefficiencygains.This equatestoabout$773perindividual,or$1,540peremployedAustralianthatwillnotbe availableforspendingonotherthings. TheProposedPlanalsowilllimitAustralia’scapacitytoincreasefoodproduction,tomeetits ownanditsgrowingneighbour’sneeds.Itmakesmuchmoresensetousewater‘saved’through efficiencygains,toincreaseoverallagriculturalproduction,thantojustsimplyflushitdownthe Riverstoachievesomeunnaturaltheoreticallymodelledoutcome. The plan directly and unashamedly attacks country people . These are a minority in the Australian community. It attacks what they do; where they live; their communities; their co-operatives, and it overwhelms and insults their own ‘science’ and ecological knowledge . • TheProposedplanisuncompromising.Itattacksthesepeople’shardwork;their aspirations;theirfamilies;theircontributiontoAustraliansocietyandthelegendthat hasbuiltaroundthat.Itdirectlyattackstheirproductiveuseofwater,andtheirdesire tohandthelandoninbetterconditionthantheyfoundit. • Itpotentiallyforcesmanyfamiliesandindividualsoutoftheiroccupationtothegreat advantageofagglomerates,multinationalcorporations,taxdodgers;schemersand the‘traders’thatwilleventuallydominatethevirtualworldofwaterandcarbon trading. Table 2. Components of the water balance and an assessment of how accurately they can be measure or estimated.

Water balance component Accuracy Rainfall –derivedfrommeasuredvalues; Good ;subjecttoweightingtechnique. (measurementaccuracy+/0.2mm.).Actual Arguablythemostaccurateandtheonly dataspatiallyorstatisticallyweighted. ‘known’terminthewaterbalance. Measurementnetworksarereasonablydense, butmuchdataisspatiallyandtemporally interpolated.Dewfallisnotusuallymeasured. Potential evaporation –estimatedbymodels Unknown to moderate .Oftenestimatedusing (e.g.PenmanMonteith),supportedbylimited incompletedatasets. measured(ClassApan)data. Actual evaporation – usuallyestimatedasless Moderate to poor. Waterbalanceof thanpotentialevaporationdependingon vegetationassumesthatpotentialevaporation vegetationcharacteristics;rootingdepthand combinedwith(i)thecapacityofplantstobe wateravailabilityandsoilmoisturerelease ‘evaporative’(leafareaandsoon)and(ii)the characteristics(whichareofteninferredfrom capacityofsoiltosupplywater(mainly soiltextureclasses,ormore‘robustly’(and ‘residual‘availablewater’)determinewater lessaccurately)fromsoiltypeclasses). lossrates. Runoff – Therearemanyvariablesin Poor to very poor. Usuallyestimatedfrom ‘modelling’runoff(soildepth;infiltration rainfallas‘saturatedsoil’runoff–theexcess capacity;waterholdingcapacityandmoisture ofrainfalllessevaporation,overasoil’swater content;rainfallintensity;slopeandslope holdingorinfiltrationcapacity,overafixed length;surfacedetention;vegetationeffects timeinterval. etc.)andthereareveryfewpointscale measurements. Recharge or leakage usuallythe‘unknown’ At a landscape scale, recharge is guesswork waterbalancecomponent;impossibleor – but as a rule-of-thumb is likely to be 5% impracticaltodirectlymeasureatameaningful or so of the rainfall. Itiswhateverisleftover scale.Canbeestimatedusingparameterised inthemassbalanceequation.Itisherethatall models;butthereislittledatatocheckthese, theerrorsendupanditsvaluecanneitherbe consequentlytheyareassumptionor‘rules’ measurednorchallenged! based. • Theproposedplandoesnotconsiderthedirectorindirectcoststhatwillneedtobe bornebyindividualsandfamiliesforcedout–maderedundantbytheopportunistic ascendencyofenvironmentalismoverpragmatism. • Italsodoesnotconsidercostsandsecurityissuesassociatedwithlikelyreductionsin Australia’sfoodproductioncapability. • Costswillalsoaccrueinthemanagementofonceproductive‘vacant’landscapes; wildfire,weedandvermincontrolforinstance,andtherearelikelytobeothers. • ThereisalsoanoutofBasincostandriskthathasnotbeenfactoredin–industries thatdependonBasinproductsbutarenotlocatedthere. TherearemanyoutofBasinindustriesthatdirectlyorindirectlydependontheBasin,including grainmillersanddistillers;marketersandresellersin,andotherplaces;meat processors;financialadvisors,accountantsandbankers.ItisthecasethattheBasinreachesright acrossthebroadeconomy. AgainstthebackdropofalltheotherconcernsthatAustraliansarepersistentlyremindedofby theconstantdelugeof“newreports”(spanningissuesfromrenewableenergy,homelessness, bordersecurity,housingaffordabilitytotheagedcare‘timebomb’) it is a serious question whether the proposed Plan represents either timely, or good value to anyone .

Climate and climate change issues as they relate to the Basin’s ecology. CentraltounderstandingtheimpactsoftheproposednewBasinplan,andindeed,theriskofit notachievingitsstatedenvironmentalobjectives,istheclimateunderwhich any plan ,past, currentorfuture,mustoperate. Asidefromcontinentalscalegradients,duemainlytolatitudeandaltitude,atanylocationwithin theBasin,waterdemandspecifiedinpotentialevaporationtermshasrelativelylowtemporal (timedependent)variabilitywhensummedoraveragedovertimespansofweeks,monthsor years.Thus,overthelandscape,potentialevaporationisrelatively‘fixed’intimeandspace.In contrast,rainfallishighlyvariable. Bywayofillustration,Table3showsrainfallandestimatedpotentialevaporationstatisticsfor MoulameinPostoffice(19482004).(MoulameinislocatedinthesouthernNSWsemiarid sectoroftheMDB.) Thesedataillustrate3points: 1. Annualevaporationexceedsaveragerainfallbyafactorof4.8.(Thisisthecaseover mostoftheMDB).Evenallowingforevaporation‘panfactors’thereisno‘average’ monthwhenrainfallexceedsevaporationwithinashortperiodofwhenrainfalls. Thustherearefew‘surpluses’thatcarryforwardfromonemonthintoanother. (Becausechancesaremultiplicative,thelikelihoodofsuccessivemonthsexperiencing ongoingmoistconditionsdiminishesrapidly.Forexampleifthe3wintermonthsall haveanequalchanceof‘moisture’ofsay25%,thechanceforadequacyinJuneis25%, thechanceforJune+Julyis6.25%andthatforall3monthsis1.5%!). This,andotherdata,togetherwithgeneralisedecologicalprinciples 5tellusthatinorder tobeabundantinthisplace(inwhatevermeasure(frequency,dominance,mass,relative abundanceetc.))biota need tobespecificallyadapted. Forthistheyneedtoworktogetherinanenvironmentofgenerallylowfertility, carbonaterichstratifiedsoils;ligninrich,highC:Nratioorganicmatterreturn(whichis outofphasewithgrowingseasonsandsubjecttoitsownrandomeffects);andslowrates

5.Therearemanyecologicaltexts.TheAuthorhastaughtfromandforgeneralinformationhasreferredto:Odum, EP(1996)“FundamentalsofEcology”(WBSaundersUSA);inadditionto:KrebsCJ(1978)“Ecology:The experimentalanalysisofdistributionandabundance”(HarperInternational);and:HarperJL.(1977)“The PopulationBiologyofPlants”(AcademicPress). ofnutrientcycling.(Thesearenot‘productive’ecosystems–theynaturallyboomand bust,theyareepisodic.) Nutrientrecyclingishighlydependentontheanaerobicmethanecycle(eithersymbiotic (e.g.termites,cockroaches,millipedesandbeetles),or,inwaterdirectlyby methanogenicbacteria(methanobacterium) 6.(Themethanecycleisasubcycleofthe overallCcycle.) Specificallythebiotaneedtobeadaptedtoinfrequent‘good’seasons;lengthyrainless periodswhichcoincidewithhighterrestrialandaquaticsalt(NaCl 2)concentrations, causinginadditiontodryness,osmoticstress;highsolarexposure,radiationand temperature(whichmayachieveextremediurnalranges–forinstance,frostis widespreadandfrequentinwinter). Togetherwithacapacityfor“dormancywhenthingsgettough”,itisthecasethatwhile alandscape,riverorpondmaydryuptoasalinepool,ornothingatall,itmayalsoflood thenextday. Fromnorthtosouth,andeasttowest,thatiswhattheecosystemsoftheBasinhave alwaysaccommodated.Whichiswhyitis,thewayitis–aboomandbustsystem. Ecologically,adriedupriverbedanddeadtreesareasimportanttotheadaptivenessof theoverallecosystemasflowingwaterandverdantgreen.Buttheecologicalspinis biasedtowardsthelatter,spinningtheviewthattheformerrepresents“ecological disaster”;“lowecological‘health’”(whateverthatmeans!)(Forexample,firstparagraph, PageXIVofthe“GuidetotheBasinPlan”.) Thereisnodoubtthatecosystemsdependon,andrespondpositivelytothe‘good’ seasons.Theyarealsoadaptedtofallbackinthe‘bad’;butjudgementsabout‘good’and ‘bad’aretimedependentandsubjective. 2. Theoverwhelminglylargevariationinrainfallmakesittheprimary‘driver’oftheoff riverwaterbalance.Itisthecasethatthereisnopredictable‘season’.Ifitfalls,autumn rainowesitseffectivenesstothedeclineinevaporationfromsummertowinter(Table1). ThecontextsettingforanyBasinplanmustviewitsecologytobeacontinuumwith somemillionorsoyearsofadaptivehistory.Theseecosystemsaredrivenlargelyby haphazard,randomevents–mainlyrainfallevents,possiblyinfluencedbyunpredictable longtermcycles. Theproblemofinterpretingcurrenttrendsisthatcomparedtopastlongcyclic,semi cyclic,orevenstepchangetrends,the‘real’recordisextremelyshort( c.<150datayears vs millennia). Underpinningpossiblecyclicevents,wehavegeologicalandotherprocesses,suchas geologicscaleerosionanddeposition–insidiousprocessesthatarestillcontinuing;CO 2 outgassingfromtheinterioroftheearth–volcanoesareanobviousexample,butdiffuse 6Althoughnotgenerallystatedinecoorcarbonchangeliterature,breakdown(oxidation)specificallyofcellulose andlignin,whichtogetheraccountfor99%oftheactiveterrestrialcarbonpool,isasimportanttoecosystemsas photosynthesis(primaryproduction).Ifoxidationceased,theaccumulatingcarbonwould‘lock’upthenutrient poolswhichwouldbringthewholeprocessofgrowthandcyclingtoastop.(Ligninbreakdowniscarriedoutmainly byfungi(Basidiomycetes–mushrooms,toadstoolsetc.)eitheralone,orinassociationwithanalga(wherethe symbiosisisobservedasalichen).Celluloseisbrokendowneitherbyaerobicbacteria(whichreleasesCO 2+ energy),oritoccursanerobicallyasachainedprocess,toreleaseCH 4andenergy.)Because‘higher’order organisms,suchasarthropodsandruminantscannotdirectlydigest‘fibre’,theyrelyonsymbioticassociationswith fungiandanerobicbacteriatodothejobforthem.Theorganismdoesthe‘mechanical’work,includinghuntingand gathering,andprovidestheenvironment(theanerobicgut);themicrobesdothechemicalpart.Thisprovidesfood fortheorganism. outgassingisbelievedtooccurcontinuously 7;theingressandretreatofbiota;the believedtoberelativelyconstant‘rain’ofsaltfromthewestandsouthwest,andthe influenceofhumankind,bothindigenousandEuropean. Table 3. Rainfall and evaporation statistics for Moulamein Post Office (1948-2004)

Month Averagerainfall Variation(%) 1 Averageevaporation Variation(%) January 24.7 123.8 279.2 9.7 February 24.1 116.8 232.7 7.9 March 28.7 119.6 190.1 8.5 April 26.0 110.1 113.2 9.3 May 36.4 71.9 65.3 11.5 June 27.4 71.4 42.7 14.4 July 32.9 64.3 46.7 15.9 August 35.5 67.8 68.7 14.4 September 33.6 66.1 101.7 14.0 October 38.5 76.6 157.0 14.6 Novembe r 28.5 77.9 210.5 10.1 December 30.0 100.3 267.2 9.8 Annual 366.5 86.4 1775.0 10.6 1Variationisthestandarddeviationasapercentageofthemean(=coefficientofvariation). 3. Highrainfallinautumnandlowrainfallinspringcanhaveoppositeimpactsonthebiota thanthereverse.Forexample,highautumnrainfallresultsinanabundantgerminationof annualC 3 plants,andhighercompetitionagainstC 4plantsthefollowingspring.Thisis outofphasecompetition(Johnston et al ,2002) 8. However,asthedata(Table3)indicatesthatthereliabilityofspringrainfallishigher thaninautumn(lowCVfromJulytoSeptember).Thusforperennialspecies,water efficiencyandresponsivenesstoshortepisodicperiodsofgrowth,anddroughthardiness wouldbeessential. 9 Thus,woodland overstoryisdominatedbylonglivedevergreen,deeprootedC 3 sclerophylloustreesandshrubs(suchasspeciesof Eucalyptus , Acacia , Callitris ); perennialgroundcoverlayerisdominatedalsoby‘woody’species,includingsummer 10 growingC 4speciessuchassaltbushes;C 4speciesofsedgesandrushes,andC 4grasses . Itisthecasethatovermostofthebasin,inmostmonthsofmostyears,mostoftherainfallhas alwaysbeenaccountedforbyevaporationatthepointwheretherainfalls.Thus,takenoverall, some86%oftheBasincontributesvirtuallynorunofftotheriversystemsexceptduringfloods 7ProfessorEmeritusThomasGoldFRS“Theoutgassingprocessesoftheearth”.Chapter4in:Carbon,Elementof EnergyandLife.TheScienceFoundationforPhysics(LECreamandDAVarval(eds.))(27 th InternationalScience Schoolforhighschoolstudents;UniversityofSydney,1993.) 8 JohnstonWH,KoenTB,ShoemarkVF(2002).Wateruse,competitionandatemperatezoneC 4grass( Eragrostis curvula (Schrad.)Nees.Complex)cv.Consol. Australian Journal of Agricultural Research 53,715728. 9SeeGillisonAN(19994)Chapter8:Woodlands. In :AustralianVegetation(RHGrovesEd.)(Secondedition). CambridgeUniversityPress.PP227255. 10 JohnstonWH(1994).TheplaceofC 4grassesintemperatepasturesinAustralia.NewZealandJournalof AgriculturalResearch39,527540. Basinecosystemsaregearedtothis.Perennialspecies(grasses,shrubsandtrees)exhibitepisodic oropportunisticshortgrowthperiodsfollowedbydormancy.Annualplantsdothesame,hiding awayasseeds.Whenitrains,everythingcomestolife;whenthewaterdriesup,ecosystems foldupandwaitforthenextevent. Limitingourunderstandingoflongertermprocessesisthatwehaveavailabletousonlyavery small‘window’oftimeinwhichwe’veobservedecologicalprocessesintheBasin. Comparedtodatacollectedthroughtime 11 modellingisasecondrateandhighlyspeculative analysistool,especially‘predictive’(forecasting)modelling(statistically,errorsarounda predictionaremuchlargerthaterrorsinregression!). Takeforinstance,actualrainfalldataforTumbarumbaNSW,whichiswithinarunoffdonor sectorofthesouthernMDB(upperMurrumbidgee).Datashowsthatthelongtermrainfall averageof974mm,ismadeupofnumerousshorttermoscillationsfrom‘wet’to‘dry’(Figure 1;Table3).

Tumbarumba PO

2000

1500

1000

500 (mm) (mm) 0

-500 CUSUM of rainfall residuals CUSUMrainfall of -1000 1880 1900 1920 1940 1960 1980 2000 Figure 1. A CUSM 12 (cumulated sums) of deviations from the long-term average rainfall (974 mm) for Tumbarumba NSW. Persistent above-average rainfall periods are indicated by rising CUSUM trends; dry periods are indicated by falling trends. (Statistics for defined periods are given in Table 4). ItisthecasethatforTumbarumbaandothercentresinthehighrainfallsouthernsectorofthe Basinthatrainfallhasoscillatedfromrelativelywet(6periodsinthecaseofTumbarumba)to relativelydry(5periods)fordurationsofbetween5to19years. (AtTumbarumba,therecent(20012009)‘dry’waseclipsedindurationtwicebefore,soitwas not‘unique’;theperiod’saveragerainfallof812mmwassimilar(inthesamepercentile)tothat between1925and1930;and19371949;soitwasnot‘historically’dryeither.) TheaverageMDBrainfallanomalydatasetindicatesthatthereweremoreaboveanomalyyears post1954thaninthefirsthalfoftherecord(Table5).

11 CSIROlargelywithdrewfromMDBrangelandresearchinthelate1980’s;theSoilConservationServiceofNSW largelywithdrewtheirinvestmentsinlongrunningmonitoringintheearly1990’s. 12 CUSUMcurvesareconstructedbydeductingthelongtermaverageforadatsetfromeachannualdatavalue (preservingthe+/sign).The‘residuals’arethencumulativelysummed.Sequentialnegativedata(i.e.valuesless thanthelongtermaverage)becomemorenegativeasthetrendproceeds;sequentialpositivedatashowtheopposite. AlthoughnotappliedtothedataforTumbarumba,breakpoints,wheretrendsreverse,canbeevaluatedfortheir statisticalsignificance(thisisatestofwhetherthe‘break’hasalikelihoodthatisnotduetoachancecombination ofdata). ItseemsfromthesedatathatitisanalarmistmisconceptionthatrainfallintheMDBis declining;andthatdroughthasbecomemorefrequentandintense(e.g.Nicholls 13 ). Itisimpossibletoevaluatethestatementinthe‘GuidetotheBasinPlan’that:“Annualrainfall inthesouthernMurray–DarlingBasinwassignificantlylowerthanthelongtermaverageforthe 10yearperiod1997to2006”includingitsuseoftheword‘significant’withoutaccesstomore comprehensivedatasets. However,calculatingabacktransformedtimeseriesoftheBOMMDBrainfallanomalydataset indicatesthatthedriest10yearperiodacrossthebasinendedin1946(averageof394.1mm). (Theearly1940’sweregenerallydry;theyearsincludedforinstancethedriest15yearsinthe dataset(averageof414.0mmforthe15yearsupto1946). Table 4. Rainfall periodicity as indicated in Figure 1, and relevant statistics for Tumbarumba. Start End Wet/dry Years AvRain 1 Av_LTA 2 1886 1894 Wet 8 1085.8 112.0 1895 1914 Dry 19 900.9 72.9 1915 1924 Wet 9 1140.3 166.4 1925 1930 Dry 5 786.6 187.2 1931 1936 Wet 5 1046.9 73.1 1937 1949 Dry 12 893.6 80.2 1950 1960 Wet 10 1051.0 77.2 1961 1967 Dry 6 836.9 136.9 1968 1978 Wet 10 1106.3 132.5 1979 1987 Steady 8 930.5 43.3 1988 2000 Wet 12 1051.5 77.7 2001 2010 Dry 9 812.1 161.7 Dry:wetperiodratios 5:6 51:54 1Averagerainfallfortheperiod. 2Differencebetweentheperiodaverageandthelongtermaverage(LTA)(of974mm) Rainfallforthelast10years(421.4mm)wasalsodrybutnotunprecedentedintherecord.(The 2driestyearsinthe20102009timeseries(277.5and278.7mmrespectively)hadaconsiderable impactonthe10yearaverage.) Table 5. Numbers of dry and wet years, during the first and second half of the MDB rainfall anomaly dataset (1900-2009). All 19001954 19552009 Dryyears 64 35 29 Wetyears 46 19 26 Sodespiteapopularportraitofgloomanddoomboughtonbyclimatechange;whatwereally seeisboomandbustboughtonbythenaturalschemeofthings! Thelimitedlongtermdatathatisavailablesuggeststhatthepost2000rainfalltrendsarenot unprecedented;theyareeitherrandomeventsorpartoflongtermoscillations. CoresamplesfromLakeGeorge(SinghandGeisser(1985) 14 indicatethattheclimatehasbeen colder,wetter,hotteranddrierthanitistoday;andthatinresponse,thevegetationhaschanged 13 NicholsN.‘DroughtinsouthernAustralia:trendscauses,impacts.(SchoolofGeographyandEnvironmental Science,MonashUniversity,ClaytonVictoria.) fromwetforeststodryforestsandfromfiresensitivespeciestofiretolerantones.Assomeof thesechangeswerenotnaturallyreversed,somespeciesnaturallybecameextinct. WhileSinghandGeisser(1985)couldlookbackintimesome700,000years,thetimehorizon onwhichtheBasinPlanhasbeendevelopedrepresentsonlythelastmere150yearsofthis history. Table 6. MDB rainfall averaged over the driest periods on record of from 1 to 15 calendar years. Thus, the driest single year was 1902 (258.1 mm); the driest 9-year period ended in 1945 (average of 395.2 mm). Rainfall Driestnumberofyears (mm) Endedin: 1 258.1 1902 2 315.1 1902 3 345.8 1967 4 356.5 1946 5 380.3 1944 6 383.1 1945 7 383.3 1946 8 395.0 1944 9 395.2 1945 10 394.1 1946 11 401.1 1945 12 399.7 1946 13 407.8 1946 14 414.4 1946 15 414.0 1946

Statistical analysis of Basin-wide climate trends. AcomprehensivestatisticalanalysisofqualityassuredrainfalldatasetsacrosstheNSWportion oftheBasinwasundertakenbyRančić et al (2009) 15 inthecontextofunderstandinglinks betweenrainfall,aquiferrechargeanddischarge,andsalinity. Residualmass(orCUSUM(cumulativesum))curvesofdeviationsfromlongtermaverage valueswerederivedfor‘highquality’rainfallstationsfortheirlengthofrecord(generally1880 2004).Dataweregraphicallyandstatisticallyanalysedtodetecttrendsandstepchanges. Rainfallexhibited2abruptstepchanges(Figure2).Inthemid1890’s(1895)rainfalltrended fromwettodry;inthelate1940’s(1947)itrevertedtoawetphase.(Datawasonlyanalysedto 2004,whichwasperiodtooshorttotestthestatisticalsignificanceofthedownwardtrendfrom about2000to2010.) Rančić et al (2009)summarisedthat:“The1947climateshiftwasmostpronouncedinthe uniformrainfallzone(Macquarie,Lachlan,MurrumbidgeeEast,upstreamofBurrinjuckDam, 14 SinghG,GeisslerElizabethA.(1985).LateCainozoichistoryofvegetation,fire,LakelevelsandClimate,at LakeGeorge,NewSouthWales,Australia. Philosophical Transactions of the Royal Society of London, series B , 311:447. 15 RančićA,SalasG,KathuriaA,AckworthI,JohnstonW,SmithsonA,BealeG(2009)“Climaticinfluenceon shallowfracturedrockgroundwatersystemsintheMurrayDarlingBasin,NSW”.DepartmentofEnvironmentand ClimateChangeNSW.February2009. andthenarrownorthernbeltofMurrumbidgeeclosetotheborderwithLachlan).Therainfall increasedbymorethan20%atmoststations.Theresidualmasscurvestypicallyexhibiteda distinct‘V’shape,clearlydelineatingthedryfromthewetphase.The21yearmovingaverage graphsillustratedalongtermrainfallaveragethatcharacterisedeachphase.Shorterterm climaticoscillationslinkedtothehigherfrequencysignalswerevisible,butwerenotthe dominantfeatureseenintheresidualmasscurves.”

Figure 2. Clear rainfall shift in the summer rainfall zone: residual mass curve (left) and timeseries graph (right) with two degrees of filtering (7- and 21-year moving averages) for the 54003 Barraba Post Office rainfall station.

Looking at MDB-wide data. TheBureauofMeteorology(BOM)websiteprovideslimitedBasinwideannualrainfalland temperaturedata(19002009);temperaturedataexpressedas‘anomalies’thatis,residuals relativetotheaverageforeachelementfora‘standard’30yearperiodofbetween19611990. The30yearperiodaveragesareprovided,thusanomalydatacanbebacktransformedinto ‘actual’data. (Theaverage19611990‘standard’usedforcalculatingrainfallanomalieswas488.7mm;the longtermaverageforbacktransformeddata(19002009)was467.2mm.Thedifferenceof21.5 mmrepresentsasignificantbias 16 inthedata(Figure3). Thelongtermaverage–baseddatashowsthesamepatternasinFigure2:acumulativelydry periodfrom1900to1947,followedbyarisingrainfalltrendupto2000,thenafallingtrendfor theremainderoftherecord(2009). Fortheanomalydataset,becausetheaverageforthe‘anomaly’(19611990)meanis21.5mm lessthanthelongtermaverage,itsresidualmasscurvedeclinedmorequicklyfrom1900to 1947;itthendidnotrecoverduringthe‘wet’phase.Thisisbecause;relativetothelongterm averagethe‘anomaly’consistentlyaccumulatedthe21.5mmdeficitintoeachyear’srainfall summation. Thusattheendof109yearsofrecord,thedifferencebetweenthecurveswas2343mm (21.5mmmultipliedby109years).Thisrainfall‘disappeared’becauseofthewayitwas calculated! FortheBasin(andclimatechangeliteraturegenerally),rainfall,andotherdataincluding temperature,isconsistentlyshownin‘anomaly’termsrelativetoa196190average.

16 Severalformsofbiasexist.Thebiasreferredtohereissystematic.Itarisesbecausethestatisticaldatasetaverage isgreaterthanthe‘standard’IPCC19611990average(whichistheoneusedtocalculate‘anomalies’).Inthiscase thebiasbecomeslargerastimeprogressesattherateof21.5mm/year.Itinturnleadstoperceptualbiaseg.‘the worstdroughtonrecord’;thelongestperiodofhotdays’.Itcouldbefairlysaidthaterrorisanissueofmeasurement precision,whereasbiasisanissueofdatamanipulation,presentationandinterpretation. Relativetothelongterm‘average’,ifthebaseaveragehappenstobeless,accumulationsover timewillshowadeclinesimilartothatillustratedinFigure3.Ifthebaseaveragehappenstobe higher,‘down’trendswill‘reduce’andupwardtrendswillbeaccentuated.

MDB Annual rainfall

1000 500 0 -500 Average Anomaly -1000 -1500

Rainfall residuals (mm) residuals Rainfall -2000 1900 1920 1940 1960 1980 2000 -2500 Figure 3. Residual mass curves derived from the MDB average rainfall series showing (i) cumulative sums of residuals based on the back-transformed long-term (1900-2009) average of 467.2 mm (diamonds; blue line) and (ii) the anomaly ‘standard’ 1961-1990 mean (488.7 mm) (squares; pink lines).

Notable Basin droughts. TheecologyoftheMurrayDarlingBasinisselfrepairing.Thatitis‘nearcollapse’isan outrightpoliticalmyth. Theecologyhastobeselfrepairing,becausealthoughattheirsource,mostmajortributariesare perennial,frequentandextensivedryingisafeatureofthelongtermflowpatternsoftheriverine partofthesystem(i.e.themajorityoftheBasin’sstreamsandriversarehistoricallyephemeral). OutsideCapitalcities,earlyrainfallrecordsdatebackonlytoabout1860(inNSWtheseinclude Bathurst:1858;Deniliquin:1859andBuckalong(southeastNSW):1856) 17 . Fromananalysisofrainfalldatasetsusingresidualmassorcumulativeresidualcurves(thesame approachusedinFigure1,andbyRančić et al (2009)),coupledwithanextensivereviewof contemporaryanecdotalmaterial,suchasnewspaperandcompanyreports,diaries,water resourcedepartmentrecords,CommonwealthYearbooksandstatisticalpublications,Foley (1957)presentedaStatebyState,regionbyregionoverviewofdroughtsinAustraliafromthe earliestyearsofEuropeansettlementto1955.Foley’sresearchwaslatersummarisedand extendedbyGibbsandMaher(1967 18 ).

17 FoleyJC(1957).“DroughtsinAustralia.Reviewofrecordsfromearliestyearsofsettlementto1955.”Bureauof MeteorologyBulletinNo.43. 18 GibbsWJandMaherJV(1967).“Rainfalldecilesasdroughtindicators.”BulletinNo.48,Commonwealth BureauofMeteorology,Melbourne(January1967).

Figure 4. Two photographs of the same location ( Riversdale ), near Myall (15 km west of Barmah) in the central Murray Valley during the drought of 1915 (left) and (right) the drought of 2006. (Note in both scenes, the tree lying obliquely on the far bank.) (Retrieved from: "http://www.jennifermarohasy.com/wiki/Water_levels_in_the_Murray_River ") ToquotefromGibbsandMaher(1967)“MuchoftheAustraliancontinentliesbetweenlatitudes 15 oand35 oS,whichisthezoneoflatitudeinwhichthesubtropicalanticyclones(highpressure cells)andsubsidingairusuallyoccur….(the)continentischaracterisedbyclearskiesandthe absenceofrain….(the)world’shotdesertsoccurmainlybetweenlatitude15 oand35 oSandin theseregionsrainfallmaybeconsideredasanexceptionalcircumstanceanddroughtasthe norm.” SummarisingFoley’sdata,GibbsandMaher(1967)listed29principaldroughtsinNSW between1789and1966. AccordingtoFoley,inresponsetothesocalledFederationdrought(18951903),theVictorian Governmentembarkedonaprogramofwatersupplydevelopments,includingconstructionof theWarangaBasinandthefirstEildonreservoirandtheextensionofchannelsforstockand domesticwaterintotheMallee. ThisdroughtalsoresultedintheRoyalCommissionintotheMurrayRiver(1902);thenext drought(19121915)wassaidtobeinstrumentalinencouragingtheCommissiontohanddown itsfindings.ThiswasthefirststepintheestablishmentoftheRiverMurrayCommission;which becametheMurrayDarlingBasinCommission;whichbecametheMurraydarlingBasin Authority;whichagainrespondingtodrought,thistimefrom2000to2010,isputtingforward yetanotherplan. Fromnorthtosouth,FoleynotednumerousreportsofRiversdryingupcompletely;extended periodsofMurraybecomingunnavigateablebetweenMildura,EchucaandMurrayBridge;of LakeGeorgebeingdryforperiodsof10yearsormore;ofhorseracesalongthedrybedofthe MurrumbidgeeRiver,andoftheDarlingRiveranditassociatedstreams,lagoonsandwetlands dryingtosalinepondsorbeingcompletelydry (Duringtheperiodfrom1912to1915,rainfallacrossthehighmountaindonorcatchmentsof southeasternNSWandnortheasternVic.weredepictedinGibbsandMaher(1967)tobewithin thefirstdecilerange(i.e.verymuchbelowaverage). It is clear from Foley’s and Gibbs and Maher’s analyses, that for all reaches of the Murray-Darling system, drought was the norm, not the exception. Thatwaschieflythereasonwhy,inordertogivesecuritytowatersupplies,storageswitha combinedcapacityofsome34.5millionML 19 (34.5*10 12 L)havebeenconstructedacrossthe Basin;themostsignificantbeinglocatedinthehighaltitudewateryieldingsouthernsector.) Environmental(ormorecorrectly,specifichabitat)waterneedsareimportantandneedtobe protected;butattheendofthedaydevelopmentsalongtheriversystemsweredesignednotto allowexcessfreshwater,forwhateverenvironmentalresult,tosimplytochargeoutintothesea beyondtheMurraymouth. Theaimwastostorethewatersoitcouldbeusedinapredictableprolongedwaytomeetthe needsofagrowingandincreasinglyurbanisedhumanpopulation. Irrigation developments in the Murray-Darling Basin were truly an amazing feat of foresight, planning, enterprise and endurance! Intheearlydays,therewasnoSnowyMountainsScheme;noHumeDamorBurrinjuck;no YarrawongaWeir–infactnomajorNSWstorages.InVictoria,therewasonlytheWranga Basin(completedin1910),severalstoragesontheColibanRiverandtheGoulburnWeironthe Loddonthatofferedawatersupplybuffertodrought(datafromCrabb1997). Figure4evidencesthatbeforestorageswereconstructedinNSW,ittookjust3yearsforthe MurraytorundryatBarmah–thewetlands,theforests;everythingwouldhavebeencompletely dry! Sincethestorageswerecompletedinaboutthe1960’sthemainriversoftheBasinhavenever rundrydespitelongerthan3yeardroughts,andexpansionofcommunitiesandirrigation industriesalongtheirlengths. The collateral advantage for ecosystems is that they too have not faced the prospect of running out of water completely. This has been ignored in the ‘Guide to the Basin Plan’. InFoley’s( c.)300pagereport,dryriversandlakes;hightemperatures(>45 oC);scorching winds;dyinganddeadlivestock;criticalwatersupplies;abandonedfarmlandsandraging bushfiresweredepressinglyfrequentremindersoftheextenttowhichseveredroughtdominates theAustralianscene.Foley’srecordsshowthatthiswasparticularlysoforthelowrainfall(<600 mm)sectoroftheMDB,anduptothepresentday,thisisstillthecase. AccordingtoCrabb(1997)theDarlingRiverprovidessomeofthemostextremeexamplesof drought,includingthatbetween1885and1960itceasedtoflowatMenindeeon48occasions; thelongestbeing364daysin19021903. Clearly, the ecology of the system would have long-since perished, if it were not adapted to long rainless periods, and lengthy periods of nil to low flows. Investmentsincontrolworkssuchasmajorstorages,channels,locksandbarageswere implementedtostorewaterandreleaseitlater–toprolongandflattenoutflowvariability,orin thecaseofthebarrages,keepitfresh. Althoughthecapacityoftheseworksmaybeoverwhelmedwhenfloodeventsoccur,forthe majorityofyears,theyhaveincreasedthequantity,reliability,quality,frequencyanddurationof flowalongtheriver’smiddleandlowerreaches.Theworkswerepaidforbyproductivelyusing thesavedwatertogenerateelectricityandgrowfood. Theriverineenvironmentmusthavebeenacollateralbeneficiaryofallthisactivity.Whilethe impactofdevelopmentsoninfrequentlargeeventswouldlogicallybesmall,sinceallthiswork wasdonemajorrivershaverarelyceasedtoflow.

19 Crabb(1997).“MurrayDarlingBasinResources”.MurraydarlingBasinCommission,CanberraACT According to Crabb and other data, what we see today is a less variable long-flow river regime. Logically, if there is no rain, and no water, it cannot be pumped out of the rivers; and clearly, if is guaranteed water, when drought occurs, it is up-stream users that are affected first. MostofthewaterthatendsupinSouthAustraliacommencesitsjourneyinspringasrunoffin thealpineuplandsofNSWandVic..‘Purchase’ofwaterinorBourke,tosomehow offsetlackofflowattheMurrayMouth,defiesanytestoflogic,becausealargeproportionofit evaporatesduringitspassagesouthalongtheDarling. It seems impossible conclude from the historical record, that the present-day ecosystems of the Murray-Darling need to be ‘saved’. They are simply experiencing and responding to a dry phase. Lake Eyre – a story of ecosystem revival

2 2 Inarea,theLakeEyresystemislargerthantheMurrayDarling–1.17Mkm vs .1.06Mkm . However,itisa(saltaccumulating)terminallake;itscatchment’srainfallislowandhighlyseasonalanditfills infrequently(about1yearin10). Lately,therehasbeengreatexcitementinthepopularpressthatLakeEyrehas(20092010)received‘filling’runoff viathe‘ChannelCountry’forthesecondtimein10years. Reported,withgraphicfootageofcountrywettingupandturninggreen(satelliteimages);the‘wettingfront’ flowingoverparchedsoils(terrestrialimage);ofgreengrassanddaisiesblooming;fatcattle(helicopterimages);of birdsflocking(aerialimage),mating(closeup)andasaresult,manymorebirdsgatheringtheirfood,which suddenlyappearedvirtuallyfromnowhereoutofthe‘lifegiving’water. AmazingsightswererevealedtoTVviewersacrossAustraliaandaroundtheworld,andseveralchartercompanies conductedtouristflightsovertheLakeanditssurroundsforvisitors. Asthefirstfillingeventreceded(20089),therewasgraphicfootageofdeadchicks;ofdesperateparentbirds flounderingabout,andfishgaspingastheyperishedinthesaltandmud. (Atthispointtherecouldhavebeenasurveyin,sponsoredbyWWFaskingrespondentsifMurrayDarling watershouldbepumpedtoLakeEyretosavethechicks!) The ecological analogy is that like many wetlands in the MDB system, Lake Eyre is a terminal lake – when it dries up, all life that depends on water, but which hangs around too long, terminates. For Lake Eyre, the median escapee could be the last that could be expected to live a little longer. Nevertheless, Lake Eyre does not die – contemporary graphic images show that as a result of it and its donor flood plains to become dormant, the system maintains its potential to be triggered back into life by infrequent ephemeral processes. TheecologyofLakeEyre(anditstributaries)arepopularlyportrayedtorespondinstantaneouslyto‘wetting’–the frogscomeout,evenfishcomefromnowheretoswimabout;thebirdsknow,andasifbymagic,uponitsfilling everythingcomesaliveandbecomesaninstanttouristattraction. Even without detailed knowledge of the specific ecology of Lake Eyre, it is safe to point out that its seeming lifelessness during its lengthy and intense dry periods is as important to its range of species and their persistence, as it’s wetting events. It is the cycle that makes the habitat unique and its ecosystems resilient. If it wet more frequently, it would be a different Lake!

Taking a brief look at some ecological studies.

1. Bird surveys (Lowbidgee wetlands; Macquarie Marshes). Foraworkofscience,thepaperbyKingsfordandThomas(2004) 20 relatingtotheLowbidgee wetlandspresentsanaggressiveview,ratherthananobjectiveandconstructiveone.

20 KingsfordRTandThomasRF(2004).Destructionofwetlandsandwaterbirdpopulationsbydamsandirrigation ontheMurrumbidgeeRiverinaridAustralia. Environmental management 34,383396. Forexample,itimpliesthattheMurrumbidgeeRiveris dammed anditdiscusses destruction of itslowervalleywetlandsbydamsandirrigation.Thepaperfailedtopresentanoverarching climate/rainfallperspective,orthatbirdpopulationsdonotremainconstant,butriseandfallin numbers,dependingonnaturalcyclesandcircumstances. Obviouslydevelopmentofanykind,nonurbanorurbanhasanecologicalfootprint.Itis probablythecasethatfortheMurrumbidgee,irrigation,provisionofinfrastructure,and productionoffoodcomeatsomeecologicalcost. Nevertheless,despiteallthedevelopments,andthelivelihoods,andthenumberofpeoplethatit nourishes;despitetheybeingsomewhatdegradedbythe20002010drought,Kingsfordand Thomasstatedthatsome42%(almosthalf–atotalof127,688ha)oftheoriginalLowbidgee wetlandsstillremainwetland. Datainthepaper’sFigure2showedthatfrom1888to1998annualMurrumbidgeeRiverflows atbothWaggaWaggaandHay,werehighlyvariable.Therewereabout14occurrencesofflows atWaggaWaggaexceeding5,000,000ML/year.Thesewouldhavebeenfloodevents.Waterbird surveysundertakenfrom1983to2001mayhaveincludedonesuchevent(1993)butitis difficulttodiscernthisfromtheFigure. RainfalldataanalysedforTumbarumba(Figure1)(andotherrainfallstationsnotshown) indicatethat,relativetothelongtermaverage,thebirdsurveyswereconductedduringawet climaticphase(whichwentfromabout1983to2000). RawrivergaugedataforWaggaWaggareflectedthis,withtheresidualmasscurverisingfrom about1983to1998(Figure5).Therewasacapondiversions(forirrigation)from1995.The declineinthemasscurvefrom1998onwardsreflectedtherainfalldecline(seeFigure1)that continueduntilautumn2010. IfwelookatriverdatadownstreamofWaggaWaggawefindforthedatasetsthatI’vemanaged toobtain: (i) Atightregressionrelationshipbetweensuccessivegaugingstations,whichindicated asexpectedahighdegreeoflinearinterdependence(WaggaWagga vs .HayR 2= 0.87;Hayvs.BalranaldR 2=0.95.) (ii) RiverflowatHayandBalranaldpeakedin1984,1989and1993;flowsdeclined dramaticallywiththeonsetofthesubsequentdrought(Figure6).

Residual mass curve - Wagga Wagga

20000000

10000000

0 1890 1910 1930 1950 1970 1990 2010 -10000000

-20000000 CUSUM (ML)

-30000000

-40000000 Figure 5. Residual mass curve of raw flow data for the Murrumbidgee River at Wagga Wagga (ML/calendar year.) Note that flow rates were above the long-term average from about 1988 to 1998. (iii) Grosswaterloss,inclusiveofevaporation,leakagetogroundwater,withdrawalsdue tostock,communityanddomesticuse,andirrigationcanbecalculatedasthebalance inriverflowsbetweenthesuccessivegaugingstations. Somewaterbalancecomponents,suchasevaporationandleakagearerelatively constant,thusmostofthechangeinthebalanceovertimecanbeassumedtobedue tourban,stockanddomestic,environmentalandirrigationuse(netwithdrawalsfrom theriver).

Calendar year discharge - Hay Weir Calendar year discharge - Balranald Weir

200000 140000 120000 150000 100000 80000 100000 60000 50000 40000 20000 0 0 1980 1990 2000 2010 1980 1985 1990 1995 2000 2005 2010 Figure 6. Calendar year flow – Hay and Balranald Weirs. Flow started to diminish in 1994, at a rate that cannot be explained strictly in terms of water use (see Figure 7 below). Note that the MDBC Ministerial Council introduced a Cap on surface water diversions in 1995, which became permanent in 1997. So from 1995, water use declined independently of water allocations. (iv) FortheWaggatoHaysector,waterusedeclinedfromapeakofabout7,000,000ML in1989,tolessthan1,000,000MLin2008(Figure7).Asimilardeclineinuse occurredintheHaytoBalranaldsector,withusedecliningfromapeakofabout 40,000MLin1984,tolessthan5,000MLin2008(notshownhere). (v) Clearly,lessrainfallfrom1990resultedinlesswaterintheriver.Thisinturncaused amassivedeclineintheamountofwaterusedtoirrigatecropsandpastures,andas costsincreased,andwaterstillhadtogothroughtoSouthAustralia,scarcityresulted inincreasesintheefficiencyofwateruse. It is simply misleading to blame the ecological consequences of this dry period on irrigation development and agricultural water use.

Difference in flow between Wagga and Hay

8000000 7000000 6000000 5000000 4000000 3000000 Flow (ML) Flow 2000000 1000000 0 1980 1985 1990 1995 2000 2005 2010 Figure 7. Difference in gauged flow between Wagga Wagga and Hay 1982-2008. (As the difference declined less water was taken from the system.) Note the 7-fold decline in water use (accounted for mostly by irrigation), between 1990 and 2008. (Note that the MDBC Ministerial Council introduced a Cap on surface water diversions in 1995, which became permanent in 1997. So from 1995, water use declined independently of variations in water allocations.) (vi) Despitedecliningflows,theLowbidgeebirddata(Figure6inKingsfordandThomas (2004)showedbreedingpeaksin1990and1992andagainin1995and1996, seeminglyindependentlyofthepatternsinthewaterdata.Kingsforddidnot investigateotherfactorsthatmayaffecthisresultssuchaslagsbetweenflowevents andmajorbreedingevents.However,therewouldseemtobeotherfactorsatplay. As a criticism ,KingsfordandThomas’1998helicoptersurveywasundertakenduringthe ‘falling’flowphaseoftheriversystem.Itisthereforeunsurprisingthattheapparent‘health’of itsecosystemswasjudgedtobedeclininginparallel.(Theobjectivityofthepapercouldhave benefitedbyanexplorationofthisimportantexperimentalcontext.) A second criticism isthatcountingbirdsfromanaircraftwouldbeanalogoustocountingsheep whilebeingdrivenacrossapaddockat100km/hour.Itmaybeinexpensivebroadscaledata,but howaccurateisit?Whathappenstotheerrors–thebirdsthatweremissidentified,counted twiceornotseenatall? (It is unbelievable that in 1983-86, 139,939 water birds were physically counted across the Lowbidgee wetlands from an aircraft; so how was the standard error of just 15% calculated?) The question is: do we really have good data, or do we have sketchy ad-hoc cheap, imprecise data that has been polished up (by modelling)? KingstonandThomas’sconfoundingofwateruse(byirrigators),with:decliningrunoffand storagevolumesduetosequencesoflowrainfallyears;obligationsbyNSWtosupplywaterto SouthAustralia,andtheStatescommitmentto‘environmental’flows,wasamajorflawintheir paper. Buttheirresultsstillstood. As a result, the community has been left with a flawed and biased perception of the ‘true’ situation and its causes. InreplytoanarticleinTheLandnewspaperbyJenniferMarohasy 21 thatquestionedMDBA ‘science’Kingsford 22 statedthatsince2000,nosuccessfullargescalebreedinghasoccurred(in theMacquarieMarshes). Thecapacityofthebirdstorecoverfromlowpopulationbreedingcyclesisobviousfrom Kingsford’sMacquarieMarshesdata(aspresentedbyMarohasy),with‘peak’breedingevents in1990/91;9yearslaterin1998/99and3yearsafterthatin2000/01. Datagatheredusinggroundsurveysthatcommencedin1986/87,andgivenbyMarohasy indicateslittleregularitybetweenbreedingevents. So it is not surprising that due to the drought that commenced in 2010, that breeding has been curtailed . NowthatsouthernAustraliahasexperiencedagoodspring(2010),perhapstherewillbeanother majorbreedingeventintheMacquarieMarshesin2011. Indeed,recently,Kingsford’sgroupissuedapressrelease,whichwaspublishedbythe Sydney Morning Herald (WeekendEditionNovember67,2010),headed“Wetlandwonderlandbreeds bird’sparadise”(pageNews7).Thesublineas“Aonceparchedfloodplainhasbecomea bustling“miniKakadu”afterfarmersusedirrigationinfrastructuretomimicMurrumbidgee flows”. This breeding event, like those before, was actually out of everybody’s hands –itwascaused byhighrainfallcommencinginautumn2010thatfilledthemajorstoragesbyearlyOctober, resultingintheOctober2010flood.

21 MarohasyJ.(2010).MDBAallpoliticsandnoscience. The Land ThursdayOctober142010,32. 22 Opinion: Birds eye view TheLandnewspaperThursdayOctober212010. But,spin,spin,spin,KingsfordrelatedthestorytotheBasinPlan–talkingof‘wicked’ consequencessuchasacidificationandmorebluegreenalgaeoutbreaksifmoderatetohigh flowswerenotrestored….spin…spin….spin….iftheplanwasnotadopted. Inhisearlierpapersandopinionpieces,Kingsfordfailedtoputforwardascientificallybacked argumentthatbirdbreedingwouldnotnaturallyrecover,asithasinthepast,oncedrought conditionsease,astheyalsohaveinthepast,andnowagaininthepresent. Instead,hehasconsistentlyputforwardalarmistandbiasedrhetoricaboutdamsandfarmersand irrigation. The public at large should be aggrieved by the blatant bias evident in Kingsford’s presentation of his data. His lack of impartiality and his seemingly impulsive use of data for political manipulation would seem to valid grounds for questioning continued support of his work. (Wetlandecologyisnotjustaboutwaterintherivers.Itisalsoabouttheeffectofdroughton terrestrialecosystemsthat‘feed’therivers.Thus,justprovidingwaterwillnotnecessarily ‘revive’theaquaticecosystems;widespreadgoodrainfalliswhatisneeded!) (Thereareindicationsfromanothermoreobjectivelypresentedbirdsurveystudy(Chambers andLoyn2006 23 )thatclimatehasamajorinfluenceonpopulations;andthattheresponseofbird populationstostreamflowandregionalrainfallmaylagconsiderably.) ThewatersituationacrosstheMurrumbidgeeValleyshouldlargelyreflectthestoragelevelsin itsmainstorage–BurrinjuckDam(Figure8).(Burrinjuckwascompletedin1927;butitwas enlargedlaterin1957(notethevolumestepchangeapparentinthedata).

Burrinjuck - residual mass curve and volume

40000 1200 30000 20000 1000 10000 800 0 -10000 1909 1930 1950 1970 1990 2010 600 -20000

-30000 400 Volume(GL) VolumeCUSUM -40000 200 -50000 -60000 0 Figure 8. Residual mass curve, showing trends in the volume of water stored in Burrinjuck Dam (thick blue line; left-hand axis) and month-to-month variation in total storage (light tan-coloured line; right-hand axis) (Volumes are in giga-litres (10 9 litres). (Note that the MDBC Ministerial Council introduced a Cap on surface water diversions in 1995, which became permanent in 1997. So from 1995, discharge was not ‘driven’ by increasing water allocation; it was driven by declining rainfall and increased environmental allocations!) From1913to1948,theBasinexperiencedadryrainfallphase(seeFigure3),thevolumestored inBurrinjuckDamreflectedthis.Oscillationsinvolumeduetowaterreleases,mainlyinautumn, werelimitedbyinflowsthepreviousspring.Each‘dip’intheCUSUMtrendwasreflectedby increasedreleasesandslowerrecovery,evenasthe‘wet’phasebecameentrenchedafter1948.

23 ChambersLEandLoynRH(2006).Theinfluenceofclimatevariabilityonnumbersofthreewaterbird speciesinWesternPort,Victoria,1973–2002. International Journal of Biometeorology 50,292–304 (Thevolumestoredinthedam,wasbehavingjustasitwasdesignedtobehave,itwasbeing usedtobufferagainstdrought!) TherewasnorecoveryinthevolumestoredaftertheCUSUMpeakin1998.Becauseofalackof inflow,dischargescausedastepwisedepletioninthevolumeofwaterstored. If the dam had not been there, the river would have ceased to flow between Gundagai and Wagga Wagga as it did during the Federation drought. The Lowbidgee wetlands would have been reduced to an acidic saline marsh.

2. The assessment of river condition (ARC) (Norris 2001) 24 (290 pages) Theintroduction(page16,penultimateparagraph.)statesthat:“Drylandsalinityisnowseenasa growingproblemthatisthreateningagriculturalproduction,infrastructureandtheecological integrityofriversnationwide.Erosionfromlandsurfacesandstreambankshasresultedin widespreaddegradationofaquatichabitat. These are examples of problems affecting rivers that require management at geographical scales”. Whenthereportwaswritten(2001),the‘growing’and‘threatening’salinityproblemhad alreadynoteventuatedatthescaleandinthetimeframethathadbeenpredictedbyCSIRO,the WentworthGroupandtheStateAgenciesthatby2001nolongerexisted. Soilerosionwasalsoalargelytimegoneproblem 25 ;alegacyofcarryingcapacityoveroptimism inthelate1800’s;rabbits;andsequentialdryyearsfrom1900to1948. Therainfallstepchangein1948;controlofrabbitsinthemidtolate1960’s;activitiesofsoil conservationagenciesthatnolongerexist;advancesinpasturespecies;removalofthe superphosphate‘bounty’inabout1976;andadvancesinherbicides(especiallythereleaseof glyphosphateinabout1969)thatallowedthedevelopmentofminimumtillagetechniques; doublecroppingetc.etc.etc.contributedtothedeclineofwidespreadsoilerosionacrossthe Basin. Manyadvancesweremadeinthewaylandmanagementwaspracticedduringthe1970’s.Most ifnotall,wouldhave‘improved’mostofthe‘catchmenthealth’indicesrelativetowhatthey wouldhavebeen(iftheyweremeasured)duringthefirsthalfofthe20 th century. The Audit Report is a keystone report supporting the Proposed Basin Plan. However, in its entirety, it is astoundingly, outrageously and unashamedly biased. Itisbasedonacomparisonwithanentirelyhypothetical‘condition’;namelythepreEuropean pre1770conditionforwhichthereisabsolutelynoreferencedata!Norainfall;nospecies;no areasofwetlands;nonutrientloads;turbidity;salinity;burning;nosatellitedata;absolutely nothing! Thebiasarisesbecausetheuseofsomehypotheticalbestcase,forcesjustabouteveryother contrived,largelydatafreemeasuretobe‘less’inallcatchmentsthathavebeeninfluencedby post1770settlement! (CaptainCookrecordedthatin1770,theeastcoastofAustraliawasablaze.Therecouldhave beendroughtfrom1690;riversandwetlandsnothingmorethanburntoutremainsby1710;dust storms;majorsoilerosioneventsendingwithcoastalwildfirein1770.Becausenooneknows

24 NorrisR,ProsserI,YoungB,ListonP,BauerN,DaviesN,Dyer,F,LinkeS.ThomsM(2001).Anauditofthe ecologicalconditionofAustralianRivers:FinalReport(byCSIROLandandWater),submittedtotheNational LandandWaterResourcesAuditOfficeSeptember2001. 25 StewartJ(1968).ErosionsurveyofNewSouthWaleseasternandcentraldivisionsreassessment–1967.Journal oftheSoilConservationServiveofNSW24(3),139154. theirtruestatein1770,itisthecasethattheymaybeinbetterconditiontodaythantheywere then!) The ecological Audit Report is pure science fiction! AsnotedintheReport,EuropeansettlementofAustraliaanditsconsequenceisnotacondition thatcaneverbereversed.Soinacontemporarycontext,evenifeverythingpossiblecouldbe done,thevirginalconditioncouldneverbereattained! Table1.2oftheReportdetailscomponents,datasourcesandcoverageforeachofthe‘indices’ thatwererelatedtounmeasuredpre1770‘data’. Catchment‘disturbance’asmeasuredbysatelliteandcartographicdataseemscomprehensive, butitdoesnotcoversome200years(pre1980)ofchange.Muchoftheother‘data’,including importantdatasuchasnutrientandsedimentloadingsarosefrommodeling. ThefirstparagraphoftheExecutiveSummaryofthereportstatesthat: “ChangestotheAustralianlandscapesuchasagricultureandurbandevelopmenthaveresultedin manyproblemsthathavecontributedtothedegradationofrivercondition,suggestingthat currentuseofourwaterresourcesisnotsustainable.Withoutinterventionandmanagement,the conditionofAustralia’sriverswillcontinuetodeteriorate.” There is no conclusive evidence from the Audit report or anywhere else that current use of water resources is not sustainable; or that the condition of Australia’s rivers will continue ad infinitum to deteriorate. The Audit Report was contrived during the recent drought, and it failed to acknowledge the capacity of the river system or its ecosystems to re-invigorate themselves once current conditions eased. ElectricalconductivitydatafortheMurrayDarlingsystemhasbeenmeasuredatMorgan(SA)at leastsince1938.DatawereobtainedfromMDBAonabout25 th November2010. So… AtMorgan,salinitywasmeasuredhaphazardly,butusuallymonthlyuptoJanuary1962.From January1962itwasmeasureddaily;datawereprovideduptothe26 th October2010. Thepre1962measurementswereprobablyundertakeninalaboratory,usingawheatstonetype bridge,wheretheelectricalresistanceofovera‘fixed’crosssectionoftheunknownsamplewas ‘balanced’usingsetsofknownresistances.Resistancewastheninvertedtogiveconductivity (i.e.conductivity=1/resistance). Forthe‘Marconi’instrumentthatIwasfamiliarwith,anulpointwasarrivedatbyturning variouslyscaledresistances,from‘coarse’to‘fine’andthesewereaddeduptogivetheanswer. TheanswerwasthenconvertedtoECor‘salt’content,usingtablessuchasthatlaterprovidedin USDAHandbook60–Diagnosis and Improvement of Saline and Alkali soils (1953). UnfortunatelytheMarconiinstrument(andotherDCbridges)wasdifficulttouse.AsIrecall,its maindeficiencywasthatitwasaDC(directcurrent)instrument,whichcausedtheelectrodes betweenwhichresistancewasbeingmeasured,topolarise.Asthishappened,theresistance‘nul’ pointtendedtodrifteverdownwards. (ItriedunsuccessfullytouseaMarconibridgetocalibratesoilmoistureresistanceblocksinthe 1970’s.Theproblemofpolarizationrequiredusingalternatingcurrent(AC)meters,andall modernresistanceloggingequipmentdoesthis. Better,moreprecisetechniquesofestimatingECwereemployedpostabout1960,including electronicconductivitymetersandspecificionelectrodes. Sotheshortstoryisthatwecannotbeconfidentthatthepre1962dataiswellscaledorreliable. SalinitymeasuredatMorganhasbeenplottedinFigure9fortheentirelengthofrecord(20 th January1938to26 th October2010).Thecommencementofdailydatarecordingin1962is clearlyevident.Salinitywassomewhatdepressedfromabout1969to1974,whichasaperiodof relativelyhighandreliableriverflows(seeforexampleFigure5)duetothe‘wet’climatecycle (seeforexample,Figure3).Theperiodfrom1973to1975wasparticularlywet(with1974being oneofthewettestyearsonrecord)acrossmostoftheuplandcatchmentsofsoutheastern Australia.Inresponsetothis,salinitydata(Figure9)showsamajorsaltwashouteventin1975, confoundedsomewhatbyreducedriverflowsfollowingthepassageofthe1974floods. (MurrayRiverflowatBarham(notshownhere)showedastrongrisingtrendfrom1973to1976. followedbyasteepfallcommencinginspring1976,whichlasteduntilAutumn1989.)

Salinity at Morgan S.A.

1800 1600 1400 1200 1000 800

EC units EC 600 400 200 0 1938 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993 1998 2003 2008 Figure 9. salinity (EC units) at Morgan SA;

Residual mass curve - salinity at Morgan

800000 700000 600000 500000 400000 300000

CUSUM 200000 100000 0 -100000

-200000 1938 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993 1998 2003 2008 Figure 10. Residual mass curve of salinity measured in the Murray Rive at Morgan SA. Pre-1962 data is suspect but has been included for completeness. (There could be a second technological time-step in these data (1978) due to advances in measurement techniques, which deserves further enquiry.) Ofallthemeasuresofcatchment‘health’anddespiteissuesthatmaybeduetothewayitwas measured,salinity(EC)hasthelongestcurrentlyavailablecontinuousrecordofactualdata. Althoughsuspectedtobeinfluencedbymeasurementissues,theresidualmasscurveforsalinity atMorgan(Figure10),showsthatsalinitypeakedinabout1983(whichwastheendofthe ‘washout’phasecausedbyhighrainfallinthe1970’s),andthatithasbeendecliningeversince! Upriver,alongtheMurrayatBarham,dataavailablesince2000,indicatesalikewisedeclinein riversalinity(Figure11)asdoesdataforothergaugingstationssuchasWaggaWaggaand Balranald(IhavenotaccessedanydatafortheDarlingRiversystem.)

Daily salinity levels at Barham (NSW)

350

300

250

200

150

100 Salinity (EC units) (EC Salinity 50

0 1/01/2000 31/12/2001 31/12/2003 30/12/2005 30/12/2007 29/12/2009 Figure 11. Daily salinity measurements at Barham from 2000 to 2010. (The data point for 30 th December 2007 seems to be spurious.) So the Murray-darling is NOT in catastrophic decline. Its ecosystems, water resources and measured sustainability indicators behave as one could expect for a rainfall-driven system. There are large areas along all the rivers that are NOT used for agriculture. Birds, fish and its vegetation come and go; everything fluctuates around a ‘median’ condition just as it should. Comparing its present day condition with some unmeasured hypothetical ‘State’ is not credible; it is simply bizarre and biased ‘science’. OncuewiththereleaseoftheProposedBasinPlan,theAustralianConservationFoundation releasedresultsofasurveyrelatingto‘fixing’theMurraydarling 26 . Allthegreengroups,includingtheWentworthGrouphavebeentakingturnsatthumpingthe table–publishing‘newreports’;clamoringforairtime;crowingaboutthe‘disasters’unfolding acrosstheBasin. TheACFsurveyistypical‘junk’levelmanipulationofpublicopinion. 1,500peopleweresurveyed AccordingtoDonHenry,executivedirectorofACF,thesurveyshowedthat75percent ofpeopleare worried thatwithoutadequatechanges,theriversystemwillbe damaged beyond repair .InSouthAustralia87percentofpeople say theriverisbadlydegraded andneedstobefixednow! Whoamongthe1.500peoplesurveyedwouldactuallyknowanythingabouttheconditionofthe Murray,ifthealarmistgroupshadnotcontinuouslyinformedthem?

26 “MostpeoplewantMurrayDarlingfixed–survey”ABCNews,October24,2010. ThereisnodisasteracrosstheMurraydarlingthatneedsfixing;itisa‘working’riversystem, wherepeopleworktohelpfeedtheworld. Therearesomeecologicaloffsets;buttheecologyislargelyselfrepairing;thewholesystemis rainfalldriven;thecapondiversionsandthepracticeofseasonalallocations,basedonvolumes ofwaterstoredindamsandreservoirshasworked,anditisstillworkingwell.

Looking at the Basin’s water resources. DatainCrabb(1997)showsthat,undernaturalconditionsjust4oftheMDB’s26majorsub catchments,representingabout11%ofthetotalarea,contribute>50%oftherunoffand>70%of theoutflowtotheBasin.ThesearethecatchmentsoftheUpperMurray,Murrumbidgee, GoulburnandOvensRivers(Table1). Inthecontextofthispaper,thedatainTable1,raisessomeimportantissues: 1. RunoffintheMDBishighlyskewed 27 .Mostoftheoutflowtothesystemoriginatesin highrainfallareas,especiallyzoneswhereannualrainfallexceedsannualpotential evaporationinmorethan50%oftheyears. (Aseparatetransectbasedanalysis(notshownhere)indicatesthatintheBasin’s southernsector,convergencebetweenmedianannualrainfallandannualpotential evaporationoccurswhererainfallexceedsabout800mm/year.Thiscoincideswith altitudesofgreaterthanabout800to1000metres.) 2. Clearly,persistentlowrainfallperiodsacrosstheupperreachesofthe4mainrunoff producingbasinswillhaveadisproportionateimpactontheoverallwaterresource. Conversely,aflood,originatinginthenorthernsectorsoftheMDB,isdissipated considerablybyitspassagesouth,reducingitseventualimpactontheBasin’slower reaches. ThustheMurraydoesnotpickupmuchwaterfromtheDarling,andtheRiverdoesnot get‘large’untilitpassesitsconfluencewiththeMurrumbidgeenearBalranald(untitled figureonPage3inCrabb1997).(Bythen,ithasalsoaccumulatedwatersfromthe GoulburnandOvensRiversaswell.) 3. OneMLofwateroriginatingfromlowrunoffcatchmentssuchastheGwydirorNamoi forinstance,intendedfor‘ecologicalservices’lowerdownthesystem,wouldbedepleted considerablybylossestoevaporation,transpirationandseepagebeforeitarrivedatits intendeddestination. IfitwereintendedfortheMurrayRiver,orforSouthAustralia,itsvolumewouldhaveto be‘madeup’byreleasesfromthehighyieldingrivers.(Thisistakencareofbythe variousroutingmodelsusedbyStateAgenciesandtomanagetheoverallsystem.) 4. OveralltheMDBisahighlyvariableandthusunreliablesystem,towhichitsecologyis welladapted. Forinstance,accordingtoCrabb(1997),overtheperiod18941993estimated natural annualdischargeatthemouthoftheMurrayhasrangedfrom1,626to54,168ML (>3,300%difference!),withameanof10,090,andamedian(50percentile)of8,489. Crabb(1997)notedthatalthoughstoragesandotherstructuressmoothoutsmallerflow variations,theirimpactisoverwhelmedwhenmajorfloodsoccur. 27 ‘Skew’isanimportantconcept.Itariseswheninfrequenteventsaresufficientlylargetoaffectthelongterm average.Becauseitisnotpossibletoexperiencehydrologicaleventsthatarelessthanzero,whichwould‘pull’the average‘down’,recordscanonlybebrokenatthehighendoftheeventspectrum.Theseinflatethemeanrelativeto whatcouldbeexpectedinhalfoftheyears. Table 7. Water resources of major river basins within the MDB (from Crabb 1997) Majorbasin Area Runoff Outflow Area Runoff Outflow Km2 (GL) (GL) Cumulative% Cumulative% Cumulative% UpperMurray 15,300 4,200 4,200 1.44 17.28 26.08 Murrumbidgee 84,000 3,800 2,730 9.34 32.91 43.03 Goulburn 16,800 3,040 3,040 10.92 45.41 61.90 Ovens 7,850 1,620 1,620 11.66 52.08 71.96 CondamineCulgoa 150,000 1,490 340 25.77 58.21 74.07 MacquarieBogan 73,700 1,350 250 32.70 63.76 75.62 Lachlan1 84,700 1,270 0 40.67 68.98 75.62 Border 49,500 1,100 840 45.33 73.51 80.84 Namoi 43,100 1,000 600 49.38 77.62 84.56 Gwydir 25,900 860 350 51.82 81.16 86.74 Warrego 72,800 750 10 58.67 84.25 86.80 Paroo 76,200 717 0 65.84 87.19 86.80 Kiewa 2,050 705 705 66.03 90.09 91.18 LowerDarling 58,800 446 130 71.56 91.93 91.98 WimmeraAvon 23,400 373 0 73.76 93.46 91.98 Broken 7,330 325 325 74.45 94.80 94.00 Campaspe 4,020 280 280 74.83 95.95 95.74 Loddon 15,400 251 251 76.28 96.98 97.30 Castlereagh 17,700 210 100 77.94 97.85 97.92 Moonie 15,800 122 100 79.43 98.35 98.54 Darling 116,000 106 0 90.34 98.79 98.54 MurrayRiverina 16,300 100 100 91.87 99.20 99.16 Avoca 12,000 85 85 93.00 99.55 99.69 LakeGeorge 1 985 60 0 93.10 99.79 99.69 Benanee 21,400 50 50 95.11 100.00 100.00 Mallee 52,000 0 0 100.00 100.00 100.00 Total 1,063,035 24,310 16,106 1LakeGeorgedrains‘internally’andthusdoesnotcontributetotheBasin’swaterresources;theLachlanisa relativelydryriver,andexceptduringextremefloodeventsitrarelyflowsintotheMurraysystem(via.thelower Murrumbidgee). ThewaterresourcesoftheBasinaremanagedbytheMurrayDarlingBasin Commission/AuthorityundertheMurrayDarlingBasinAgreement(1992).Thiswillbe supersededbythenewMurrayDarlingBasinPlan. (Ahandyoutlineofthecomplexaccountingrulesthatarecurrentlyinplacetoshareand distributethewaterresourcesoftheBasin,includingforenvironmentalpurposes(minimum flowsandsalinityabatement)andanunderstandingofhowtheyoperateisgivenbyDyer (2000) 28 .) 28 DyerB.“AdummiesguidetosharingtheRiverMurray”.MDBCTechnicalReport2000/04. Agricultural water use. Developmentofagriculturegenerally,andspecificallyofirrigationacrosstheMurrayDarling systemisbyworldstandardsaveryrecentphenomenon.Thedriverswereessentiallyeconomic, withGovernmentpoliciesgearedastheyaretoday,towards‘growth’. Inthe1800’suptoaboutthelastquarterofthe1900’sgrowthwasaboutproducingthings– food,fibre,timber,bricksandmanufacturing.Australiahadtoboth‘payitsway’byexporting goods,chieflyagriculturalgoods(mainlytoEngland);aswell,ithadtoberelativelyself sufficientinwhatitneededorconsumed. Sincethemid1980’saidedbyGovernmentpolicies,productionof‘services’became increasinglymoreimportant. TheNationstartedimportingmoreofits‘manufacturedgoods’andexportingrawmaterialstobe manufactured,usingabundantandcheaplabouroffshore,mainlyinAsia. Twentyto30yearsago,Australiahadastrong(andprotected)manufacturingbase.Todaystuff isnotmadehere.Woolisnotspun;cheapclothescomefromChinaorFiji.Australianolonger evenhasthecapacitytomanufactureitsownnuts,boltsorrailwaycarriages!Hardwareis virtuallyallimported. Inthe1950’sand60’s,itseemedthatalmosteverycityfamilyhadacountryrelativetovisitor befoistedontoatholidaytime,andthatthecountryfolkwouldvisitatEastertogotothe‘Easter Show’. Now,50yearslater,everybodyhasarelativewhois‘inIT’.AsevidencedbytheNBNdebate, ITisthenew‘services’paradigm–eventhougharguablyitwon’tproduceanythingtangible,the NBNitisseenbyGovernmenttobethenewcatalystfor‘growth’. So, what has this got to do with the Murray-Darling Basin? DevelopmentoftheMDBwas‘growth’inspired.Thelarge‘runs’ofcountrytakenupbythe earlysettlerswerebrokenupundervariousschemesincludingsoldiersettlementschemes,to createsmallerlandunitsthatcouldbemoreintensivelymanagedandthusachievehigherlevels ofproductivity/hectare.‘Peopledensity’wasincreasedtomakeprovisionofservicesmore economic.Developmentofwaterresources,andofirrigationwasanintegralpartofthis. Intensificationinturn,createddemandfortherangeofrural‘service’industriesthatexisttoday –transport,communication,justice,schooling,hospitals,airportsandthelike. (MostMurrayDarlingtownsandcitiesowetheirexistenceto‘seeding’schemes–thegettingof peopleintoruralareas.DevelopmentofGriffith;sitingoftheACTandthecityofCanberra;and thetwincity‘growthcentre’developments(AlburyWodongaandBathurstOrangeinNSW)are casesinpoint.) The drive for production efficiency. WhentheirrigationareasalongmainlytheMurrayandMurrumbidgeeRiverswereinitially developed,themaincropswerecerealssownovervastareas,whichcouldbefloodirrigatedat lowcost.Dairyingwasalsoimportant,especiallyinVictoria,butlikecerealproduction,itwas supportedbyfloodirrigationofrelativelywideareasofpastures,andforagecrops. (Irememberviewingblackandwhitenewsreelsofthesedevelopmentsincinemasinthemidto late1950’s;includingnewsreelsoftheSnowyMountainsScheme;completewithanarrativethat explainedhowtheseschemeswereturningvast‘inlanddeserts’intoproductivecropland.) Thepointis,thattechnologically,intheearlydaysirrigationmethodswerelowcost,and relativelycrude.Theywerewastefulofthewaterresource,andpracticesatlargeweredegrading oftheenvironment.Itwassufficienttouselargebutunreliablevolumesofcheapwaterto irrigatewideareas,andtaketheriskthatseveralyearsoutof10,waterwouldnotbeavailable– the8yearsoutof10thatitwasavailablewassufficienttomakeupfortheothertwo. Dairywasdifferent!Becauseitisadayindayoutenterprise,itneededsecurewater.Dairying was‘moreofascience’;itrepresentedahigherlevelofpersonalinvestmentandrequiredmore skillthanbroadacreagriculturalpractice.Onaperhectarebasis,atleastbeforederegulation,it seemedalsotobemoreprofitable.Comparedwithcerealgrowing,dairyingwasingeneralbetter supportedbyspecialistadvisorypeopleandresearchcentres(andarguablyitstillis!). Witharush,technologicalchangecametoagricultureingeneral,andirrigationinparticular throughthe1970’s.Thisdroveatrendtowardsgreaterirrigatedanddrylandwateruse efficiency;lowerinputs;andlessdegradingpractices. Twoparticular1970’stoolsthatcometomindwere(i)Monsanto’sreleaseofRoundup (glyphosate)inabout1969and(ii)theflexibilityandwidespreadadoptionofpolypipe. Roundupwasthefirst,relativelybenign,nonresidualchemicalthatoncontactwouldkill everything!Polywasproducedinlongcoils.Itwasresilient;itcouldberippedintotheground; itwaslightweight,noncorrosiveandlonglastinganditboughthugebenefitstotheconduitof waterinthebush.(ForagricultureinAustralia,polypipewasarguablythemostimportant inventionever!) Whileroundupallowedthefrequencyofcultivationforcroppingandforpastureestablishment tobeminimisedoreveneliminated;polypipeenabledfloodirrigationtobedisplacedbymore efficientandeasiertomonitorandcontrol,sprayanddripsystems. Postthe1970’s,agriculture,andirrigatedagricultureinparticulardiversifiedconsiderablyand therearemanyexamplesandproductionstatisticsthatcouldbeusedtoillustratethis.Inthe paddock,efficienciesinthecostofproductionbecameaconstantquest;irrigationwaterbecame moreexpensiveandwasusedmorefrugallybutbymorefarmers(i.e.accessincreased);many successfulirrigatorscametousecomputerbasedwaterbalanceapproaches,backedupby monitoringtofinetunetheirenterprises. Formanyproducers,becauseoftheirinvestments,andtheperennialityandnatureoftheir enterprises,securityofwatersuppliesbecamemoreimportantthanthetotalamountavailable (whichcanvarymarkedlyfromyeartoyear).(Acaseinpointisthatongoing‘fixed’assets, suchasfruittreesandgrapevines,thattakeyearstoreachfullproductionareeasilyputariskif watersuppliesbecomeunreliableandaredenied.)Thisledtoconversionsof‘generalsecurity’ waterto‘highsecurity’onthebasisoflessgeneralwater–moresecurewater;allocatedvolume reductionspricingpremiumsappliedaccordingly. Thereisstillalotofroomtoimproveefficienciesinthewaywaterisdelivered(infrastructure); inthewayitisused;andtheproductionefficienciesassociatedwithitsuse(harvested product/unitwateruse/hectare.) Whileitiscommonforeconomiststoexpressandcomparethesevariablesintermssuchas $/usefulunit vs .costs,allAustraliansshouldbeconcernedifmarketisationforcesreducetheir accesstoAustralianproducedfood,oriftheyrestrictthevarietyoffoodsgrownorthequantities thataregrown. SeveraloutcomesarelikelyifthegrossavailabilityofwaterforirrigationintheMDBis reduced,orifthecostofwaterandotherinputsincreasesubstantially: i. Broadscalefloodirrigatorswhoareunabletopassoncostincreasestoconsumers willbehardesthit.Theseprobablyincludedairy,cerealandricefarmers.Although someofthesefarmersareamongstthemostproductiveandefficientintheworld, theyhavelittlepowerovertheircostsandareatthemercyofthemarket(including foreignexchangemarkets)forthepricestheyreceive. ii. Dairyfarmersandfarmersthatrelyonbroadacresprayirrigation,willface4 separatecostincreases,alltheresultof‘competitionpolicy’.Thesearethecostof supplyofwater;thecostofsupplyofelectricitytopumpwaterandtopowerother aspectsoftheirbusiness;thecostofwateritself,whichwillincrease;andthecostof electricityitself,whichisprojectedtodoubleinthenearterm.Eventhoughtheyare carbonneutral,ontopofthesecosts,dairyfarmerspotentiallyfaceafudged‘carbon’ costbothontheirinputs,aswellastheirproductiveassets–theircows. Thesecombinedcostshavethepotentialtocripplethegrassfedirrigateddairy industry,arguablyoneofthemostefficientandecologicallycompetentdairy productionsystemsontheplanet. Thisleavesonlyhorticultureandintensiveaquaculture,includingglasshousevegetable productionasthelikelylongtermsurvivors. (Asacaseinpoint,intheBegaValleywhereIhaveasmallfarmingoperation,overthepast10 yearsthenumberofdairyfarmershassteadilydeclined.Themainissuesseemtobewater availabilityandcost;costincreasesgenerally;drought;pooreconomicreturnsandthe‘had enough’syndrome. OnerecentdairyretireesoldhisentiremilkingherdtoChineseinterests.Thecattleweretrucked toSydney,putonaplaneandarrivedinChinaabout3daysafterleavingtheBegaValley.These cattleandtheirgeneticsarenowhousedinaChinesemilkfactory. ItishardtovaluethelossthisrepresentstothegeneticbaseoftheBegaValleydairyherd,let alonetheproductionloss.However,ifthetrendcontinues,cumulatedlosseslikethiswillinthe shorttermfutureresultinmajorfoodsecurityissuesforallofAustralia.)

Looking at the farm dams issue. Asalreadystated,mostofthewaterthatflowsthroughtheMurrayDarlingsystemoriginatesin thesouthernhighrainfallareas(rainfallgreaterthan800mm;annualevaporationlessthan800 mm;altitudesgreaterthanabout800M). Inthisdomain,therearemassivewatersurplusesguaranteedalmosteveryyearandwateris measuredinGLnotML(1GL=1000ML).Itisthedomainofnationalparksandforests; althoughithasbeenlargelyshutdownasaresultofgreenactivism,ifthereisalanduse,itis mainlyhighcountrygrazing.Creeksarepermanentlyperennialsofarmdamsarefew,andthey arenotneededinNationalParksanyway. Farmdamsusedtostorewaterforstock,domesticandamenitypurposes(asopposedtoonriver storagesordamsfilledfromflows)becomeimportantawayfromtheGreatDividingRange,and aspointedoutinseveralMDBA/MDBCandNationalWaterCommissionpublications,dueto theiramenityvalue,thefrequencyofdamsinperiurbanareasishighrelativetotheirnumbers acrossthewiderlandscape. LikemostaspectsoftheProposedBasinPlan,theimpactoffarmdamsonwaterrunoffhasbeen assessedusingmodelsbackedupwithscantdata.Forinstance,inVictoria,SKMseemstobe heavilyinvolvedinmodellingfarmdamimpactsusingamodel,whichisfreelydistributed, referredtoasTEDI(ToolforEstimatingDamImpacts). Someaspectsoffarmdammodellingcanbedeterminedprecisely–forinstancesatelliteor photographicrecordscanprovideconfidentestimatesofthenumbersofstorages.Determining thesizeofadamislessprecise,becausethatinvolvesmeasuringsomethingfromupinspace; determiningadam’svolumefromitssurfacearea,isstatisticalguesswork. Althoughareavolumerelationshipshavebeenderived(McMurray2004) 29 statistical relationshipshavebeenfudgedbyforcingleastsquaresregressionsthroughtheorigin( x=0 ; y=0 )andreportingtheresultinginflatedvaluesof R2asthemeasureoffit.(Thispracticeis commonthroughoutthemodellingliterature!) DataplotsinMcMurray(2004)indicatewidedatascatter(Figure12)wouldbelikelyaroundany prediction,whichmeansthatthecapacityofparticulardamsinparticularcatchmentswouldbe estimatedpoorlybygeneralisedrelationships.Forexample,themeasuredvolumeofdamswitha surfaceareaof2,000m 2spananeyeestimatedrangeofbetween30and80ML(Figure12)! Remotelyestimatingfarmdamcapacitiesmaybecosteffective,anddrawonsophisticatedGIS andsatellitedata,butattheendoftheday,multiplyingeventhemostpreciselydetermined numberbyaguess,isstillaguess.

Figure 12. data scatter in McMurray (2004) Itisdisturbingtoreadreportsthatclaimlevelsofprecisionthatcannotpossiblyexist.

29 McMurrayD.(2004). Farm Dam Volume Estimations from Simple Geometric Relationships Mount Lofty Ranges and Clare Regions South Australia .SADepartmentofWaterLandand BiodiversityConservationReportDWLBC2004/48. Forexample,SKMetal.(2010) 30 reportsthat:“Basedonavailablefarmdamdatasets,thetotal impactoffarmdamsnationallyis1600gigalitresperyear(in2008)”…andthat“The2008, 2015and2030damvolumeswereestimatedforeachSWMAineachstate,andtheimpactsof thesedamswerealsoabletobedeterminedbyapplyingthefollowingformula: ImpactofDams=1.1xVolumeofDams” (Impactwaspredicted(AppendixDofSKM et al .(2010))usingmodelled‘data’fromthe MDBCSustainableYieldsProject,andmodelledfarmvolume‘data’.Fromthesemodelled ‘data’,relationshipsbetweendamvolumesandreductionsinrunoffwere‘investigated’. Projecteddamvolumes(in2030)wereapparentlyplottedagainstthedifferencebetweenrunoff modelledin2008andrunoffprojectedin2030foreachof445modelledcatchments (presumablytogive445datapoints). Eventhoughtherewereonly2apparenttimesteps(2008and2030),alinearregressionthrough theoriginwasthenfitted(presumably)tothe445datapoints,whichpredictedtheimpactof dams(inML/year)fromthevolumeofdams(Figure31inSKM et al .(2010))tobe1.1x Volumeofdams. Asifto‘prove’thesoundnessoftheapproach,‘actual’damimpactdeterminedfrommodelling undertakenbySKMin2007,wascomparedto‘predicted’impact(fromabove)usinglinear regressionthroughtheorigin. (TheuseofloglogscalesinFigures31and33ofSKM et al .(2010),givesafalsevisual impressionofthespreadinthemodelled‘data’,whiletheuseof R2statisticismisleading,and statisticallyinvalid.) Indefianceofalllogic,inanotherpaper,Neal et al .(2000) 31 statesthat“foreachmegalitreof farmdamstorageinacatchment,annualdownstreamflowsaretypicallyreducedbybetween oneandthreemegalitres.” ThemodellingdescribedinNeil et al .(2000)andintheTEDIUsersManual(SKM)doesnot evenvaguelycapturetheprocessesofrunoffandrunoffgeneration,whicharewellknown 32 and supportedbyvigorousresearchthroughfromthe1960’stoaboutthe1990’s. Whereasrunoffisgeneratedatapointanddailyorhourlyscale,themodelsuseamonthlytime stepwaterbalance;mostofthe‘inputs’areoutputsfromothermodels.Forexample, evaporation;subsoilandgroundwaterrechargelosses;streamflow;farmdamvolumearea relationships;‘natural’catchmentinflows–alldatafromtheether. Theseinaccuraciesanderrors‘flow’throughthemodellingprocess.Flowsatthecatchment outletapportionedtofarmdaminflowsonthebasisof(presumablycartographic)upstream catchmentareas,aresimplynothingmorethanguesses. • Itisnotarguedthatfarmdamsdonotimpactonsmall,ephemeralcatchments;those thattypicallyonlyruneitherwhentheyaresaturated,orinresponsetolow 30 SinclairKnightMerz,CSIROandtheBureauofRuralSciences(2010) Surface and/or groundwater interception activities: initial estimates NationalWaterCommission,Canberra(June2010.)

31 Neil BP, Shephard P, Austin KA and Nathan RJ The effect of catchment farm dams on streamflows – Victorian Case Studies ” (Hydro 2000 : 3rd International Hydrology and Water Resources Symposium of the Institution of Engineers, Australia, 20-23 November 2000, Sheraton Perth Hotel, Perth, Western Australia : proceedings ( http://www.oocities.com/floker_2001/VicCaseStudies.pdf ).

32 JohnstonWH,GardenDL,Rančić A,Koen TB,DassanayakeKB,LangfordCM,Ellis NJS,RabA,TutejaNK, MitchellM,WadsworthJ,DightD,Holbrook K,LeLievreR,McGeochSM(2003)Impactofpasturedevelopment andgrazingonwateryieldingcatchmentsintheMurrayDarlingBasininsoutheastAustralia. Australian Journal of Experimental Agriculture 43 ,817841 frequency,intenserainfallevents.However,ataBasinscale,wheremostofthe runofforiginatesfromhighrainfallareas,small‘dry’catchmentscontributevirtually nothingtooverallflows;andwhentheydotheentiresystemisprobablyrunningator nearcapacityanyway. • Asecondpointisthatwaterisnotcreatedordestroyed–itcanonlybestored,flow away,evaporateordisappeartogroundwater(fromwhereitcanpopupsomewhere elseinthesystem).Thustheimpactofafarmdamcannotlogicallyexceeditsempty volume;andinmostyears,mostfarmdamsfillfromafilllevelgreaterthanempty. It is therefore not logical that the impact of farm dams = 1.1 times their accumulated volume; or that 1 ML ‘stored’ results in up to a 3-fold reduction in river flow. Riverflowisinstantaneous–bythetimeitismeasured,ithasgonepast!Riversdonotstore flow.Incontrastfarmdamsstorewaterfrommajorrunoffproducingeventsforuseand enjoymentintothefuture–for‘ecologicalservices’inotherwisearidcatchments;forfire fighting;stockanddomesticuseincludinggrowingfood;andforamenity–thepurejoyof viewingnaturallycollectedwateracrossthelandscape. Theseaspectsoffarmdamshavenotbeenmeasuredorconsidered,buttheyaremeasurable,and theyarerealandtheycanbevalued.ThevariousreportspreparedforMDBAandtheNWC,by presentingonlyonesideoftheissue 33 aredeliberatelybiased. Soallthismodellingproducesanumber,butnomatterhowmanytimesitisquotedwithinits poolof‘expert’literature,thenumberisprobablynotarealnumber;anditshouldnotbetaken assuch.

Looking at the forestry issue CSIROmodelsthatpurporttopredicttheimpactofforestry(vs.grassland)onwateryield,and thusonthewaterresourcesoftheBasinarebasedonsimplerelationshipsderivedbyZhang et al .(1999) 34 ,whicharereferredtoastheZhangcurves 35 . Generalknowledgetellsusthatreplacementspecificallyofgrasslandsbyplantationforestry changes3aspectsofthewaterbalance. i. Increasedsoilsurfaceroughnessduetodisturbance,suchasripping,vastlyincreases rechargeattheexpenseof‘quickflow’runoff.Thisrepresentsalargelypermanent change.Runofffollowingcatchmentsaturationislittlealtered. ii. Astreesgrow,direct(foliage)evaporationincreases,byupto10%atcanopyclosure, attheexpenseofrainfallthatreachestheground.Reductionsinrechargeand compensatedforsomewhabyincreasedstemflowandreducedtranspirationdueto theenergyusedtoevaporatewaterwhilethecanopyiswet. iii. Duringdryperiodsandseasons,treeswithdrawmorewaterfromdeeperdepthsthan grassland.Thisreducesantecedentsoilmoisture,whichreducesrechargeandrunoff. 33 E.g.VanDijk,A.et.al2006“RiskstotheSharedWaterResourcesoftheMurrayDarlingBasin”MurrayDarling BasinCommission,Canberra;also,“Approachesto,andchallengesofmanaginginterception.Areviewofcurrent measurementandmanagementpracticesforthedeterminationofrunoffinterceptionandtheimplicationsforthe implementationoftheNationalWaterInitiative”byKateDuggan,SaraBeavis,DanielConnell,KarenHussey,and BenMacDonald.WaterlinesOccasionalPaperNo.5,NationalWaterCommission,Canberra,February2008 34 ZhangL,DawesWRandWalkerGR(1999).Predictingtheeffectsofvegetationchangeoncatchmentaverage waterbalance.CooperativeResearchCentreforCatchmentHydrology,TechnicalReport99/12.CSIROLandand Water. 35 SinclairKnightMerz,CSIROandtheBureauofRuralSciences(2010) “Surface and/or groundwater interception activities: initial estimates ”.NationalWaterCommission,CanberraACT.and: VanDijk,A.et.al(2006) Risks to the Shared Water Resources of the Murray-Darling Basin ,MurrayDarlingBasinCommission,Canberra Inpublishedstudieswherewaterbalanceshavebeenpartitionedonthebasisofmeasured components,ofthese3specificimpacts,increasedsurfaceroughness,andreducedantecedent soilmoistureconditionsarethemostimportant. Runoffreductionsarenotsimplyaboutthe‘trees’.Runoffisalsosubstantiallyreducedwhere undisturbedgrasslandisreplacedwithasownpasture,orwherepasturesarerenovated(e.g. Costin,1980) 36 (thusincreasingdetentionstorage);wheredeeprootedspeciesreplaceshallow rootedones(thusreducingantecedentsoilmoisture) 37 ;andwhereovergrazedgrasslandsare allowedtorecover(thusincreasingcanopystorage).Encroachmentofweedssuchaswoody shrubsinthesemiaridzonecanalsoreducerunoffsubstantially(e.g.Johns,1983 38 ). Attheendoftheday,theimpactof1.7millionhectaresofplantedforestsontheoverallwater balanceoftheMDB,comparedtothe10’sofmillionsofhectaresofsowncropsandpastures andotherformsoflandscapedisturbance,includingnaturalvegetationregrowthwouldbe immeasurable,especiallygiventhatmostviableplantationindustriesarebasedoutsidereserves andnationalparksinthe700to1000mmrainfallareaswheretheevaporationdifference betweenforestsandgrasslandsispredictedbytheZhangcurves(Figure13)tobesmallanyway.. TheZhangcurvesareconceptuallyinterestingbuttheydonotseemtodivergesignificantlyuntil rainfallexceedsabout800mm(i.e.thereisprobablynosignificantdifferencebetweenthe curvesatrainfallsbelowthis).Forx=about900mm,thescatterinactualevaporationappearsto liebetweenabout450and900mm,sotheyarenotvery‘accurate’either.

Figure 13. The Zhang curves scanned from Zhang 1t al . 1999. 36 CostinAB(1980).RunoffandsoilandnutrientlossesfromimprovedpastureatGinninderra,Southern Tablelands,NewSouthWales. Australian Journal of Agricultural Research 31,533546. 37 JohnstonWHandCornishPS(2005). Eragrostis curvula (Schrad.)Nees.complexpasturesinsouthernNew SouthWales,Australia:impactof Eragrostis curvula ,Medicago sativa L.and Phalaris aquatica L.pasturesonsoil water. Australian Journal of Experimental Agriculture ,45,1267–1289 38 JohnsGG(1983).Runoffandsoillossinasemiaridshrubinvadedpoplarbox( Eucalyptus populnea )woodland. Australian Rangeland Journal 5(1),312. Intheoverall‘partitioning’oftheMurrayDarlingBasin’swaterresources,itseemsthatusing models,somenumbersrelatingtofarmdamsandforestrycanbeguesstimated,butbecausewe don’tmeasureorestimateeverything(pasturesandotherdisturbances,suchastheimpactof NSW’snativevegetationlawsforinstance),thewatermassbalancecontainslargemissing values.

So, the context of the Proposed Basin Plan why is this important? ThewaterbalanceoftheMDBisnotabouttheimperfectlyunderstoodprocessesrelatingtotrees anddamsandoverallocations;itismostlyaboutrainfall,specifically,thelackofrainfallfor significantlylongperiods. Itwouldbereasonabletoproposethatmorethan80%oftheoverallvariationinanymeasure– birdbreeding;catchmenthealth,agriculturalproduction,wateruse,isduetorainfall(orlackof); andthattherestofeverythingcobbledtogethertosupporttheProposedPlanneedstobe apportionedwithintheremaining20%. ThehistoryofwateruseintheBasin,theinfrastructuredevelopments,andtheadministrative arrangementssurroundinguseandpartitioningofitsresourcesareinextricablylinkedtoitspost Europeansettlementrainfalltrends,especiallydroughtoccurrences.If‘droughtsandflooding rains’didnotoccur,economiccircumstanceswouldnothavedemandedorjustifiedthese schemes. ResponsestodroughtspecificallyincludedtheRoyalCommissionintotheMurray; establishmentoftheRiverMurrayCommission;thepreSecondWorldWardamandlock buildingphases;constructionoftheGoolwaBarrages(1940)(whichenabledirrigationalongthe lowerMurray);postSecondWorldDevelopments,includingtheSnowyMountainsSchemeand storageenlargements;andopeningupcountrytotakeadvantageoftheseinvestments,including soldiersettlementandmigrationschemes. Attheendoftheday,giventhehugeNationalinvestmentthatitrepresented,itisreasonablethat asmorewaterbecameavailableeithernaturally,duetothe1947rainfallshift,orasaresultof post1947infrastructureinvestments,thattheadditionalwaterwouldbeusedforfood production. This is essentially what has occurred. The issue of ‘over- allocation’ is probably a rhetorical one, inspired very much by the current ‘green’ political climate. What the Plan is actually about Despite the proposed stated intention of the Water Act (2007) (Cwth) the Basin Plan is probably not about ‘saving’ the environment. The focus on environmental issues justifies the Commonwealth assuming power over the Basin’s water resources via. its constitutional ‘external affairs’ powers. It is a simple takeover of State powers, using an approach that circumvents the need to ask the people what they think, through a referendum process.

So, what is the Plan about? ItisstatedinAnon.(2009) 39that:“TheBasinisunderenormousstressasaresultofpastwater allocationdecisions,prolongeddrought,naturalclimatevariabilityandemergingclimate change ”… and….thatthePlanis“ToenablethewaterresourcesintheBasintobemanagedin thenationalinterest”.Section3.4ofAnon.(2009)goesontoexplainthatthePlanwillbebased oncomputermodelling;thatitwillincludegroundwatermodelling;andtakeaccountof‘climate scenarios’andtheir possible (italicsintended)effectsonwaterresourcesinthefuture.Socio economicissuesandprojectedcost:benefitoutcomesweresaidtobeofparticularrelevance. Inshort,theintentionisvagueandunclear;itisrevealed,however,thatallaspectsofthewhole systemwillbemodelled;‘KEY’thingswillbeidentified,costsallocated;everythingwillbe accountedforinaNationalWaterAccountsframework;whichwillbeanalysed,networkedand reportedonbytheBureauofMeteorology;andtheBasinwillfallunderthecontrolofagiant modellingframework,runpresumablybyCSIRO! TheGuidetotheproposedBasinPlanitselfisconsistentwith,orastepin,theprocessof, nationalCompetitionPolicyreformsthatcommencedinthe1990’s.Thiswilleventuallyresultin mostaspectsofwatersupplyanddemandbecoming‘marketised’.Thisissaidtocreate efficienciesinwaterallocationanduse.Basedonrecentexamplesfromotherindustries,in reality,itwillprobablysendwholefoodproductionsectorsoffshore(dairytoChina;riceto Asia;horticulturetotheUAEforexample). (Inrecentyears,waterpriceincreases,drivenbyscarcityhasencouragedincreasedefficiencyin waterdeliveryandonfarmuse.Therehavealsobeensomeenvironmentalwaterbuybacksand infrastructureinvestmentsundervariousinitiatives,mainlyaimedatsecuringenvironmental flows(e.g.LivingMurray.)) ThetwinobjectivesoftheNationalCompetitionPolicyagreementsweresaidintheGuidetobe: (i)toestablishanefficientandsustainablewaterindustry,and(ii)toarrestwidespreadnatural resourcedegradationpartlycausedbyconsumptivewateruse. Together with breaking up cooperative water delivery arrangements, the first objective would be facilitated by restricting supply relative to demand, thus making water more expensive, and ownership and trading in water more lucrative. The second objective is linked to the first, in that flowing water out of the system to the sea, or evaporating it within Basin wetlands is the most effective way of disposing of excesses. Whatever environmental benefits may arise would be a by-product of this. OfallthereasonslistedfortheproposedBasinPlan,bythePlanitself,andthedocumentation surroundingtheWaterAct(2007)(Cwth.),themostlikelyreasonstochangehowtheBasinis currentlymanagedare:

39 IssuesPaper:DevelopmentofSustainableDiversionLimitsfortheMurrayDarlingBasinNovember2009MDBA publicationno.48/09 (i) Centraliseitscontrolandmanagementunderasingleumbrella‘tool’. (ii) Value,orincreasethevalueofits‘assets’,includingthevalueofitscarbonstore;and create‘markets’forallthesethings–thewater;distributionofthewater;the‘assets’ andeventuallyprobablyitscarbonstore. (iii) ItisplausiblethatundertheAct,theCommonwealth’sEnvironmentalWaterHolder couldsellorleaseitsentitlementsto‘grow’carbonintheMDBandthatthiswould appearintheNationalCarbonAccounts. Irrespectiveoftheenvironment,themostpressingapparentneedwithintheBasinistoreduce theamountofwatersaidtobeoverallocated.Thesecondmostpressingneedisimprovethe reliability(orsecurity)ofsupplytohighvalueindustries,betheyagriculturalorurbanbased. Logically,thiswillrequireagreaterstorage‘buffer’(i.emorestorages)intheuppercatchments toinsureagainstthecertaintyofrecurringdroughtirrespectiveofclimatechangeandother issues;butthatseemnottobepartoftheproposedarrangements.

Is the basis of ‘the science’ sound?

Definitions: i. Science .Scienceisthepoliticaleuphemismorpopularist‘brand’forwhatwasonce referredtoaswisdom.However,whereaswisdomwasarrivedatbycomparingthe pastwithacurrentsituation/scenario;scienceisaboutpredicting/manipulatinga futurescenario,possiblyrulebased,basedonaconstructofhowitmay(ormaynot) allturnout. Anexample:BasedonwhatweknowabouttheHumeDam(wisdom),afteritfills,it wouldbeeasytocalculatehowlongittakestoemptyifwaterisreleasedataconstant rate. However,ifweapply‘science’andtrytopredictwhatthefutureholdsforinputsto thedam,orwaterdemandintothefuture,becausewedon’tknowthefutureholds,we areguessing! Regardlessofits‘branding’,ifsomebodycomesupwithafigure,anduseswordslike ‘world’sbestscience’orCSIROsaid…orthereisa‘lowlevelofuncertainty’about theguess,itisstillaguess. ii. Research .Researchisaboutfindingout.Boileddowntoitsbasictenet,researchsets outanhypothesis,andsetstoshowthatitscounterargumentiswrongwithastated levelofconfidenceintheoutcome.Thissoundsbacktofront,butresearchdoesnot setoutto‘prove’A=B,orthatthesizeofapplesisrelatedtotheageoftheearth,it actuallysetsouttotestwhethertheyarenot. Anexample.Followingisagraphof2variables(Xvs .Y)createdinExcel.The20 valuesofeachvariablewerecreatedusingExcel’sRAND()functionsotheyare pairedrandomnumbers.Astraightline(X vs .Y)regressionaswellasa6order polynomialfunction(sometimescalledasmoothingspline)hasbeenaddedtothe graph. 2.5

2 R2 = 0.151 1.5 Series1 Linear (Series1) 1 Poly. (Series1) R2 = 0.3028 0.5

0 0 5 10 15 20 StatisticallythereisnorelationshipbetweenXandY,thevariableswerecreatedout ofthinair.Atestoftherelationshipusingregressionanalysisshowedtheprobability oftherelationship(slope)beingsignificantlydifferentfromzerotobe‘not significant’;thiswouldbemoreformallywrittenas P>0.05. However,Excelhascalculatedaloosecorrelation,whichifsquaredgivestheR 2 valueonthegraph.R 2 isthecoefficientofdetermination;inthiscaseforthestraight line,therelationshipexplains15%ofthevariation;foreverysquigglethatgoesinto thepolynomial,weexplainmorevariation.ThusR 2ishigher–30%.Butitis nonsense;thesearerandomnumberswithnopredictivevalueatall. iii. Linkages .Researchcannotbeconducted‘inthefuture’.Although‘science’may claimpredictivepower,itcandosoonlyinascenariosense;withalowlevelof statisticalconfidence.Sciencedoesnotrelyon‘confidence’,whichisa mathematicallybasedmeasureofchance;itrelieson‘uncertainty’.Measurementof uncertainty,whichiscoveredinseveralIPCCpublications,canbeasexactasa statisticaltest,orasbroadasashowofhands.A10%levelofuncertaintycouldbe1 in10dissentingscientistssittingaroundthetable. iv. Errors .Errorsareineverything;theyperpetuate.Errorsaddtogether,theymultiply, theynevergoaway.

Towards a conclusion. WhileovertheyearsIhavepersonallybeenasupporterofenvironmentalism,includingthe donationofmoneytovariousgroupsandcauses,Ibelieveithasgonemanystepstoofar. Lookingoverthe‘science’hasturnedmypersonalpositionaround. Asascientist,ithasalsobeendishearteningtoseetheresultsofworkonceundertakenforthe publicgood,turnedintoapoliticaltool. TimedoesnotpermitdetailedexaminationofmoreoftheBasin‘science’thanI’vecovered.Itis probablysufficientusingtheexamplesI’vereviewed,tostronglysuggestthatthe‘science’has beenusedaspolicy‘bubblewrap’ratherthanforthedevelopmentofsoundpolicy. Sciencehasbeen‘managed’;datahasbeencherrypicked.Throughthepress,publicperceptions havebeen‘groomed’throughtheuncriticalpublicationof‘focussed’MDBA,CSIRO, university,WentworthGroup;greenbrigadeandStateAgency‘messages’. Scientistshavenotbeenabletospeakpubliclyabouttheirworkwithoutpermission,orswim againstthetideofperceptionthattheirorganisationshavecultured.Muchofthecritical scientificdatapresentedinpapersarehiddenbehind‘paywalls’,whichmakestheminaccessible tothegeneralpublic.Forallconcerned,Basinscienceseemstohavebecomeawellfunded industry. Althoughtheydidnotreviewthe‘science’AccessEconomicshascriticisedaspectsofmodelling workundertakeninsupportoftheirpreferredpositionbytheWentworthGroup 40 .Thesame shouldhappenacrossthe‘science’spectrum. Scientists should be asked to step out from behind the disclaimers that shroud their work, and explain their work, especially its limitations. Much of CSIRO’s focus seems all about themselves ;with‘Flagships’;theirboldnonsense statementsaboutachieving“atenfoldincreaseintheeconomic,socialandenvironmental benefitsfromwaterby2025”,asthoughthatcouldbemeasured,orthatitwillhappeninan environmentwheretheorganisationis‘downsizing’byclosingappliedscienceDivisions,and gettingridofresearchstaff. Asthoughinthirdperson,CSIRO‘advised’MDBAoftheclimatescenariosthatshouldbe definedfortheMDBAmodelling,theworkwasactuallydonelargelybyCSIRO 41 . Withrespecttoglobalwarmingalarmism,Chiew et al .(2009)reportedthat:“Thepast15years rankamongthewarmestyearsintheinstrumentalrecordofglobalaveragesurfaceair temperature(since1850).Thelinearwarmingtrendisabout0.13 oCperdecadeoverthelast50 yearsandabout0.18 oCperdecadesincethemid1970’s”. Averagetemperaturedata,backtransformedfromtheBOMaveragetemperatureanomaly datasetfortheMurrayDarlingBasin,expressedintermsofitscumulativedeviation(CUSUM) fromthelongtermrecalculatedmean,indeedsupportsChiew et al ’sstatement(Figure14). TheaccessibleMDBtemperaturedatasetcommencedin1910.From1910toabout1971, averagetemperaturetrendeddownwardattherateofabout–0.002 oC/year.Fromabout1978, averagetemperaturehastrendedupwards.Thedownupcycle,ofabout50yearsdurationhas trackedtheMDBrainfalltrend–decliningtemperaturetrendsbeingassociatedwithdeclining rainfalltrendsand vice versa .Thetrendsiftheyarerealandcoupled,seemoutofphaseby about30years! Ifitdoesnotrain,itisboundtobedryandhot,anditisalarmisttomakeissueof‘dryness’or ‘hotness’ofthelastdecade(20002009),withoutreferringtothe‘wetness’and‘coldness’of otherdecades. AspreadsheetanalysisofBOMaverageMDBrainfalldatashowsthatfive,10yearaverages wererankeddrierthanthe200910yearaverage.These,indecliningrankorderwere:1949, 1947,1945,1944and1946. Atthe‘wet’end,thedecadesendingin2000,2001and1999wererankedthe17 th ,22 nd ,and23 rd wettestsince1900respectively. Sotobalancethepoint,thelastdecadeembracedsomewetyearsalso. Toputthewhole‘dryness’ vs .wetnessissueintoperspective,Figure15showsthepositionof the2009decaderelativetoarangeofdecadalrainfallstatistics.

40 AccessEconomics(2010). A critical review of the key literature influencing the current water policy debate within the Murray Darling Basin – preliminary analysis. September 2010. 41 ChiewFHS,CaiWandSmithIN(2009).AdviceondefiningclimatescenariosforuseinMurrayDarlingBasin AuthorityBasinPlanmodelling,CSIROreportfortheMurrayDarlingBasinAuthority MDB Rainfall and average temperature cumulative deviations 1910-2009

800 2 600 0 400 200 -2 0 -4 -200 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Rainfall -6 -400 Temperature -600 -8

Rainfall CUSUM Rainfall -800

-10 CUSUM Temperature -1000 -12 -1200 -1400 -14 Figure 14. Average Murray-Darling Basin temperature data, back-transformed from BOM 1910-1990 anomaly data, expressed as cumulative deviations from the long-term re-calculated average (purple squares; right-hand axis) graphed with a similarly derived CUSUM or curve for rainfall ((blue squares; left-hand axis.)

MDB rainfall statistics vs. last decade

MAX 1956

Hi_10% MAX 1956 UpQ Hi_10% UpQ Median Median LowerQ LowerQ Lo_10% Lo_10% 2000+ Min 1946 2000+

Min 1946

0 100 200 300 400 500 600 Figure 15. Relative rankings of 10-year period average rainfall statistics (individual rolling 10-year averages) for the MDB rainfall dataset, downloaded from BOM, and the 10-year average for the decade ending in 2009. Afinalcaseinpointoftherelativitybetweenwetanddryyears/periodsisthatforcontinuous datasuchasrainfall,acalendaryeardoesnotrepresentnaturalbreakpoints. UsingQueanbeyanNSWrainfalldataasanexample(Table8),thewettestcalendaryearshave notcorrespondedwiththewettest12monthperiods.Thehighestannualrainfallof1043.4mm wasexceededbyall5ofthewettest12monthperiods! Atthedryendoftherainfallspectrum,thelowestrecordedannualrainfall(1982)of260mm wasgreaterthanthe5lowestranked12monthperiods. Fourofthe5lowestranked12monthrainfallperiodswereassociatedwiththeFederation droughtanditsapparentseveritywasnodoubtinpartdueto:(i)thatthethree highest 12month rainfallperiodsoccurredimmediatelypriortothedrought’scommencement,whichwouldhave beencauseforoptimism,and(ii)thatthesegoodseasonswerefollowedsuddenly(withina singleyear)bythe4 lowest 12monthrainfallperiods.Theseweretheperiodsthatcausedthe despairthatbecamesynonymouswiththatparticulardrought. Table 8. A comparison of annual and period rainfall statistics for Queanbeyan NSW (BOM site 070072). Highestannualrainfall(N=139) Wettest12mthperiod(N=1670) Rank Year Rainfall Rank Ending(mth.yr) Rainfall 1 1887 1043.4 1 Nov.1887 1105.2 2 1950 996.8 2 Oct.1887 1097.9 3 1934 984.4 3 Jul.1987 1082.4 4 1974 975.6 4 Apr.1989 1074.0 5 1989 906.8 5 Apr.1935 1065.2 Lowestannualrainfall Driest12monthperiod Rank Year Rainfall Rank Ending(mth.yr) Rainfall 135 1944 304.6 1666 Mar.1983 244.1 136 1895 300.5 1667 Jan.1903 242.6 137 1967 284.5 1668 Jan.1896 237.3 138 1902 265.7 1669 Oct.1902 212.3 139 1982 260.0 1670 Nov.1902 175.0 THE END