The Reincarnation of Grille Cipher: a Generative Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Cryptography Is Everywhere a Long & Rich History
COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Cryptography Is Everywhere A Long & Rich History Examples: • ~50 B.C. – Caesar Cipher • 1587 – Babington Plot • WWI – Zimmermann Telegram • WWII – Enigma • 1976/77 – Public Key Cryptography • 1990’s – Widespread adoption on the Internet Increasingly Important COS 433 Practice Theory Inherent to the study of crypto • Working knowledge of fundamentals is crucial • Cannot discern security by experimentation • Proofs, reductions, probability are necessary COS 433 What you should expect to learn: • Foundations and principles of modern cryptography • Core building blocks • Applications Bonus: • Debunking some Hollywood crypto • Better understanding of crypto news COS 433 What you will not learn: • Hacking • Crypto implementations • How to design secure systems • Viruses, worms, buffer overflows, etc Administrivia Course Information Instructor: Mark Zhandry (mzhandry@p) TA: Fermi Ma (fermima1@g) Lectures: MW 1:30-2:50pm Webpage: cs.princeton.edu/~mzhandry/2017-Spring-COS433/ Office Hours: please fill out Doodle poll Piazza piaZZa.com/princeton/spring2017/cos433mat473_s2017 Main channel of communication • Course announcements • Discuss homework problems with other students • Find study groups • Ask content questions to instructors, other students Prerequisites • Ability to read and write mathematical proofs • Familiarity with algorithms, analyZing running time, proving correctness, O notation • Basic probability (random variables, expectation) Helpful: • Familiarity with NP-Completeness, reductions • Basic number theory (modular arithmetic, etc) Reading No required text Computer Science/Mathematics Chapman & Hall/CRC If you want a text to follow along with: Second CRYPTOGRAPHY AND NETWORK SECURITY Cryptography is ubiquitous and plays a key role in ensuring data secrecy and Edition integrity as well as in securing computer systems more broadly. -
41760779079990.Pdf
.CONFIS~Ti;~691 BBS'l'RIOHJB· THE DISTBIBUTION OF THIS SPECIAL TEXT WILL BE RESTRICTED TO REGULARLY ENROLLED EXTENSION COURSE STUDENTS, 'l'O MILITARY PERSONNEL, AND TO OTHER PERSONS COMING WITHIN THE MEANING OF THE PHRASE "FOR OFFICIAL USE ONLY/, ·. ARMY EXTENSION COURSES ~,· ·~~cY-l~~ I!LA)f'~'~ ~ \_ -·----------;-- --·· SPECIAL TEXT No. 166 ADVANCED MILITARY CRYPTOGRAPHY Szcoxn (19'3) EDmox PREPARED UNDER THE DIRECTION OF THE CHIEF SIGNAL OFFICER FOR USE WITH 'I1fE ARMY EXTENSION COURSES .',; ,_ • RSS'fRI<ffRB document contains information affecting the nat1 defense of the United States within the meaning of die · nage Act (U.S. C. -Y,. ~:>· 50: 31, 32). The transmission o · ocument · · or the revelation of its contents in any nl:an any unauthorized person is prohibited. + UNITED STATES GOVERNMENT PRINTING OFFICE ~ (o ~ ~ WASHINGTON : 19'3 . ,. 7.~0NFIDENTIAL Peclassified and approved for release by NSA on 01-14-2014 pursuant to E.O. 1352§ REF ID:A64691 ,·J/ 30 April 1959 Th.is document is re-graded "eEm'!BBrff " of DOD Directive 5200.l dated 8 ~ UP and by autharity of the Directar '2t1:.!i Security ~ncy. ' Paul~w~ S. Willard Colonel, AOC Adjutant Ge.nera.J. • ~· WAR DEPARTMENT, • WAsmNGTON, Februa1"JI S, 1948. Tbis revision of Special Text No. 166, Advanced Milita.ry Cryptog raphy (1935), for use with the Anny Extension Courses, is published for the information and guidance of all concerned. BY ORDEB OF THE SlilCBlilTAB.Y OF wAB! :,. G. o. M.ARSHAT,T., General, Ohiejoj8f4. OFFICIAL! JAMES A. ULIO, Major Gemral, 7?i.e Adjut,ant Geneml,. (XI) • SPECIAL TEXT NO. -
Cryptographyorhioohulmuoft CRYPTOGRAPHY OR the HISTORY, PRINCIPLES, and PRACTICE of CIPHER-WRITING
Digitized by the Internet Archive in 2007 with funding from IVIicrosoft Corporation http://www.archive.org/details/cryptographyorhiOOhulmuoft CRYPTOGRAPHY OR THE HISTORY, PRINCIPLES, AND PRACTICE OF CIPHER-WRITING ^ w >TOGRA OR The History, Principles, and Practice OF CIPHER-WRITING e<^ BY Fl^EDWARD HULME, F.L.S., F.S.A U\ AUTHOR OF "familiar WILD FLOWERS," " MYTHLAND," " NATURAL HISTORY LORE AND LEGEND," "the birth and development OF ORNAMENT," " WAYSIDK SKETCHES," ETC Heres noiv mystery and hieroglyphic Ben Jonson— The Alchemysi. LONDON WARWICK HOUSE, SALISBURY SQUARE, E.C NEW YORK AND MELBOURNE — CONTENTS CHAPTER I PAGE Meaning of cryptography—Objections to its study—Its legitimate use and value—Historic examples of its employment—Deliglit in the mysterious—Many other ways of conveying secret information—Symbolism of action—The spoken word imprisoned and dispatched —A matter not necessarily secret because one cannot understand it — Egyptian hieroglypliics — Chinese characters—Indian mutiny Greek—Ancient Biblical cryptogram — Sheshach of Jeremiah — Sir Henry Eawlinson thereon—Statements for and against Julius Caesar's secret code—The waxed tablet of Demaratus—Difference between hidden and secret writing—The shaven head a writing tablet—Charle- magne and Alfred the Great as cryptographic experts —Mediaeval authorities—Trithemius the Benedictine " — " Steganographia —Dabbling in the black art Dr. Dee—Batista Porta's book on "Natural Majick" —Invisible writing—Chemical methods by vitriol, alum, etc. —Writing on glass or crystal—Papal In- quisition—Disappearing writing—Messages wrapped round rollers—Two methods—A slave's back the writing surface—Chemical methods of no great value ordinarily—Disadvantages of use— Action of light and heat—Chloride of cobalt, sulphate of copper, etc. -
Enigma Cryptanalysis - Beginnings
Enigma Cryptanalysis - Beginnings Gaurish Korpal∗ [email protected] July 15, 2015 Abstract Any message may be hidden in two basic ways. The methods of steganography conceal the very existence of the message, for example invisible inks and microdots. The methods of cryptography, on the other hand, do not conceal the presence of a secret message but render it unintelligible as ciphertext, to outsiders by various transformations of the plaintext. Breaking ciphers require ingenuity, creativity and a little math. In this article our focus will be on breaking Enigma ciphers. The skill involved in breaking ciphers is called cryptanalysis. Keywords. Enigma, cryptanalysis, cypher, Caesar, Vigen`ere,Rejewski, Zygalski, Bomba, Bombe 1 Cipher not Code A code is a mapping from some meaningful unit (word, sentence, phrase) into something else (usually a shorter group of symbols). A code requires a codebook, it is simply a list of these mappings. For example we could make up a code where the word Apple is written as 67, historical example of this is \Zimmermann Telegram Code" for more details refer [7]. Ciphers do not involve meaning. Instead they are mechanical operations (known as algorithms) which are performed on the individual or small chunks of letters. A code is stored as a mapping in a codebook, while ciphers transform individual symbols according to an algorithm. It was definitively stated in 1883 by the Dutch linguist Auguste Kerckhoffs von Nieuwenhof in his book La Cryptographie militaire: Kerckhoffs' Principle: The security of a cryptosystem must not depend on keeping secret the crypto-algorithm. The security depends only on keeping secret the key. -
The Solving of a Fleissner Grille During an Exercise by the Royal Netherlands Army in 1913
The Solving of a Fleissner Grille during an Exercise by the Royal Netherlands Army in 1913 Karl de Leeuw University of Amsterdam / Informatics Institute Science Park 904, 1098 XH Amsterdam [email protected] Abstract Initially the grille was intended for hiding that a secret message was being sent at all, rather than In 1885 the General Staff of the Royal as a means of encryption. This all changed dur- Netherlands Army had adopted a variant ing the course of the 18th century, when the grille of the turning grille devised by Edouard was increasingly used for jumbling the characters Fleissner von Wostrowitz as a means for in a message by rotating them, according to the encrypting messages, exchanged by tele- holes in the mask. The first description of such graph between the General Headquarters use we find by the German mathematician Carl and commanders in the field. Some staff Friedrich von Hindenburg (1796) who was aware members harbored serious doubts about that such use could only be made at the expense the security of this device, however, and of a loss in entropy and, therefore, cryptographic during a military exercise in 1913 it was strength. The perforation pattern in one quadrant solved with surprising ease by an army of the mask would automatically limit the possi- captain. The matter was investigated by bilities for perforation in all others, because two a committee of staff officers, concluding punch holes could not be allowed to cover the that the army lacked the expertise to judge same position after a rotation. -
Proceedings of the 5Th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, Pages 1–9, Portland, OR, USA, 24 June 2011
ACL HLT 2011 Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities LaTeCH Proceedings of the Workshop 24 June, 2011 Portland, Oregon, USA Production and Manufacturing by Omnipress, Inc. 2600 Anderson Street Madison, WI 53704 USA c 2011 The Association for Computational Linguistics Order copies of this and other ACL proceedings from: Association for Computational Linguistics (ACL) 209 N. Eighth Street Stroudsburg, PA 18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 [email protected] ISBN-13 9781937284046 ii Preface The LaTeCH (Language Technology for Cultural Heritage, Social Sciences, and Humanities) annual workshop series aims to provide a forum for researchers who are working on aspects of natural language and information technology applications that pertain to data from the humanities, social sciences, and cultural heritage. The LaTeCH workshops were initially motivated by the growing interest in language technology research and applications for the cultural heritage domain. The scope has soon nevertheless broadened to also include the humanities and the social sciences. Current developments in web and information access have triggered a series of digitisation efforts by museums, archives, libraries and other cultural heritage institutions. Similar developments in humanities and social sciences have resulted in large amounts of data becoming available in electronic format, either as digitised, or as born-digital data. The natural next step to digitisation is the intelligent processing of this data. To this end, the humanities, social sciences, and cultural heritage domains draw an increasing interest from researchers in NLP aiming at developing methods for semantic enrichment and information discovery and access. -
Introduction
ON SOME KNOWN POSSIBLE APPLICATIONS OF QUASIGROUPS IN CRYPTOLOGY Victor Shcherbacov Abstract. It is surveyed known (published) possible application of binary and n-ary quasigroups in cryptology. Mathematics Subject Classification: 20N05, 94A60. Key words and phrases: Cryptology, cryptography, cipher, key, quasigroup, n-ary quasigroup. Introduction Almost all results obtained in branch of application of quasigroups in cryptology and coding theory to the end of eighties years of the XX-th century are described in [20, 21]. In the present survey the main attention is devoted more late articles in this direction. Basic facts on quasigroup theory it is possible to find in [5, 6, 7, 64]. Information on basic fact in cryptology it is possible to find in many books see, for example, [3, 11, 60, 54]. Cryptology is a science that consists form two parts: cryptography and cryptanalysis. Cryp- tography is a science on methods of transformation (ciphering) of information with the purpose of a protection this information from an unlawful user. Cryptanalysis is a science on methods and ways of breaking down of ciphers ([32]). In some sense cryptography is a \defense", i.e. this is a science on construction of new ciphers, but cryptanalysis is an \attack", i.e. this is a science and some kind \art", a set of methods on breaking of ciphers. This situation is similar to situation with intelligence and contr-intelligence. These two objects (cryptography and cryptanalysis) are very closed and there does not exist a good cryptographer that do not know methods of cryptanalysis. It is clear, that cryptology depends from a level of development of a society and a level of development of technology. -
Cryptology: an Historical Introduction DRAFT
Cryptology: An Historical Introduction DRAFT Jim Sauerberg February 5, 2013 2 Copyright 2013 All rights reserved Jim Sauerberg Saint Mary's College Contents List of Figures 8 1 Caesar Ciphers 9 1.1 Saint Cyr Slide . 12 1.2 Running Down the Alphabet . 14 1.3 Frequency Analysis . 15 1.4 Linquist's Method . 20 1.5 Summary . 22 1.6 Topics and Techniques . 22 1.7 Exercises . 23 2 Cryptologic Terms 29 3 The Introduction of Numbers 31 3.1 The Remainder Operator . 33 3.2 Modular Arithmetic . 38 3.3 Decimation Ciphers . 40 3.4 Deciphering Decimation Ciphers . 42 3.5 Multiplication vs. Addition . 44 3.6 Koblitz's Kid-RSA and Public Key Codes . 44 3.7 Summary . 48 3.8 Topics and Techniques . 48 3.9 Exercises . 49 4 The Euclidean Algorithm 55 4.1 Linear Ciphers . 55 4.2 GCD's and the Euclidean Algorithm . 56 4.3 Multiplicative Inverses . 59 4.4 Deciphering Decimation and Linear Ciphers . 63 4.5 Breaking Decimation and Linear Ciphers . 65 4.6 Summary . 67 4.7 Topics and Techniques . 67 4.8 Exercises . 68 3 4 CONTENTS 5 Monoalphabetic Ciphers 71 5.1 Keyword Ciphers . 72 5.2 Keyword Mixed Ciphers . 73 5.3 Keyword Transposed Ciphers . 74 5.4 Interrupted Keyword Ciphers . 75 5.5 Frequency Counts and Exhaustion . 76 5.6 Basic Letter Characteristics . 77 5.7 Aristocrats . 78 5.8 Summary . 80 5.9 Topics and Techniques . 81 5.10 Exercises . 81 6 Decrypting Monoalphabetic Ciphers 89 6.1 Letter Interactions . 90 6.2 Decrypting Monoalphabetic Ciphers . -
The Reincarnation of Grille Cipher
The Reincarnation of Grille Cipher Jia Liu, Yan Ke, Yu Lei, Yaojie Wang, Yiliang Han Minqing Zhang, Xiaoyuan Yang Key Laboratory of Network and Information Security of PAP, Engineering University of PAP, Xi’an, 710086, China [email protected] Abstract: In order to keep the data secret, various techniques have been implemented to encrypt and decrypt the secret data. Cryptography is committed to the security of content, i.e. it cannot be restored with a given ciphertext. Steganography is to hide the existence of a communication channel in a stego. However, it has been difficult to construct a cipher (cypher) that simultaneously satisfy both channel and content security for secure communication. Inspired by the Cardan grille, this paper presents a new automated framework of grille cipher, this scheme can satisfy both content and channel security simultaneously. A simple practical cipher method called Digital Cardan Grille is proposed using semantic image inpainting. We also give the difference and connection between cryptography and steganography under this new grille cipher framework. Experimental results demonstrate the promising of the proposed method. 1 Introduction In the history of cryptography, a grille cipher was a technique for encrypting a plaintext by writing it onto a sheet of paper through a pierced sheet (of paper or cardboard or similar) [1]. The earliest known description is due to the polymath Girolamo Cardano in 1550. His proposal was for a rectangular stencil allowing single letters, or words to be written, then later read, through its various apertures. The written fragments of the plaintext could be further disguised by filling the gaps between the fragments with anodyne words or letters, as shown in Fig.1 [2]. -
Transposition Cipher in Cryptography, a Transposition Cipher Is a Method of Encryption by Which the Positions Held by Units of P
Transposition cipher In cryptography, a transposition cipher is a method of encryption by which the positions held by units of plaintext (which are commonly characters or groups of characters) are shifted according to a regular system, so that the ciphertext constitutes a permutation of the plaintext. That is, the order of the units is changed. Mathematically a bijective function is used on the characters' positions to encrypt and an inverse function to decrypt. Following are some implementations. Contents • 1 Rail Fence cipher • 2 Route cipher • 3 Columnar transposition • 4 Double transposition • 5 Myszkowski transposition • 6 Disrupted transposition • 7 Grilles • 8 Detection and cryptanalysis • 9 Combinations • 10 Fractionation Rail Fence cipher The Rail Fence cipher is a form of transposition cipher that gets its name from the way in which it is encoded. In the rail fence cipher, the plaintext is written downwards on successive "rails" of an imaginary fence, then moving up when we get to the bottom. The message is then read off in rows. For example, using three "rails" and a message of 'WE ARE DISCOVERED. FLEE AT ONCE', the cipherer writes out: W . E . C . R . L . T . E . E . R . D . S . O . E . E . F . E . A . O . C . A . I . V . D . E . N . Then reads off: WECRL TEERD SOEEF EAOCA IVDEN (The cipherer has broken this ciphertext up into blocks of five to help avoid errors.) Route cipher In a route cipher, the plaintext is first written out in a grid of given dimensions, then read off in a pattern given in the key. -
Cryptography Lecture 1 Principles and History Course Book, Examination
Cryptography Lecture 1 Principles and history Course book, examination • 12 lectures • 4 lab sessions • Written exam • The first and third labs are online, supervision will be over Zoom • The second and fourth are on campus • Keep an eye out for instructions in lisam “Cryptography” is a Greek word that means “hidden writing” Used to hide message from someone, and sometimes prevent them from creating a new message Key Key Alice Encrypt Decrypt Bob Eve “Cryptography” is a Greek word that means “hidden writing” Used to hide message from someone, and sometimes prevent them from creating a new message Key Key Alice Encrypt Decrypt Bob Eve “Cryptography” is a Greek word that means “hidden writing” Used to hide message from someone, and sometimes prevent them from creating a new message Key Key Alice Sign Verify Bob Eve The message is written using an alphabet in some language • Egyptian hieroglyphs were unreadable until the Rosetta stone was found. This contained the same text in Ancient Egyptian hieroglyphs, in Demotic script, and in ancient Greek. • For example, “Nefer” meaning “good”, “beautiful” could be written or or or in a lot of other ways, like a picture of a horse • Non-standard = Encrypted? Not really. Terminology • The plaintext is the information in its normal form • The ciphertext or cryptogram is the transformed plaintext • The secret parameter for the encryption (known only to the sender and intended recipients) is called the key • The key decides how the transformation is done Kerckhoff’s principle • A cryptosystem should be secure even if everything about the system, except the key, is public knowledge. -
A Complete Bibliography of Publications in Cryptologia
A Complete Bibliography of Publications in Cryptologia Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 04 September 2021 Version 3.64 Title word cross-reference 10016-8810 [?, ?]. 1221 [?]. 125 [?]. 15.00/$23.60.0 [?]. 15th [?, ?]. 16th [?]. 17-18 [?]. 18 [?]. 180-4 [?]. 1812 [?]. 18th (t; m)[?]. (t; n)[?, ?]. $10.00 [?]. $12.00 [?, ?, ?, ?, ?]. 18th-Century [?]. 1930s [?]. [?]. 128 [?]. $139.99 [?]. $15.00 [?]. $16.95 1939 [?]. 1940 [?, ?]. 1940s [?]. 1941 [?]. [?]. $16.96 [?]. $18.95 [?]. $24.00 [?]. 1942 [?]. 1943 [?]. 1945 [?, ?, ?, ?, ?]. $24.00/$34 [?]. $24.95 [?, ?]. $26.95 [?]. 1946 [?, ?]. 1950s [?]. 1970s [?]. 1980s [?]. $29.95 [?]. $30.95 [?]. $39 [?]. $43.39 [?]. 1989 [?]. 19th [?, ?]. $45.00 [?]. $5.95 [?]. $54.00 [?]. $54.95 [?]. $54.99 [?]. $6.50 [?]. $6.95 [?]. $69.00 2 [?, ?]. 200/220 [?]. 2000 [?]. 2004 [?, ?]. [?]. $69.95 [?]. $75.00 [?]. $89.95 [?]. th 2008 [?]. 2009 [?]. 2011 [?]. 2013 [?, ?]. [?]. A [?]. A3 [?, ?]. χ [?]. H [?]. k [?, ?]. M 2014 [?]. 2017 [?]. 2019 [?]. 20755-6886 [?, ?]. M 3 [?]. n [?, ?, ?]. [?]. 209 [?, ?, ?, ?, ?, ?]. 20th [?]. 21 [?]. 22 [?]. 220 [?]. 24-Hour [?, ?, ?]. 25 [?, ?]. -Bit [?]. -out-of- [?, ?]. -tests [?]. 25.00/$39.30 [?]. 25.00/839.30 [?]. 25A1 [?]. 25B [?]. 26 [?, ?]. 28147 [?]. 28147-89 000 [?]. 01Q [?, ?]. [?]. 285 [?]. 294 [?]. 2in [?, ?]. 2nd [?, ?, ?, ?]. 1 [?, ?, ?, ?]. 1-4398-1763-4 [?]. 1/2in [?, ?]. 10 [?]. 100 [?]. 10011-4211 [?]. 3 [?, ?, ?, ?]. 3/4in [?, ?]. 30 [?]. 310 1 2 [?, ?, ?, ?, ?, ?, ?]. 312 [?]. 325 [?]. 3336 [?, ?, ?, ?, ?, ?]. affine [?]. [?]. 35 [?]. 36 [?]. 3rd [?]. Afluisterstation [?, ?]. After [?]. Aftermath [?]. Again [?, ?]. Against 4 [?]. 40 [?]. 44 [?]. 45 [?]. 45th [?]. 47 [?]. [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Age 4in [?, ?]. [?, ?]. Agencies [?]. Agency [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?].