A Survey on Various Techniques to Secure Images Using Various Methods Like Stegnography Watermarking and Cryptography

Total Page:16

File Type:pdf, Size:1020Kb

A Survey on Various Techniques to Secure Images Using Various Methods Like Stegnography Watermarking and Cryptography International Journal of Technology Research and Management ISSN (Online): 2348-9006 Vol 2 Issue 12 December 2015 A Survey on Various Techniques to Secure Images using various methods like stegnography watermarking and cryptography Varsha Shakti1, Mr. Anil Khandekar2 Pursuing M.E.1, Asst. Professor2 Indore Institute of Science & Technology, Indore [email protected] ABSTRACT: The image security on internet transfers is the concern of the hour as the breaching attacks into the image databases are rising every year. The hackers take advantage of the stolen personal and important images to fulfill their dangerous and unethical intentions. The image data theft can be used to defame a person on the internet by posting the illegal and unacceptable images of that person (internet user). Hence the images transfers have to be secure to ensure the privacy of the user’s image data. In this research, a number of image security systems have been studied to evaluate the research gap. Majority of the existing image security systems are not up to date to protect against the latest breaching attacks. So, we have proposed an effective and robust image security framework particularly designed for the images. The proposed has been designed and implemented using MATLAB. In this research, a hybrid image security framework has been proposed to overcome the problem stated earlier, which will be implemented by combining various techniques together to achieve the image security goal. The techniques included in the combination would be image compression, cryptography and steganography. DWT compression has been used, because it is a stronger compression Algorithm. The stegano graphed image would be compressed to reduce its size. Blowfish encryption Algorithm would be used for the encryption purposes. It offers maximum throughput (faster) and also energy efficient. Compressed image would be encrypted to enhance the image security. Real image will be hidden into another image. A cluster based steganographic technique will be used. Real image and face image would be analyzed, and the real image would be embedded in those areas of face image, where color schemes of the real image and face image would be most similar. Kmeans or Hierarchical clustering would be used as a clustering technique. An all new comparative analysis technique would be applied to make the comparison between real image and base image on the basis of color patterns. Keywords:- Transfers Image Security, Image compression, Image steganography, Image encryption, image. 1. Introduction: converting a message text into an unreadable cipher.A large number of cryptography algorithms have been created till Cryptography and Steganography are well known date with the primary objective of converting information and widely used techniques that manipulate information in into unreadable ciphers Cryptography systems can be broadly order to cipher or hide their existence respectively. classified into symmetric-key systems and public key Steganography is the art and science of communicating in a systems. The symmetric key systems uses a common key for way which hides the existence of the communication. encryption and decryption of the message. This key is shared Steganography word is of Greek origin and essentially means privately by the sender and the receiver. The sender encrypts concealed writing. Protection of the transmitted data from the data using the joint key and then sends it to the receiver being intercepted or tampered has led to the development of who decrypts the data using the same key to retrieve the various steganographic techniques. Cryptography involves original message. The public-key systems that use a different Paper ID: 2015/IJTRM/12/2015/6255 1 International Journal of Technology Research and Management ISSN (Online): 2348-9006 Vol 2 Issue 12 December 2015 key for encryption as the one used for decryption. Public key Five hundred years ago, the Italian mathematician systems require each user to have two keys – a public key Jérôme Cardan reinvented a Chinese ancient method of secret and a private key (secret key). The sender of the data writing. The scenario goes as follows: a paper mask with encrypts the message using the receiver’s public key. The holes is shared among two parties, this mask is placed over a receiver then decrypts this message using his private key. blank paper and the sender writes his secret message through Cryptography scrambles a message so it cannot be the holes then takes the mask off and fills the blanks so that understood; the Steganography hides the message so it the message appears as an innocuous text. This method is cannot be seen. Even though both methods provide security, credited to Cardan and is called Cardan Grille [4]. a study is made to combine both cryptography and This section attempts to give an overview of the Steganography methods into one system for better most important steganographic techniques in digital images. confidentiality and security. The most popular image formats on the internet are Graphics The steganography and cryptography differ in the Interchange Format (GIF), Joint way they are evaluated: steganography fails when the Photographic Experts Group (JPEG), and to a lesser ”enemy” is able to access the content of the cipher message, extent - the Portable Network Graphics (PNG). One of the while cryptography fails when the ”enemy” detects that there earliest methods to discuss digital steganography is credited is a secret message present in the steganographic medium. to Kurak and McHugh [1], who proposed a method which The disciplines that study techniques for deciphering cipher resembles embedding into the 4 LSBs (least significant bits). messages and detecting hide messages are called They examined image downgrading and contamination cryptanalysis and steganalysis. Steganalysis is "the process of which is known now as image-based steganography. detecting steganography by looking at variances between bit The survey of Johnson [6] appeared in the patterns and unusually large file sizes" [3]. It is the art of “Information hiding” book, which limits its distribution discovering and rendering useless covert messages. The goal compared to a Journal paper which can be more affordable. of steganalysis is to identify suspected information streams, The classification, herein, of the techniques and that of determine whether or not they have hidden messages Johnson are different. Johnson classify steganography encoded into them, and, if possible, recover the hidden techniques into: Substitution systems, transform domain information. The cryptanalysis is the process of encrypted techniques, spread spectrum techniques, statistical methods, messages can sometimes be broken the cipher message is distortion techniques, and cover generation methods. Johnson otherwise called as code breaking, although modern survey neither talks about the history of steganography nor its cryptography techniques are virtually unbreakable. grating applications.Johnson work has not included test images that together cryptography and steganography through some can allow readers visualize the concepts. media such as image. In this paper, the secret message is Creighton T. R. Hager worked on the Performance embedded within the image called cover-image. Cover-image and Energy Efficiency of Block Ciphers in Personal Digital carrying embedded secret data is referred as stegno-image. Assistants [3]: The author has performed a comparative analysis of various encryption algorithms on various kinds of data. This research has proved that blowfish outperforms all 2. Literature Survey: other encryption algorithms. Blowfish is the best, unbreakable and fast encryption algorithm than others. Gary The word steganography is originally derived from C.Kessler has written an Overview of Cryptography: Greek words which mean “Covered Writing”. It is defined as Cryptographic [3]: This is an old published paper on "hiding information within a noise; a way to supplement cryptography by Gary C. Kessler, and since then it was encryption, to prevent the existence of encrypted data from continuously updated till date. It was last updated in 2014. being detected" [1]. It has been used in various forms for The author suggested the great source for the cryptography thousands of years. In the 5th century BC Histaiacus shaved a algorithms again. It is very important to understand the slave’s head, tattooed a message on his skull and the slave encryption algorithm structure before putting it in the use. was dispatched with the message after his hair grew back [ 2, Navita Agarwal et al. have develope Efficient Pixel- 4,5,7]. shuffling Based Approach to Simultaneously Perform Image In Saudi Arabia at the King Abdulaziz City of Compression, Encryption and Steganography [1]: The science and technology, a project was initiated to translate authors have conducted a similar research, where they have into English some ancient Arabic manuscripts on secret applied compression, encryption and steganography on the writing which are believed to have been written 1200 years digital image data. Pixel shuffling based symmetric ago. Some of these manuscripts were found in Turkey and encryption algorithm, DCT for compression, WinRAR to Germany [10]. Image steganography are used to achieve the proposed model in this paper. Paper ID: 2015/IJTRM/12/2015/6255 2 International Journal of Technology Research and Management ISSN (Online): 2348-9006 Vol 2 Issue 12 December 2015 Evolution of Steganography: For understanding
Recommended publications
  • Proceedings of the 5Th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, Pages 1–9, Portland, OR, USA, 24 June 2011
    ACL HLT 2011 Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities LaTeCH Proceedings of the Workshop 24 June, 2011 Portland, Oregon, USA Production and Manufacturing by Omnipress, Inc. 2600 Anderson Street Madison, WI 53704 USA c 2011 The Association for Computational Linguistics Order copies of this and other ACL proceedings from: Association for Computational Linguistics (ACL) 209 N. Eighth Street Stroudsburg, PA 18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 [email protected] ISBN-13 9781937284046 ii Preface The LaTeCH (Language Technology for Cultural Heritage, Social Sciences, and Humanities) annual workshop series aims to provide a forum for researchers who are working on aspects of natural language and information technology applications that pertain to data from the humanities, social sciences, and cultural heritage. The LaTeCH workshops were initially motivated by the growing interest in language technology research and applications for the cultural heritage domain. The scope has soon nevertheless broadened to also include the humanities and the social sciences. Current developments in web and information access have triggered a series of digitisation efforts by museums, archives, libraries and other cultural heritage institutions. Similar developments in humanities and social sciences have resulted in large amounts of data becoming available in electronic format, either as digitised, or as born-digital data. The natural next step to digitisation is the intelligent processing of this data. To this end, the humanities, social sciences, and cultural heritage domains draw an increasing interest from researchers in NLP aiming at developing methods for semantic enrichment and information discovery and access.
    [Show full text]
  • The Reincarnation of Grille Cipher
    The Reincarnation of Grille Cipher Jia Liu, Yan Ke, Yu Lei, Yaojie Wang, Yiliang Han Minqing Zhang, Xiaoyuan Yang Key Laboratory of Network and Information Security of PAP, Engineering University of PAP, Xi’an, 710086, China [email protected] Abstract: In order to keep the data secret, various techniques have been implemented to encrypt and decrypt the secret data. Cryptography is committed to the security of content, i.e. it cannot be restored with a given ciphertext. Steganography is to hide the existence of a communication channel in a stego. However, it has been difficult to construct a cipher (cypher) that simultaneously satisfy both channel and content security for secure communication. Inspired by the Cardan grille, this paper presents a new automated framework of grille cipher, this scheme can satisfy both content and channel security simultaneously. A simple practical cipher method called Digital Cardan Grille is proposed using semantic image inpainting. We also give the difference and connection between cryptography and steganography under this new grille cipher framework. Experimental results demonstrate the promising of the proposed method. 1 Introduction In the history of cryptography, a grille cipher was a technique for encrypting a plaintext by writing it onto a sheet of paper through a pierced sheet (of paper or cardboard or similar) [1]. The earliest known description is due to the polymath Girolamo Cardano in 1550. His proposal was for a rectangular stencil allowing single letters, or words to be written, then later read, through its various apertures. The written fragments of the plaintext could be further disguised by filling the gaps between the fragments with anodyne words or letters, as shown in Fig.1 [2].
    [Show full text]
  • Cryptography Lecture 1 Principles and History Course Book, Examination
    Cryptography Lecture 1 Principles and history Course book, examination • 12 lectures • 4 lab sessions • Written exam • The first and third labs are online, supervision will be over Zoom • The second and fourth are on campus • Keep an eye out for instructions in lisam “Cryptography” is a Greek word that means “hidden writing” Used to hide message from someone, and sometimes prevent them from creating a new message Key Key Alice Encrypt Decrypt Bob Eve “Cryptography” is a Greek word that means “hidden writing” Used to hide message from someone, and sometimes prevent them from creating a new message Key Key Alice Encrypt Decrypt Bob Eve “Cryptography” is a Greek word that means “hidden writing” Used to hide message from someone, and sometimes prevent them from creating a new message Key Key Alice Sign Verify Bob Eve The message is written using an alphabet in some language • Egyptian hieroglyphs were unreadable until the Rosetta stone was found. This contained the same text in Ancient Egyptian hieroglyphs, in Demotic script, and in ancient Greek. • For example, “Nefer” meaning “good”, “beautiful” could be written or or or in a lot of other ways, like a picture of a horse • Non-standard = Encrypted? Not really. Terminology • The plaintext is the information in its normal form • The ciphertext or cryptogram is the transformed plaintext • The secret parameter for the encryption (known only to the sender and intended recipients) is called the key • The key decides how the transformation is done Kerckhoff’s principle • A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.
    [Show full text]
  • Encoding with the Rail Fence Cipher
    More Fun with Ciphers! October 8th, 2015 Encoding with the Rail Fence Cipher 1. Encode the phrase WE NEED YOUR HELP using the Rail Fence cipher. (a) First, make an outline of the zig-zag pattern for the number of letters that are in your message. (WE NEED YOUR HELP has 14 letters.) _ _ _ _ _ _ _ _ _ _ _ _ _ _ i. Arrange the letters of the message on the zig-zag pattern: W E U L E E D O R E P N Y H ii. Then, the encoded phrase is written out left-to-right, top-to-bottom. This time, we have also divided the message into three “words” (each word has letters written on one of the lines above) . WEUL EEDOREP NYH (b) Use the Rail Fence cipher to encode the message I WILL BE THERE SOON _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ What will the encoded text read? 1 Decoding Rail Fence Cipher 1. Decode the following message: BRRT EAEFOOS WOB Since the message is divided into 3 “words” (corresponding to the first, second and third row), you can simply read off the message as follows: (a) Write down the first letters of each of the three words (first, second, third): BEW (b) Then, write down the second letters of each of the three words (second, first, third) (watch out for the order of the words!!!): BEW ... (c) Continue writing the next letters going back and forth from 1st word, to 2nd, to 3rd, to 2nd, to 1st, to 2nd, to 3rd, etc.
    [Show full text]
  • Stream Cipher
    BERITA NEGARA REPUBLIK INDONESIA No.68, 2010 LEMBAGA SANDI NEGARA. Diklat. Sandiman. Pedoman. PERATURAN KEPALA LEMBAGA SANDI NEGARA REPUBLIK INDONESIA NOMOR 4 TAHUN 2010 TENTANG PEDOMAN PENYELENGGARAAN PENDIDIKAN DAN PELATIHAN SANDIMAN DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA LEMBAGA SANDI NEGARA REPUBLIK INDONESIA, Menimbang : a. bahwa Pendidikan dan Pelatihan Sandi diperlukan untuk memenuhi kebutuhan dan pengadaan personil berkualifikasi keahlian sandi yang profesional pada instansi pemerintah; b. bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a perlu menetapkan Peraturan Kepala Lembaga Sandi Negara tentang Pedoman Penyelenggaraan Pendidikan dan Pelatihan Sandiman; Mengingat : 1. Undang-undang Nomor 8 Tahun 1974 tentang Pokok- pokok Kepegawaian (Lembaran Negara Tahun 1974 Nomor 55, Tambahan Lembaran Negara Nomor 3041) sebagaimana telah diubah dengan Undang-undang Nomor 43 Tahun 1999 (Lembaran Negara Tahun 1999 Nomor 169, Tambahan Lembaran Negara Nomor 3890); www.djpp.depkumham.go.id 2010, No.68 2 2. Undang-undang Republik Indonesia Nomor 2 Tahun 2002 Tentang Kepolisian Negara Republik Indonesia (Lembaran Negara Republik Indonesia Tahun 2002 Nomor 2, Tambahan Lembaran Negara Republik Indonesia Nomor 4168); 3. Undang-undang Republik Indonesia Nomor 32 Tahun 2004 Tentang Pemerintahan Daerah (Lembaran Negara Republik Indonesia Tahun 2004 Nomor 125, Tambahan Lembaran Negara Republik Indonesia Nomor 4437); 4. Undang-undang Republik Indonesia Nomor 34 Tahun 2004 tentang Tentara Nasional Indonesia (Lembaran Negara Republik
    [Show full text]
  • A Anhang: Perfekte Sicherheit Und Praktische Sicherheit
    A Anhang: Perfekte Sicherheit und praktische Sicherheit "The logic of secrecy was the mirror-image of the logic of information" Colin Burke, 1994 Perfekte Sicherheit wurde seit jeher gerne von den Erfindern von Chiffriersy­ stemen, im besonderen von Chiffriermaschinen, versprochen (Bazeries: je suis indechiffrable, 2.1.1 Abb. 19). Jedoch gab erst 1949 Claude E. Shannon eine saubere Definition davon, was mit perfekter Sicherheit gemeint sei; er gab sie im allgemeinen Rahmen seiner Informationstheorie. 1 Da der wahrschein­ lichkeitstheoretische Apparat, den sie benutzt, auBerhalb des Rahmens dieses Buches liegt, geben wir nur eine verkiirzte, dafiir aber axiomatische Ubersicht. A.I Axiome einer axiomatischen Informationstheorie Man geht zweckmaBigerweise aus von der Unsicherheit (engl. uncertainty, equivocation) iiber eine Menge X von Ereignissen, der "Entropie" von X - eine reelle Zahl . Auch Y und Z seien Mengen von Ereignissen. Hy(X) bezeichne die Unsicherheit iiber X, falls Y bekannt ist. A.I.1 Intuitiv einleuchtende Axiome fUr die zweistellige Mengenfunktion H sind: (0) 0::; Hy(X) ("Unsicherheit ist nichtnegativ") Fiir 0 = Hy(X) sagen wir "Y bestimmt eindeutig X." (1) Hyuz(X) ::;Hz(X) ("Unsicherheit nimmtnicht zu, wennmehr bekannt") Fiir Hyuz(X)=Hz(X) sagen wir "Y sagt nichts aus iiber X." Von entscheidender Bedeutung ist das Axiom (2) Hz(X U Y) = Hyuz(X) + Hz(Y) . ("Unsicherheit kann additiv iiber der Vereinigung von Ereignissen aufgebaut werden"). 1 Shannon hatte friihzeitig Beriihrung mit der Kryptanalysej er arbeitete 1936-1938 im Team von Vannevar Bush, der den COMPARATOR zur Bestimmung der Zeichen­ Koinzidenz entwickelte. Seine bis 1940 zuriickreichende Arbeit in den Bell Laboratories (vgl. 16.5) fiihrte zu einem vertraulichen Bericht (A Mathematical Theory of Communi­ cation) vom 1.
    [Show full text]
  • Anatomy of Failure
    An Anatomy of Failure: Investigating the Reasons behind Failed Attempts to Decrypt the Voynich Manuscript through an Examination of the Decipherment of Linear B and of the Partial Decryption of Kryptos By Adam Lewis Page 1! of 43! Acknowledgements: Many thanks to George Erving, Tony Mullen, Adam Smith, Ti Allshouse, my friends in the Honors program, Sara, Deanne, and countless others without whom I couldn’t have gotten this far. Page 2! of 43! Table of Contents Table of Contents………………………………………………………………………3 I. Abstract………………………………………………………………………………4 II. Introduction…………………………………………………………………………5 1. What is the Voynich Manuscript?……………………………………………5 III. Features of the Voynich Manuscript…………..……………………………………5 IV. Other Codes…………………………………………………………………………8 1. The Decipherment of Linear B………………………………………………8 2. Kryptos………………………………………………………………………13 V. Investigations of the Manuscript……………………………………………………18 1. The Hoax Hypothesis………………………..………………………………18 2. An Amateur Attempt…………………………………………………………23 VI. Conclusion………………………………………………….………………………25 VII. Bibliography………………………………………………………………………27 VIII. End Notes…………………………………………………………………………29 Page 3! of 43! Abstract The Voynich Manuscript is a medieval manuscript whose creation dates back to the 15th century. The manuscript is written in an unknown script, and since its discovery there have been no successful attempts to decrypt it. This paper notes the peculiarities of the Voynich Manuscript and compares it cryptographically with Linear B and the CIA’s Kryptos monument. This paper examines the decipherment of Linear B and the partial decryption of the CIA’s Kryptos monument in order to discern what elements made those decryptions successful. There is not a large enough corpus of “Voynichese” text to perform any significant breakthroughs in translation, and there is evidence supporting the hypothesis that the Manuscript may be a hoax with no actual meaning contained within.
    [Show full text]
  • More Fun with Ciphers
    More Fun with Ciphers October 3, 2010 1 Using frequencies to decode 1. Daniel received an encoded message of 1000 characters. He counted up how often every letter occurred and listed the top 5 most frequent letters below. Use the graph to match the letters that occur most often in the encoded message to the original letters. Substitution Letter # of times Original letter R 127 S 90 D 81 E 76 A 70 Q 66 T 63 C 60 1 (a) Copy the table from the previous page here: Substitution Letter # of times Original letter R 127 S 90 D 81 E 76 A 70 Q 66 T 63 C 60 (b) Below is a sample of some text from the message that Daniel re- ceived. Decode the message by rst replacing the letters you found above into the text. Then, see if you can gure out what the rest of the message reads. A MEHQP SCR RQRYI CAPREHS. AS AT BRCAQP SCR ELP SZRR. 2 2 Pigpen cipher 1. Encode the following message using Pigpen cipher: SYMBOLS 2. Decode this message written using the Pigpen cipher: 3. Encode your own message using the Pigpen cipher, and pass it to your partner to decode: Encoded message: Decoded: 3 3 Rail Fence Cipher 1. Encoding the Rail Fence Cipher (a) Here is how we can encode the phrase WE ARRIVE SOON using the Rail Fence cipher i. First, make an outline of the zig-zag pattern for the number of letters that are in your message (WE ARRIVE SOON has 12 letters) _ _ _ _ _ _ _ _ _ _ _ _ ii.
    [Show full text]
  • Decoding Anagrammed Texts Written in an Unknown Language and Script
    Decoding Anagrammed Texts Written in an Unknown Language and Script Bradley Hauer and Grzegorz Kondrak Department of Computing Science University of Alberta Edmonton, Canada bmhauer,gkondrak @ualberta.ca { } Abstract phering the manuscript is the lack of knowledge of what language it represents. Algorithmic decipherment is a prime exam- Identification of the underlying language has been ple of a truly unsupervised problem. The first crucial for the decipherment of ancient scripts, in- step in the decipherment process is the iden- cluding Egyptian hieroglyphics (Coptic), Linear B tification of the encrypted language. We pro- pose three methods for determining the source (Greek), and Mayan glyphs (Ch’olti’). On the other language of a document enciphered with a hand, the languages of many undeciphered scripts, monoalphabetic substitution cipher. The best such as Linear A, the Indus script, and the Phaistos method achieves 97% accuracy on 380 lan- Disc, remain unknown (Robinson, 2002). Even the guages. We then present an approach to de- order of characters within text may be in doubt; in coding anagrammed substitution ciphers, in Egyptian hieroglyphic inscriptions, for instance, the which the letters within words have been ar- symbols were sometimes rearranged within a word bitrarily transposed. It obtains the average de- in order to create a more elegant inscription (Singh, cryption word accuracy of 93% on a set of 50 ciphertexts in 5 languages. Finally, we report 2011). Another complicating factor is the omission the results on the Voynich manuscript, an un- of vowels in some writing systems. solved fifteenth century cipher, which suggest Applications of ciphertext language identification Hebrew as the language of the document.
    [Show full text]
  • History of Cryptography in Syllabus on Information Security Training Sergey Zapechnikov, Alexander Tolstoy, Sergey Nagibin
    History of Cryptography in Syllabus on Information Security Training Sergey Zapechnikov, Alexander Tolstoy, Sergey Nagibin To cite this version: Sergey Zapechnikov, Alexander Tolstoy, Sergey Nagibin. History of Cryptography in Syllabus on In- formation Security Training. 9th IFIP World Conference on Information Security Education (WISE), May 2015, Hamburg, Germany. pp.146-157, 10.1007/978-3-319-18500-2_13. hal-01334298 HAL Id: hal-01334298 https://hal.archives-ouvertes.fr/hal-01334298 Submitted on 20 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License History of Cryptography in Syllabus on Information Security Training Zapechnikov Sergey, Tolstoy Alexander and Nagibin Sergey The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoye shosse, Moscow, Russia {SVZapechnikov, AITolstoj}@mephi.ru Abstract. This paper discusses the peculiarities and problems of teaching the historical aspects of Information Security Science (ISS) to the students of the "Information Security" specialization. Preferential attention is given to the ISS area with the longest history, namely cryptography. We trace exactly what ideas of fundamental importance for modern cryptography were formed in each of the historical periods, how these ideas can help students in mastering the training courses’ material, and how to communicate these ideas to students in the best way.
    [Show full text]
  • Training of Cryptography As a Way of Developing System Thinking at Secondary School Students
    Training of Cryptography as a Way of Developing System Thinking at Secondary School Students Iskandar Azhmukhamedov Valentina Kuznetsova Olga Vybornova Astrakhan State University Astrakhan State University Astrakhan State University Astrakhan, Russia, 414056 Astrakhan, Russia, 414056 Astrakhan, Russia, 414056 iskander [email protected] [email protected] [email protected] Abstract The article deals with domestic and foreign experience in the introduc- tion of cryptography as an element of secondary education. The authors analyzed current methods of teaching cryptography for students. They concluded that there are no comprehensive methodological and didac- tic materials for conducting classes with schoolchildren. The authors proposed their own elective course, based on the system{activity ap- proach and elements of project teaching. The article shows the effect of the methodology using the author's software for the developing of students' systems thinking. Keywords: cryptography, basic education, elective course, teaching cryptography, system thinking, illustrative software 1 Introduction Cryptographic methods of protecting information have recently become the basis for ensuring information security in almost all areas of public life: military, social, economic, etc. In this regard, there is a constant need for an influx of young talented personnel in this field of science. They could give a new impulse to its development, as well as provide a connection of cryptography with other areas of knowledge. For this purpose, potential specialists should have a spacious mind and deep systems thinking. Learning the basics of cryptography in primary school contributes to the development of the present type of thinking. According to psychologists, this effect is based on the fact, that cryptography classes develop child logic, the ability to link certain features to an integrated system, to see and notice certain essential elements.
    [Show full text]
  • Les Codes Secrets Décryptés
    Les codes secrets décryptés 3ème édition corrigée et augmentée Didier Müller Nymphomath Éditions Contact : [email protected] © Nymphomath Éditions, 2018-2020 version 3.0 : 9 septembre 2018 version 3.2 : 13 décembre 2020 ISBN 978-2-8399-2485-6 À Pierre Baud « It may be roundly asserted that human ingenuity cannot concoct a cipher which human ingenuity cannot resolve... » « On peut affirmer que l'ingéniosité humaine ne peut pas élaborer un chiffre que l'ingéniosité humaine ne peut résoudre... » Edgar Allan Poe A Few Words on Secret Writing, 1841. Avant-propos AVANT-PROPOS La cryptologie, plus communément appelée la science des codes secrets, est à la fois une science et un art. C'est une science, car elle fait appel aux mathématiques et à l'informatique, que ce soit pour chiffrer des messages ou pour les décrypter. La cryptologie est aussi un art, car elle fait appel aux talents d'intuition, d'imagination et d'invention du décrypteur, ces facultés étant elles-mêmes secondées par des connaissances linguistiques approfondies. Je voulais écrire un livre qui s'inscrirait dans la ligne de ceux des grands cryptologues du 20 ème siècle : Baudouin, Friedman, Givierge, Langie, Sacco, Fouché Gaines, Sinkov, et quelques autres. Leurs livres ne se contentaient pas de présenter des systèmes de chiffrement, ils montraient aussi leurs faiblesses et comment les décrypter. Je vous invite donc à un voyage dans le temps, depuis l'Antiquité jusqu'à nos jours, où vous découvrirez les systèmes de chiffrement qui ont marqué leur époque. Nous regarderons plus d'une centaine de chiffres, la plupart ne demandant que du papier et un crayon.
    [Show full text]