Comparison Between the Federation, WWII, and Big Dry Droughts Danielle C
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Cover Page Chapters VA V2 Small3
Climate Change and the Great Barrier Reef A Vulnerability Assessment Edited by Johanna E Johnson and Paul A Marshall Climate Change and the Great Barrier Reef Please cite this publication as: A Vulnerability Assessment Johnson JE and Marshall PA (editors) (2007) Climate Change and the Great Barrier Reef. Great Barrier Marine Park Authority and Australian Greenhouse Oce, Australia Please cite individual chapters as (eg): Lough J (2007) Chapter 2 Climate and Climate Change on the Great Barrier Reef. In Climate Change and the Great Barrier Reef, eds. Johnson JE and Marshall PA. Great Barrier Reef Marine Park Authority and Australian Greenhouse Oce, Australia Edited by Johanna E Johnson and Paul A Marshall The views expressed in this publication do not necessarily reect those of the GBRMPA or other participating organisations. This publication has been made possible in part by funding from the Australian Greenhouse Oce, in the Department of the Environment and Water Resources. Published by: Great Barrier Reef Marine Park Authority, Townsville, Australia and the Australian Greenhouse Oce, in the Department of the Environment and Water Resources Copyright: © Commonwealth of Australia 2007 Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Individual chapters -
Historical Reconstruction Unveils the Risk of Mass Mortality and Ecosystem Collapse During Pancontinental Megadrought
Historical reconstruction unveils the risk of mass mortality and ecosystem collapse during pancontinental megadrought Robert C. Godfreea,1, Nunzio Knerra, Denise Godfreeb, John Busbya, Bruce Robertsona, and Francisco Encinas-Visoa aCommonwealth Scientific and Industrial Research Organization National Research Collections Australia, Canberra, ACT 2601, Australia; and bPrivate address, Narrabri, NSW 2390, Australia Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved June 14, 2019 (received for review February 4, 2019) An important new hypothesis in landscape ecology is that the African savannah (9–11), but may impact predators more than extreme, decade-scale megadroughts can be potent drivers of basal species (12) or affect both (13). There is also some evidence rapid, macroscale ecosystem degradation and collapse. If true, an that mass mortality events (MMEs) can play a pivotal demo- increase in such events under climate change could have devas- graphic role during extreme drought, and that these may be re- tating consequences for global biodiversity. However, because sponsible for persistent changes in community structure and even few megadroughts have occurred in the modern ecological era, transitions between alternate ecosystem states. However, given the taxonomic breadth, trophic depth, and geographic pattern of that CSMs occur very rarely (1, 5), the magnitude of such impacts, these impacts remain unknown. Here we use ecohistorical tech- the mechanisms through which they manifest across trophic levels, niques to quantify the impact of a record, pancontinental and the implications for biogeography at regional to biome scales megadrought period (1891 to 1903 CE) on the Australian biota. We remain poorly understood. show that during this event mortality and severe stress was recorded One approach is to use historical sources to reconstruct the > in 45 bird, mammal, fish, reptile, and plant families in arid, semi- impacts of major droughts that occurred in the past. -
Can Australian Multiyear Droughts and Wet Spells Be Generated in the Absence of Oceanic Variability?
1SEPTEMBER 2016 T A S C H E T T O E T A L . 6201 Can Australian Multiyear Droughts and Wet Spells Be Generated in the Absence of Oceanic Variability? ANDRÉA S. TASCHETTO AND ALEX SEN GUPTA Climate Change Research Centre, and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia CAROLINE C. UMMENHOFER Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts MATTHEW H. ENGLAND Climate Change Research Centre, and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia (Manuscript received 1 October 2015, in final form 28 April 2016) ABSTRACT Anomalous conditions in the tropical oceans, such as those related to El Niño–Southern Oscillation and the Indian Ocean dipole, have been previously blamed for extended droughts and wet periods in Australia. Yet the extent to which Australian wet and dry spells can be driven by internal atmospheric variability remains unclear. Natural variability experiments are examined to determine whether prolonged extreme wet and dry periods can arise from internal atmospheric and land variability alone. Results reveal that this is indeed the case; however, these dry and wet events are found to be less severe than in simulations incorporating coupled oceanic variability. Overall, ocean feedback processes increase the magnitude of Australian rainfall vari- ability by about 30% and give rise to more spatially coherent rainfall impacts. Over mainland Australia, ocean interactions lead to more frequent extreme events, particularly during the rainy season. Over Tasmania, in contrast, ocean–atmosphere coupling increases mean rainfall throughout the year. -
Multi-Century Cool and Warm Season Rainfall Reconstructions for Australia’S Major Climatic Regions Mandy Freund1,2,3, Benjamin J
Multi-century cool and warm season rainfall reconstructions for Australia’s major climatic regions Mandy Freund1,2,3, Benjamin J. Henley1,2, David J. Karoly1,2, Kathryn J. Allen4, Patrick J. Baker4 1School of Earth Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia 5 2ARC Centre of Excellence for Climate System Science, Australia 3Australian-German Climate and Energy College, University of Melbourne, Parkville, 3010, Australia 4School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, Victoria, 3121, Australia Correspondence to: Mandy Freund ([email protected]) 10 Abstract. Australian seasonal rainfall is strongly influenced by large-scale ocean-atmosphere climate influences. In this study, we exploit the links between these large-scale precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (Apr-Sep) and warm (Oct-Mar) season rainfall in eight natural resource management (NRM) regions spanning the 15 Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30-year and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool season drying trends in parts of southern Australia are 20 also very unusual, although not unprecedented, across the multi-century context. -
Historical Reconstruction Unveils the Risk of Mass Mortality and Ecosystem Collapse During Pancontinental Megadrought
Historical reconstruction unveils the risk of mass mortality and ecosystem collapse during pancontinental megadrought Robert C. Godfreea,1, Nunzio Knerra, Denise Godfreeb, John Busbya, Bruce Robertsona, and Francisco Encinas-Visoa aCommonwealth Scientific and Industrial Research Organization National Research Collections Australia, Canberra, ACT 2601, Australia; and bPrivate address, Narrabri, NSW 2390, Australia Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved June 14, 2019 (received for review February 4, 2019) An important new hypothesis in landscape ecology is that the African savannah (9–11), but may impact predators more than extreme, decade-scale megadroughts can be potent drivers of basal species (12) or affect both (13). There is also some evidence rapid, macroscale ecosystem degradation and collapse. If true, an that mass mortality events (MMEs) can play a pivotal demo- increase in such events under climate change could have devas- graphic role during extreme drought, and that these may be re- tating consequences for global biodiversity. However, because sponsible for persistent changes in community structure and even few megadroughts have occurred in the modern ecological era, transitions between alternate ecosystem states. However, given the taxonomic breadth, trophic depth, and geographic pattern of that CSMs occur very rarely (1, 5), the magnitude of such impacts, these impacts remain unknown. Here we use ecohistorical tech- the mechanisms through which they manifest across trophic levels, niques to quantify the impact of a record, pancontinental and the implications for biogeography at regional to biome scales megadrought period (1891 to 1903 CE) on the Australian biota. We remain poorly understood. show that during this event mortality and severe stress was recorded One approach is to use historical sources to reconstruct the > in 45 bird, mammal, fish, reptile, and plant families in arid, semi- impacts of major droughts that occurred in the past. -
Climate Change and Queensland Biodiversity
Climate Change and Queensland Biodiversity An independent report commissioned by the Department of Environment and Resource Management (Qld) Tim Low © Author: Tim Low Date: March 2011 Citation: Low T. (2011) Climate Change and Terrestrial Biodiversity in Queensland. Department of Environment and Resource Management, Queensland Government, Brisbane. On the Cover: The purple-necked rock wallaby (Petrogale purpureicollis) inhabits a very rocky region – the North-West Highlands – where survival during heatwaves and droughts depends on access to shady rock shelters. Rising temperatures will render many of their smaller shade refuges unusuable. Photo: Brett Taylor Paperbarks (Melaleuca leucadendra) are the trees at most risk from sea level rise, because they are habitat dominants on recently formed plains near the sea where freshwater settles. They were probably scarce when the sea fell during glacials, and tend to support less biodiversity than older forest types. Photo: Jeanette Kemp, DERM Contents 1. Introduction and summary 1 5. Ecological framework 52 1.1 Introduction 1 5.1 The evidence base 53 1.2 Summary 4 5.1.1 Climatically incoherent distributions 53 1.3 Acknowledgements 5 5.1.2 Introduced species distributions 56 5.1.3 Experimental evidence 58 2. Climate change past and future 7 5.1.4 Genetic evidence 58 5.1.5 Fossil evidence 58 2.1 Temperature 8 5.2 Why distributions might not reflect climate 59 2.1.1 Past temperatures 9 5.2.1 Physical constraints 60 2.2 Rainfall 10 5.2.2 Fire 62 2.2.1 Past rainfall 11 5.2.3 Limited dispersal 63 2.3 Drought 12 5.2.4 Evolutionary history 65 2.3.1 Past drought 12 5.2.5 Lack of facilitation 65 2.4 Cyclones 12 5.2.6 Competition 66 2.4.1 Past cyclones 12 5.2.7 Predators and pathogens 70 2.5 Fire 13 5.3 Discussion 71 2.5.1 Past fire 13 5.3.1 High altitude species 71 2.6 Sea level rise 14 5.3.2 Other species 73 2.6.1 Past sea level rise 14 5.4 Management consequences 74 3. -
New South Wales Victoria South Australia
The Murray–Darling Basin Fitzroy Ri ver er Riv oa og r er N ve Riv i lice R A ie z n e k c a M r e v i Springsure R Barcoo R n ive o r s Blackall m o h T Tambo Carnarvon N.P. Bundaberg B Hervey Bay r u e rn v e i r tt River R e iv e R r v e i o v g i N e Taroom R r r Gayndah o a r k l W e e g iv e r R 0 r 50 100 n Da n e Augathella wso C a v A r i e L u p R b oo ur C d n River r N Kilometres a Legend W Chesterton Range N.P. Charleville State border Produced by the Murray–Darling Basin Authority Mitchell Kingaroy Roma Maroochydore Quilpie Morven Highway (MDBA), Canberra (2017). Cheepie Miles Data acquired from the following sources: River/creek ine River Chinchilla B ndam r Co is b River/creek outside MDB State borders, roads, towns, national parks: a k n e e r e M Condamine r r Geoscience Australia e e R City Town/city outside MDB a v v C i i i v r R l Dalby e R a e (pop. ≥30,000) a n r n n Major water storage Rivers/creeks/streams/reservoirs/lakes/locks: o h o o l o c a Surat l l a e B u City/town Geoscience Australia e R Wetland or natural lake B B Wyandra i v Tara (pop. -
Springsure, Eulo, Bourke and Bogan River Supergroups
Knowledge report Ecological and hydrogeological survey of the Great Artesian Basin springs - Springsure, Eulo, Bourke and Bogan River supergroups Volume 1: history, ecology and hydrogeology This report was commissioned by the Department of the Environment on the advice of the Interim Independent Expert Scientific Committee on Coal Seam Gas and Coal Mining. The review was prepared by UniQuest and revised by the Department of the Environment following peer review. September 2014 Ecological and hydrogeological survey of the Great Artesian Basin springs – Volume 1 Copyright © Copyright Commonwealth of Australia, 2014. Ecological and hydrogeological survey of the Great Artesian Basin springs - Springsure, Eulo, Bourke and Bogan River supergroups, Volume 1: history, ecology and hydrogeology, Knowledge report is licensed by the Commonwealth of Australia for use under a Creative Commons By Attribution 3.0 Australia licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: http://creativecommons.org/licenses/by/3.0/au/ This report should be attributed as ‘Commonwealth of Australia 2014, Ecological and hydrogeological survey of the Great Artesian Basin springs - Springsure, Eulo, Bourke and Bogan River supergroups. Volume 1: history, ecology and hydrogeology, Knowledge report, prepared by UniQuest for the Department of the Environment, Commonwealth of Australia’. The -
5. Significant Events: Drought, El Niño, Heat
5. Significant Events: Drought, El Niño, Heat. The Australian climate of 2002 reflected the changing state of the El Niño/Southern Oscillation (ENSO) phenomenon. Maximum temperatures over Australia between January and early March were warmer than average for Queensland, but generally normal to cooler than normal over the rest of the country. Rainfall for the period was generally near average, with some regions of below average rainfall in coastal and central Queensland, as well as southern South Australia, and above average rainfall totals in the centre and northern Western Australia. Severe flooding, approaching highest on record, occurred on the Fitzroy River (Western Australia) after an extended period of heavy rainfall from the 20th to 28th of February. For parts of New South Wales, good rains in February followed an exceptional period of bushfire activity which started in late December 2001 and continued until the second week of January 2002, fanned by hot and dry westerly winds from the interior. The “Black Christmas” fires burnt over half a million hectares, with significant property and livestock losses. February also brought Australia’s most intense tropical cyclone of the year. Tropical Cyclone Chris, which briefly reached Category 5 intensity with wind gusts to 290 km/h, crossed the coast 160 km north east of Port Hedland (Western Australia) on the 6th of February, bringing some record rainfall totals and local flooding. Come March, however, with some hints of a developing El Niño in the Pacific, rainfall deficiencies emerged over large sections of the country. By mid-June, the patterns of tropical convections, persistent westerly winds anomalies and the Pacific Ocean temperatures signal indicated that El Niño had been established. -
Uncertainty and the Emotional Landscape of Drought
UNCERTAINTY AND THE EMOTIONAL LANDSCAPE OF DROUGHT REBECCA JONES School of History, The Australian National University Abstract Drought is the most ubiquitous climatic phenomenon in Australia, and the late nineteenth and early twentieth centuries were decades of particularly frequent and persistent drought in south-eastern Australia. While the financial and environmental cost of drought has been well documented by historians, less attention has been paid to the emotional landscape of drought. These effects share much with other types of environmental adversity; however, droughts are slow catastrophes that generate a particularly profound level of uncertainty. This paper explores emotional responses to drought from the 1890s to the 1940s as well as some of the ways in which people coped with and attempted to ameliorate these emotions. I argue that drought elicits a wide range of emotions, but that the dominant experience of drought and the source of many of these emotions was uncertainty, provoked by the particularly ambivalent, incremental character of drought. Farmers are, arguably, the group whose well-being depends most directly on climate extremes and are therefore the group upon which I will focus this paper. Personal sources such as diaries and correspondence provide a window into the lived experience of drought and a rich picture of the emotional landscape of settler-colonisers in Australia in the late nineteenth and early twentieth centuries. Keywords: drought, emotions, uncertainty, agriculture, farming, farmers, diaries, Australia -
Water and Climate Francis Chiew and Ian Prosser
© CSIRO 2011. All rights reserved. CHAPTER 3. View complete contents Water and climate Francis Chiew and Ian Prosser Key messages ✽ Floods, droughts, and climate change are the three most important influences of climate on Australia’s water resources. ✽ Water resources are vulnerable to both climate variability and change; for example, runoff into Perth’s reservoirs has declined by 55% since the 1970s and the 1997 to 2009 drought resulted in unprecedented decline in runoff and water use in the southern Murray–Darling Basin. ✽ Climate change has played a part in recent reductions in rainfall and water resources, however its specific contribution is difficult to quantify. ✽ Climate change by 2030 is likely to reduce average river flows by 10% to 25% in some regions of southern Australia but further climate change could produce even more profound reductions of water resources in southern Australia. ✽ The relationships between climate and runoff are now being used to provide more accurate seasonal forecasts of water resources useful for irrigators, dam operators, and environmental managers. Weather and climate are the primary influences on Australia’s water resources. Extreme storms and cyclones produce floods that can rise and fall within hours or that can last for months, while yearly variability in rainfall can produce droughts that may last for a decade or longer. Longer- term climate change increases or decreases average rainfall and evaporation, fundamentally changing the amount of water resources available. This chapter describes the influences of climatic events, variability, and change on water resources through their influence on floods, droughts, and water resources. ‘Weather’ is the brief, rapidly changing daily and seasonal conditions in the atmosphere, while ‘climate’ is the average weather experienced over years to decades. -
Extreme Weather EXTREME WEATHER Written by Professor Will Steffen, Professor Lesley Hughes and Professor David Karoly
THE CRITICAL DECADE: THE CRITICAL DECADE THE CRITICAL EXTREME WEATHER EXTREME WEATHER Written by Professor Will Steffen, Professor Lesley Hughes and Professor David Karoly. Published by the Climate Commission Secretariat (Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education). www.climatecommission.gov.au ISBN: 978-1-925006-06-3 (print) 978-1-925006-07-0 (web) ©Commonwealth of Australia 2012. This work is copyright the Commonwealth of Australia. All material contained in this work is copyright the Commonwealth of Australia except where a third party source is indicated. Commonwealth copyright material is licensed under the Creative Commons Attribution 3.0 Australia Licence. To view a copy of this licence visit http://creativecommons.org.au You are free to copy, communicate and adapt the Commonwealth copyright material so long as you attribute the Commonwealth of Australia and the authors in the following manner: The Critical Decade: Extreme Weather by Professor Will Steffen, Professor Lesley Hughes and Professor David Karoly (Climate Commission). ©Commonwealth of Australia (Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education) 2012. Permission to use third party copyright content in this publication can be sought from the relevant third party copyright owner/s. IMPORTANT NOTICE – PLEASE READ This document is produced for general information only and does not represent a statement of the policy of the Commonwealth of Australia. While reasonable efforts have been made to ensure the accuracy, completeness and reliability of the material contained in this document, the Commonwealth of Australia and all persons acting for the Commonwealth preparing this report accept no liability for the accuracy of or inferences from the material contained in this publication, or for any action as a result of any person’s or group’s interpretations, deductions, conclusions or actions in relying on this material.