Further Development of Indicators for the Assessment of Soil

Total Page:16

File Type:pdf, Size:1020Kb

Further Development of Indicators for the Assessment of Soil Further development of indicators for the assessment of soil biodiversity using the example of earthworms and springtails (Collembola) with particular reference to organic farming Dissertation zur Erlangung des akademischen Grades Doktor der Agrarwissenschaften (Dr. agr.) Vorgelegt im Fachbereich Ökologische Agrarwissenschaften (FB 11) der Universität Kassel; Standort Witzenhausen von Jan Hendrik Moos M.Sc. Biodiversity and Ecology Witzenhausen, November 2017 “Effective ecological functioning, and hence the future of our civilisation, crucially depends upon the soil biota. Life in earth drives life on Earth, and soil biodiversity represents a vast biological engine, driving processes upon which our very survival depends”. (Jeffery et al., 2010) Hiermit versichere ich, dass ich die vorliegende Dissertation selbständig, ohne unerlaubte Hilfe Dritter angefertigt und andere als die in der Dissertation angegebenen Hilfsmittel nicht benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten Schriften entnommen sind, habe ich als solche kenntlich gemacht. Dritte waren an der inhaltlichen Erstellung der Dissertation nicht beteiligt; insbesondere habe ich nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Kein Teil dieser Arbeit ist in einem anderen Promotions- oder Habilitationsverfahren durch mich verwendet worden. Lübeck, 03.11.2017 sign. Jan Hendrik Moos _________________________________________________________ Ort, Datum und Unterschrift Die vorliegende Arbeit wurde vom Fachbereich Ökologische Agrarwissenschaften der Universität Kassel zur Erlangung des akademischen Grades Doktor der Agrarwissenschaften (Dr. agr.) angenommen. Erster Gutachter: Prof. Dr. Gerold Rahmann (Universität Kassel) Zweiter Gutachter: Prof. Dr. Rainer Georg Jörgensen (Universität Kassel) Prüfer: Prof. Dr. Jürgen Heß (Universität Kassel) Prüfer: Prof. Dr. Oliver Hensel (Universität Kassel) Tag der mündlichen Prüfung: 26. April 2018 This work has been accepted by the Faculty of Organic Agricultural Sciences of the University of Kassel as a thesis for acquiring the academic degree of Doktor der Agrarwissenschaften (Dr. agr.). 1st supervisor: Prof. Dr. Gerold Rahmann (University of Kassel) 2nd supervisor: Prof. Dr. Rainer Georg Jörgensen (University of Kassel) Examiner: Prof. Dr. Jürgen Heß (University of Kassel) Examiner: Prof. Dr. Oliver Hensel (University of Kassel) Day of defence: 26th April 2018 List of Publications The following published or accepted papers are included in this thesis: II.1.1 Occasional reduced tillage in organic farming can promote earthworm performance and resource efficiency; page 11. Moos, J.H., Schrader, S., Paulsen, H.M., Rahmann, G., 2016. Occasional reduced tillage in organic farming can promote earthworm performance and resource efficiency. Appl. Soil Ecol. 103, 22-30. II.1.2 Reduced tillage enhances earthworm abundance and biomass in organic farming: A meta- analysis; page 27. Moos, J.H., Schrader, S., Paulsen, H.M., 2017. Reduced tillage enhances earthworm abundance and biomass in organic farming: A meta-analysis. Landbauforsch - Applied Agricultural and Forestry Research 67 (3/4), 123-128. II.2.2 Short-term effects of reduced tillage on soil collembolan communities; page 58. Moos, J.H., Schrader, S., Paulsen, H.M., 2017. Kurzfristige Auswirkungen des Pflugverzichts auf Collembolen-Gemeinschaften des Bodens, 14. Wissenschaftstagung Ökologischer Landbau, Campus Weihenstephan, Freising-Weihenstephan. Table of content List of tables ........................................................................................................................................... IV List of figures .......................................................................................................................................... VI Part I General introduction...................................................................................................................... 1 I.1 Introduction: The importance of a diverse soil fauna .................................................................... 1 I.2 The current state of knowledge ..................................................................................................... 2 I.2.1 The functional role of earthworms ......................................................................................... 2 I.2.2 The functional role of collembolans ........................................................................................ 2 I.2.3 Indicators for soil biodiversity ................................................................................................. 3 I.2.4 Organic farming methods with a potential impact on soil fauna ............................................ 4 I.2.4.1 Crop rotations ................................................................................................................... 5 I.2.4.2 Reduced tillage ................................................................................................................. 5 I.3 Aims of the thesis ........................................................................................................................... 6 I.4 Study site ........................................................................................................................................ 8 I.5 Structure of the thesis .................................................................................................................... 9 Part II Paper ........................................................................................................................................... 11 II.1 Earthworms ................................................................................................................................. 11 II.1.1 Occasional reduced tillage in organic farming can promote earthworm performance and resource efficiency ........................................................................................................................ 11 II.1.1.1 Introduction ................................................................................................................... 12 II.1.1.2 Material & Methods ...................................................................................................... 14 II.1.1.2.1 Study site ................................................................................................................ 14 II.1.1.2.2 Soil management and experimental design ........................................................... 15 II.1.1.2.3 Earthworm sampling .............................................................................................. 16 II.1.1.2.4 Crop yields .............................................................................................................. 17 II.1.1.2.5 Economical evaluation ........................................................................................... 17 II.1.1.2.6 Statistics.................................................................................................................. 18 II.1.1.3 Results ........................................................................................................................... 18 II.1.1.3.1 Earthworm performance ........................................................................................ 18 I II.1.1.3.2 Earthworm cast production ................................................................................... 21 II.1.1.3.3 Yield and economic assessment ............................................................................. 22 II.1.1.4 Discussion ...................................................................................................................... 23 II.1.1.5 Conclusions .................................................................................................................... 26 II.1.2 Reduced tillage enhances earthworm abundance and biomass in organic farming: A meta- analysis .......................................................................................................................................... 27 II.1.2.1 Introduction ................................................................................................................... 27 II.1.2.2 Material & Methods ...................................................................................................... 29 II.1.2.3 Results and discussion ................................................................................................... 33 II.1.2.4 Conclusions .................................................................................................................... 35 II.2 Collembolans ............................................................................................................................... 36 II.2.1 Response of collembolan communities to different management practices in organic farming .......................................................................................................................................... 36 II.2.1.1 Introduction ................................................................................................................... 36 II.2.1.2 Material and Methods ................................................................................................... 38 II.2.1.2.1 Study site ................................................................................................................ 38 II.2.1.2.2 Study design ..........................................................................................................
Recommended publications
  • Why Are There So Many Exotic Springtails in Australia? a Review
    90 (3) · December 2018 pp. 141–156 Why are there so many exotic Springtails in Australia? A review. Penelope Greenslade1, 2 1 Environmental Management, School of School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia 2 Department of Biology, Australian National University, GPO Box, Australian Capital Territory 0200, Australia E-mail: [email protected] Received 17 October 2018 | Accepted 23 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/y9tz-1d49 Abstract Native invertebrate assemblages in Australia are adversely impacted by invasive exotic plants because they are replaced by exotic, invasive invertebrates. The reasons have remained obscure. The different physical, chemical and biotic characteristics of the novel habitat seem to present hostile conditions for native species. This results in empty niches. It seems the different ecologies of exotic invertebrate species may be better adapted to colonise these novel empty niches than native invertebrates. Native faunas of other southern continents that possess a highly endemic fauna, such as South America, South Africa and New Zealand, may have suffered the same impacts from exotic species but insufficient survey data and unreliable and old taxonomy makes this uncertain. Here I attempt to discover what particular characteristics of these novel habitats are hostile to native invertebrates. I chose the Collembola as a target taxon. They are a suitable group because the Australian collembolan fauna consists of a high percentage of endemic taxa, but also exotic, non-native, species. Most exotic Collembola species in Australia appear to have originated from Europe, where they occur at low densities (Fjellberg 1997, 2007).
    [Show full text]
  • Updated List of Collembola Species Currently Recorded from South Africa Charlene Janion-Scheepers, Louis Deharveng, Anne Bedos, Steven L
    Updated list of Collembola species currently recorded from South Africa Charlene Janion-Scheepers, Louis Deharveng, Anne Bedos, Steven L. Chown To cite this version: Charlene Janion-Scheepers, Louis Deharveng, Anne Bedos, Steven L. Chown. Updated list of Collembola species currently recorded from South Africa. Zookeys, Pensoft, 2015, 503, pp.55-88. 10.3897/zookeys.503.8966. hal-01220558 HAL Id: hal-01220558 https://hal.sorbonne-universite.fr/hal-01220558 Submitted on 18 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License A peer-reviewed open-access journal ZooKeys 503: 55–88Updated (2015) list of Collembola species currently recorded from South Africa 55 doi: 10.3897/zookeys.503.8966 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Updated list of Collembola species currently recorded from South Africa Charlene Janion-Scheepers1,3, Louis Deharveng2, Anne Bedos2, Steven L. Chown3 1 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa 2 Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 45 rue Buffon, F-75005, Paris, France 3 School of Biological Sciences, Monash University, Clayton, Victoria, Australia Corresponding author: Charlene Janion-Scheepers ([email protected]) Academic editor: W.
    [Show full text]
  • Disturbance and Recovery of Litter Fauna: a Contribution to Environmental Conservation
    Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis committee PhD promotors Prof. dr. Herbert H.T. Prins Professor of Resource Ecology Wageningen University Prof. dr. Steven de Bie Professor of Sustainable Use of Living Resources Wageningen University PhD supervisor Dr. Frank van Langevelde Assistant Professor, Resource Ecology Group Wageningen University Other members Prof. dr. Lijbert Brussaard, Wageningen University Prof. dr. Peter C. de Ruiter, Wageningen University Prof. dr. Nico M. van Straalen, Vrije Universiteit, Amsterdam Prof. dr. Wim H. van der Putten, Nederlands Instituut voor Ecologie, Wageningen This research was conducted under the auspices of the C.T. de Wit Graduate School of Production Ecology & Resource Conservation Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 21 October 2013 at 11 a.m. in the Aula Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation 114 pages Thesis, Wageningen University, Wageningen, The Netherlands (2013) With references, with summaries in English and Dutch ISBN 978-94-6173-749-6 Propositions 1. The environmental filters created by constraining environmental conditions may influence a species assembly to be driven by deterministic processes rather than stochastic ones. (this thesis) 2. High species richness promotes the resistance of communities to disturbance, but high species abundance does not.
    [Show full text]
  • Mesofauna at the Soil-Scree Interface in a Deep Karst Environment
    diversity Article Mesofauna at the Soil-Scree Interface in a Deep Karst Environment Nikola Jureková 1,* , Natália Raschmanová 1 , Dana Miklisová 2 and L’ubomír Kováˇc 1 1 Department of Zoology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, SK-04180 Košice, Slovakia; [email protected] (N.R.); [email protected] (L’.K.) 2 Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected] Abstract: The community patterns of Collembola (Hexapoda) were studied at two sites along a microclimatically inversed scree slope in a deep karst valley in the Western Carpathians, Slovakia, in warm and cold periods of the year, respectively. Significantly lower average temperatures in the scree profile were noted at the gorge bottom in both periods, meaning that the site in the lower part of the scree, near the bank of creek, was considerably colder and wetter compared to the warmer and drier site at upper part of the scree slope. Relatively high diversity of Collembola was observed at two fieldwork scree sites, where cold-adapted species, considered climatic relicts, showed considerable abundance. The gorge bottom, with a cold and wet microclimate and high carbon content even in the deeper MSS horizons, provided suitable environmental conditions for numerous psychrophilic and subterranean species. Ecological groups such as trogloxenes and subtroglophiles showed decreasing trends of abundance with depth, in contrast to eutroglophiles and a troglobiont showing an opposite distributional pattern at scree sites in both periods. Our study documented that in terms of soil and Citation: Jureková, N.; subterranean mesofauna, colluvial screes of deep karst gorges represent (1) a transition zone between Raschmanová, N.; Miklisová, D.; the surface and the deep subterranean environment, and (2) important climate change refugia.
    [Show full text]
  • Colonization of Heavy Metal-Polluted Soils by Collembola: Preliminary Experiments in Compartmented Boxes Matthieu Chauvat, Jean-François Ponge
    Colonization of heavy metal-polluted soils by Collembola: preliminary experiments in compartmented boxes Matthieu Chauvat, Jean-François Ponge To cite this version: Matthieu Chauvat, Jean-François Ponge. Colonization of heavy metal-polluted soils by Collembola: preliminary experiments in compartmented boxes. Applied Soil Ecology, Elsevier, 2002, 21 (2), pp.91- 106. 10.1016/S0929-1393(02)00087-2. hal-00498579 HAL Id: hal-00498579 https://hal.archives-ouvertes.fr/hal-00498579 Submitted on 7 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 1 Colonization of heavy metal polluted soils by Collembola: preliminary 2 experiments in compartmented boxes 3 4 Matthieu Chauvat1, Jean-François Ponge2 5 6 Museum National d’Histoire Naturelle, Laboratoire d’Ecologie Générale, 4 avenue du Petit-Château, 7 91800 Brunoy, France 8 9 Abstract 10 11 Two-week laboratory experiments were carried out in plastic boxes separated in two connected 12 compartments filled with a neutral soil (mull humus) at pH 7.7 and an acid soil (moder humus) at pH 13 4.3, containing their original faunas. Migration of Collembola from one compartment to the other was 14 allowed through a perforated wall.
    [Show full text]
  • Collembola of Canada 187 Doi: 10.3897/Zookeys.819.23653 REVIEW ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 819: 187–195 (2019) Collembola of Canada 187 doi: 10.3897/zookeys.819.23653 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Collembola of Canada Matthew S. Turnbull1, Sophya Stebaeva2 1 Unaffiliated, Kingston, Ontario, Canada2 The Severtsov Institute of Ecology and Evolution, Russian Aca- demy of Sciences, Leninskii pr. 33, Moscow 119071, Russia Corresponding author: Matthew S. Turnbull ([email protected]) Academic editor: D. Langor | Received 16 January 2018 | Accepted 8 May 2018 | Published 24 January 2019 http://zoobank.org/3A331779-19A1-41DA-AFCF-81AAD4CB049F Citation: Turnbull MS, Stebaeva S (2019) Collembola of Canada. In: Langor DW, Sheffield CS (Eds) The Biota of Canada – A Biodiversity Assessment. Part 1: The Terrestrial Arthropods. ZooKeys 819: 187–195.https://doi. org/10.3897/zookeys.819.23653 Abstract The state of knowledge of diversity of Collembola in Canada was assessed by examination of literature and DNA barcode data. There are 474 described extant Collembola species known from Canada, a significant change compared to the 520 species estimated to occur in Canada in 1979 (Richards 1979) and the 341 reported in the most recent national checklist (Skidmore 1993). Given the number of indeterminate or cryptic species records, the dearth of sampling in many regions, and the growing use of genetic biodiversity assessment methods such as Barcode Index Numbers, we estimate the total diversity of Collembola in Canada to be approximately 675 species. Advances in Collembola systematics and Canadian research are discussed. Keywords biodiversity assessment, Biota of Canada, Collembola, springtails Collembola, commonly known as springtails, is a class of small, entognathous, wing- less hexapods that is a sister group to Insecta.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • (Collembola) in Meadows, Pastures and Road Verges in Central Finland
    © Entomologica Fennica. 29 August 2017 Springtails (Collembola) in meadows, pastures and road verges in Central Finland Atte Komonen* & Saana Kataja-aho Komonen, A. & Kataja-aho, S. 2017: Springtails (Collembola) in meadows, pas- tures and road verges in Central Finland. — Entomol. Fennica 28: 157–163. Understanding of species distribution, abundance and habitat affinities is crucial for red-list assessment, conservation and habitat management. In Central Fin- land, we studied Collembola in three habitat types, namely non-grazed meadows, pastures and road verges using pitfall traps. Altogether, 9,630 Collembola indi- viduals were recorded. These belonged to 12 families, 34 genera and 60 species. The number of specimens was clearly higher in meadows than in pastures or road verges. The number of species, however, was higher in meadows and road verges (40 and 39 species, respectively) than in pastures (33 species). The overall spe- cies number is comparable to other large-scale sampling schemes in similar habi- tats. We recorded a few abundant species (Spatulosminthurus flaviceps, Smin- thurus viridis and Sminthurus nigromaculatus) that have been previously re- corded from very different biotopes. In conclusion, biodiversity inventories of soil fauna, as well as other biota, should also include marginal habitats, which of- ten host peculiar communities. A. Komonen, University of Jyväskylä, Department of Biological and Environ- mental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; *Cor- responding author’s e-mail: [email protected] S. Kataja-aho, University of Jyväskylä, Natural History Museum, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; E-mail: [email protected] Received 15 November 2016, accepted 22 December 2016 1.
    [Show full text]
  • And Long-Term Effects of Fire on the Collembola Communities of a Sub-Alpine Dwarf Pine Ecosystem in the Austrian Alps
    Research eco.mont - Volume 2, Number 2, December 2010 ISSN 2073-106X print version 29 ISSN 2073-1558 online version: http://epub.oeaw.ac.at/eco.mont Short- and long-term effects of fire on the Collembola communities of a sub-alpine dwarf pine ecosystem in the Austrian Alps Pascal Querner, Alexander Bruckner, Erich Weigand & Markus Prötsch Keywords: fire ecology, springtails, succession, Kalkalpen National Park Abstract Profile We compared the Collembola communities of three sub-alpine sites in the Limestone Protected area Alps to evaluate the short- and long-term effects of natural forest fires. SITE 1 was burned in August 2003, SITE 2 was burned 50 years ago and sampled to assess the Kalkalpen National Park long-term effects of fire and the recovery of soil animals. A reference site (REF) was sampled to represent the undisturbed dwarf pine community. All sites are close to each other on a steep slope between 1 400 and 1 650 m above sea level. We found Mountain range a total of 41 species of Collembola, as well as clear differences in the species com- position and abundance between the sites. Most species (29) were found on the REF Alps site. The highest abundance was found on SITE 1 (48 960 individuals*m-2, 22 spe- cies). We assume that some species survived the fire in deeper soil layers and others Country migrated or were passively dispersed from unburned patches and surrounding sites. The lowest abundance and species number (8 160 individuals*m-2, 18 species) were Austria found on the 50-year-old site.
    [Show full text]
  • An Annotated Checklist of the Springtail Fauna of Hungary (Hexapoda: Collembola)
    Opusc. Zool. Budapest, (2007) 2008, 38: 3–82. An annotated checklist of the springtail fauna of Hungary (Hexapoda: Collembola) 1 2 L. DÁNYI and GY. TRASER Abstract. A checklist of the species of springtails (Hexapoda: Collembola) hitherto recorded from Hungary is presented. Each entry is accompanied by complete references, and remarks where appropriate. The present list contains 414 species. he Collembola fauna of several countries in critical review of the literature data of Collembola T the world was already overwied in the recent referring to Hungary. past (e.g. Babenko & Fjellberg 2006, Culik & Zeppelini Filho 2003, Skidmore 1995, Waltz & HISTORY Hart 1996, Zhao et al. 1997). The importance of such catalogues was stressed by several authors The first records of Collembola referring to (e.g. Csuzdi et al, 2006: 2) and their topicality is Hungary are some notes on the mass occurrence indicated also by the fact that several cheklists of certain species (Frenzel 1673, Mollerus 1673, referring even to European states were published Steltzner 1881), which however, are without any most recently (e.g. Fiera (2007) on Romania, taxonomical or faunistical value, as it has already Juceviča (2003) on Latvia, Kaprus et al. (2004) on been pointed out by Stach (1922, 1929). The next the Ukrain, Skarzynskiet al. (2002) on Poland). In springtail reference to Hungary is to be found in spite of these facts, the last comprehensive article the zoological book of János Földy (1801), which on the Hungarian springtail fauna was published was the first time the group was mentioned in about 80 years ago (Stach 1929), eventhough such Hungarian language in the scientific literature, critical reviews have a special importance in the eventhough this work doesn’t contain relevant case of this country because of the large changes faunistical records of the taxon.
    [Show full text]
  • Minor Changes in Collembolan Communities Under Different Organic Crop Rotations and Tillage Regimes
    Moos et al. (2020) · LANDBAUFORSCH · J Sustainable Organic Agric Syst · 70(2):113–128 DOI:10.3220/LBF1611932809000 113 RESEARCH ARTICLE Minor changes in collembolan communities under different organic crop rotations and tillage regimes Jan Hendrik Moos 1, 2, Stefan Schrader 2, and Hans Marten Paulsen 1 HIGHLIGHTS Received: March 27, 2020 • Species richness and abundance of collembolans are not affected by tillage Revised: June 17, 2020 and crop rotations in organic farming systems. Revised: August 24, 2020 • There is some evidence that the relative share of euedaphic collembolans is Accepted: September 10, 2020 an indicator of management impacts. • Collembolan communities are more influenced by crop type and crop cover than by specific crop rotations or differences in tillage regime. KEYWORDS soil biodiversity, eco-morphological index (EMI), soil tillage, organic matter Abstract collembolan individuals tended to increase in soil environ­ ments that offered more stable habitat conditions from An aim of organic farming is to reduce negative impacts of increased availability of organic matter. agricultural management practices on physical, chemical, and biological soil properties. A growing number of organic 1 Introduction farmers is trying out methods of reduced tillage to save costs, protect humus and to foster natural processes in the soil. Fur­ Agriculture impacts directly and severely on soil biodiver­ ther more, techniques like increasing crop rotation diversity sity (Orgiazzi et al., 2016). Negative effects are especially and reduced tillage are discussed under the topics of agro­ ex pected in intensively managed systems with simple crop­ ecology or ecological intensification also for implementation ping se quences (e.g. Eisenhauer, 2016).
    [Show full text]
  • Springtail Diversity in South Africa
    ResearcH'LèSéf'' •^— Springtail diversity in South Africa Authors: Despite their significance in soil ecosystems and their use for investigations of soil ecosystem I Charlene Janion' functioning and in bioindication elsewhere, springtails (Collembola) have not been well ' Anne Bedos' investigated in South Africa. Early recognition of their role in soil systems and sporadic Jan Bengtsson' systematic work has essentially characterised knowledge of the southem African fauna for Louis Deharveng' Bettine Jansen van Vuuren'" some time. The situation is now changing as a consequence of systematic and ecological work Hans Petter Leinaas'" on springtails. To date this research has focused mostly on the Cape Floristic Region and Amy Liu' has revealed a much more diverse springtail fauna than previously known (136 identifiable Anna Malmström' species and an estimated 300 species for the Cape Floristic Region in total), including radiations David Porco' Steven L. Chown' in genera such as the isotomid Cryptopygus. Quantitative ecological work has shown ihiit alpha diversity can be estimated readily and that the group may be useful for demonstrating Affiliations: land use impacts on soil biodiversity. Moreover, this ecological work has revealed that some 'Centre for Invasion Biology, disturbed sites, such as those dominated by Galenia africana, may be dominated by invasive Department of Botany and Zoology, Stellenbosch springtail species. Investigation of the soil fauna involved in decomposition in Renosterveld University, Stellenbosch, and Fynbos has also revealed that biological decomposition has likely been underestimated South Africa in these vegetation types, and that the role of fire as the presumed predominant source of nutrient return to the soil may have to be re-examined.
    [Show full text]