Boombox at Home Cipher Resource Guide

Total Page:16

File Type:pdf, Size:1020Kb

Boombox at Home Cipher Resource Guide BOOMbox at Home Cipher Resource Guide Throughout history, many different types of ciphers have been used to encode secret messages. Here is an overview of some ciphers that you can try out for yourself. Types of Ciphers Book Cipher In this cipher, the sender and receiver agree to use a specific book as a key. The sender finds each of the words in the message in the book and writes out the location (page, line, and word) of each word. The receiver can then use the book to look up the words and decode the message. It is essential that both the sender and receiver are using exactly the same edition of the book. Cardan Grille Cipher In this cipher, the sender writes out a longer piece of text containing all of the words in the message. Then, they create a template with cut outs corresponding to the locations of the words in the message. When the receiver puts the template over the text, they see the message, but when the template is removed, the text looks like normal, unrelated writing. Number Coding In this cipher, numbers are assigned to each letter of the alphabet. The sender spells out the message using the corresponding numbers. Pigpen Cipher In this cipher, symbols are assigned to each letter of the alphabet. The sender spells out the message using the corresponding symbols. Scytale In this cipher, the sender and the receiver each have cylinders that are the same size. The sender wraps a long strip of paper around the cylinder and writes the message on the wrapped paper. When unwrapped, the strip of paper appears to have a random jumble of letters, but when the receiver wraps the strip around their cylinder, they can read the message. Learn more about how to use this type of cipher in [link activity sheet]. Additional Resources Want to learn more about ciphers and cryptography? • Watch this video for a simple overview of cryptography. ​ ​ • Get information about these and other simple ciphers. ​ ​ • Check out more of the math involved in cryptography. ​ ​ What will you learn today? ​ .
Recommended publications
  • CS 241 Data Organization Ciphers
    CS 241 Data Organization Ciphers March 22, 2018 Cipher • In cryptography, a cipher (or cypher) is an algorithm for performing encryption or decryption. • When using a cipher, the original information is known as plaintext, and the encrypted form as ciphertext. • The encrypting procedure of the cipher usually depends on a piece of auxiliary information, called a key. • A key must be selected before using a cipher to encrypt a message. • Without knowledge of the key, it should be difficult, if not nearly impossible, to decrypt the resulting ciphertext into readable plaintext. Substitution Cipher • In cryptography, a substitution cipher is a method of encryption by which units of plaintext are replaced with ciphertext according to a regular system. • Example: case insensitive substitution cipher using a shifted alphabet with keyword "zebras": • Plaintext alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ • Ciphertext alphabet: ZEBRASCDFGHIJKLMNOPQTUVWXY flee at once. we are discovered! Enciphers to SIAA ZQ LKBA. VA ZOA RFPBLUAOAR! Other substitution ciphers Caesar cipher Shift alphabet by fixed amount. (Caesar apparently used 3.) ROT13 Replace letters with those 13 away. Used to hide spoilers on newsgroups. pigpen cipher Replace letters with symbols. Substitution Cipher: Encipher Example OENp(ENTE#X@EN#zNp(ENCL]pEnN7p-pE;8N]LN} dnEdNp#Nz#duN-Nu#dENXEdzE9pNCL]#L8NE;p-b @];(N0G;p]9E8N]L;GdENn#uE;p]9Nld-L/G]@]p _8NXd#|]nENz#dNp(EN9#uu#LNnEzEL;E8NXd#u# pENp(ENQELEd-@NOE@z-dE8N-LnN;E9GdENp(EN^ @E;;]LQ;N#zN<]bEdp_Np#N#Gd;E@|E;N-LnN#Gd NT#;pEd]p_8Nn#N#dn-]LN-LnNE;p-b@];(Np(]; N5#L;p]pGp]#LNz#dNp(ENCL]pEnN7p-pE;N#zN) uEd]9-D Breaking a Substitution Cipher In English, • The most common character is the space: \ ".
    [Show full text]
  • Grade 7/8 Math Circles Cryptography What Is Cryptography? Caesar Cipher
    Faculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1 Mathematics and Computing Grade 7/8 Math Circles Winter 2015 - March 24/25 Cryptography What is Cryptography? Cryptography is the study of protecting, coding, storing and transmitting information and messages so that only those who are intended to may read it. In other words, it is the study of secret messages and codes. Encryption is the conversion of messages to the secret code, called ciphertext. In order to read the information normally, one must decrypt the ciphertext, converting it back into plaintext. Today, we will look at some different types of cryptography that are used. Caesar Cipher The first ciphertext that we will look at is Caesar Cipher. This ciphertext was used by Julius Caesar so that his messages could not be read by his enemies if intercepted. The cipher is used by shifting the alphabet. We use a number which will be the amount we shift the alphabet to get the ciphertext. The following is an example of a shift of 5: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z V W X Y Z A B C D E F G H I J K L M N O P Q R S T U Notice how each letter in the ciphertext is moved over 5 letters from the plaintext. So, the word \MATHEMATICS" in ciphertext would appear as \HVOCZHVODXN". Decrypt the message \NUWJ HKRAO YDKYKHWPA" using Caesar Cipher with a shift of 4.
    [Show full text]
  • Grade 6 Math Circles Cryptography Solutions Atbash Cipher Caesar Cipher
    Faculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1 Mathematics and Computing Grade 6 Math Circles November 5/6 2019 Cryptography Solutions Hello World Khoor Zruog Hello Zruog Khoor Khoor Zruog World 1. Person A encrypts plaintext 2. Person B receives ciphertext 3. Person B decrypts ciphertext back into ciphertext into plaintext Atbash Cipher Examples 1. Encrypt \Math Circles" using the Atbash cipher. Nzgs Xrixovh 2. Decrypt \ORLM PRMT" using the Atbash cipher. LION KING Caesar Cipher Examples: Encrypt or decrypt the following messages using the shift number given in parentheses: a) Welcome to Math Circles! (5) Bjqhtrj yt Rfym Hnwhqjx! plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ciphertext F G H I J K L M N O P Q R S T U V W X Y Z A B C D E 1 b) Ljw hxd anjm cqrb? (9) Can you read this? plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ciphertext J K L M N O P Q R S T U V W X Y Z A B C D E F G H I c) What if I did a Caesar Shift of 26 units on \Welcome to Math Circles!"? A Caesar shift of 26 would be shifting by the length of the alphabet. For example I would be shifting A 26 letters to the right.
    [Show full text]
  • Loads of Codes – Cryptography Activities for the Classroom
    Loads of Codes – Cryptography Activities for the Classroom Paul Kelley Anoka High School Anoka, Minnesota In the next 90 minutes, we’ll look at cryptosystems: Caesar cipher St. Cyr cipher Tie-ins with algebra Frequency distribution Vigenere cipher Cryptosystem – an algorithm (or series of algorithms) needed to implement encryption and decryption. For our purposes, the words encrypt and encipher will be used interchangeably, as will decrypt and decipher. The idea behind all this is that you want some message to get somewhere in a secure fashion, without being intercepted by “the bad guys.” Code – a substitution at the level of words or phrases Cipher – a substitution at the level of letters or symbols However, I think “Loads of Codes” sounds much cooler than “Loads of Ciphers.” Blackmail = King = Today = Capture = Prince = Tonight = Protect = Minister = Tomorrow = Capture King Tomorrow Plaintext: the letter before encryption Ciphertext: the letter after encryption Rail Fence Cipher – an example of a “transposition cipher,” one which doesn’t change any letters when enciphered. Example: Encipher “DO NOT DELAY IN ESCAPING,” using a rail fence cipher. You would send: DNTEAIECPN OODLYNSAIG Null cipher – not the entire message is meaningful. My aunt is not supposed to read every epistle tonight. BXMT SSESSBW POE ILTWQS RIA QBTNMAAD OPMNIKQT RMI MNDLJ ALNN BRIGH PIG ORHD LLTYQ BXMT SSESSBW POE ILTWQS RIA QBTNMAAD OPMNIKQT RMI MNDLJ ALNN BRIGH PIG ORHD LLTYQ Anagram – use the letters of one word, phrase or sentence to form a different one. Example: “Meet behind the castle” becomes “These belched a mitten.” Substitution cipher – one in which the letters change during encryption.
    [Show full text]
  • CODE SCHOOL: TOP SECRET COMMUNICATIONS DURING WWII Codes and Ciphers a Code Is a Word Or Message That Is Replaced with an Agreed Code Word Or Symbol
    CODE SCHOOL: TOP SECRET COMMUNICATIONS DURING WWII Codes and Ciphers A code is a word or message that is replaced with an agreed code word or symbol. A cipher is when each letter in an alphabet is replaced with another letter, number, picture, or other symbol. Ciphers always have key that is shared among those sending and receiving the message. A coded message would be like saying, “The eagle has landed!”, while a cipher may look like this: 8-5-12-12-15. In the cipher, each letter of the alphabet has been replaced by its corresponding number (A = 1). Do you know the message? Communications during Wartime Navajo Code Talkers Humans figured out how to send secret One incredible example of transmitting secret messages a long time ago. The Greeks used messages was through the US’s use of the something we now call the Caesar cipher (the Navajo language. More than 400 Navajo alphabet is shifted so each letter is replaced by Indians served as code talkers, communicating a different one), while Spartans used a device secret messages for the U.S. Marines. These called a scytale (where a message was written Navajo servicemen were specially trained to on a piece of paper and would be read using a use their own language to communicate during special rod). battles throughout the Pacific campaign. The Navajo code used their own Navajo words to stand for English words. For example, the English word “air” was translated into the Navajo word for air. If an English word did not exist in the Navajo language, they would use Navajo words to symbolize the English word— Skytale submarine became besh-lo, meaning iron fish.
    [Show full text]
  • Grade 7 and 8 Math Circles Cryptography Introduction
    Faculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1 Mathematics and Computing Grade 7 and 8 Math Circles March 19th/20th/21st Cryptography Introduction Before we begin, it's important to look at some terminology that is important to what we will be learning about. Plaintext: The message or information a sender wishes to share with a specific person. It is very easy to read and must be somehow hidden from those that are not intended to see it. Encryption: The process of the plaintext in such a way that only authorized parties can clearly read it. Ciphertext: The text created by plaintext. It looks like gibberish and is very hard to read. Cipher: A of transforming a message to conceal its meaning. Decryption: The opposite of . It is the process of turning ciphertext back into the readable plaintext. Substitution Cipher The earliest evidence of cryptography have been found in Mesopotamian, Egyptian, Chinese, and Indian writings, but it was the Hebrew scholars of 600 to 500 BCE that began to use simple substitution ciphers. In a substitution cipher the alphabet is rewritten in some other order to represent the the substitution. Caesar Ciphers The Caesar cipher is the simplest and most famous substitution cipher. It was first used by the famous Roman general Julius Caesar, who developed it to protect important military messages. 1 To produce a Caesar cipher simply shift the alphabet some units to the right. Julius Caesar's original cipher was created by shifting the alphabet three units to the right, as shown below. plaintext A B C D E F G H I J K L M ciphertext X Y Z A B C D E F G H I J plaintext N O P Q R S T U V W X Y Z ciphertext K L M N O P Q R S T U V W When encrypting a message, match every letter in the plaintext with the corresponding ciphertext letter beneath it.
    [Show full text]
  • Proceedings of the 5Th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, Pages 1–9, Portland, OR, USA, 24 June 2011
    ACL HLT 2011 Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities LaTeCH Proceedings of the Workshop 24 June, 2011 Portland, Oregon, USA Production and Manufacturing by Omnipress, Inc. 2600 Anderson Street Madison, WI 53704 USA c 2011 The Association for Computational Linguistics Order copies of this and other ACL proceedings from: Association for Computational Linguistics (ACL) 209 N. Eighth Street Stroudsburg, PA 18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 [email protected] ISBN-13 9781937284046 ii Preface The LaTeCH (Language Technology for Cultural Heritage, Social Sciences, and Humanities) annual workshop series aims to provide a forum for researchers who are working on aspects of natural language and information technology applications that pertain to data from the humanities, social sciences, and cultural heritage. The LaTeCH workshops were initially motivated by the growing interest in language technology research and applications for the cultural heritage domain. The scope has soon nevertheless broadened to also include the humanities and the social sciences. Current developments in web and information access have triggered a series of digitisation efforts by museums, archives, libraries and other cultural heritage institutions. Similar developments in humanities and social sciences have resulted in large amounts of data becoming available in electronic format, either as digitised, or as born-digital data. The natural next step to digitisation is the intelligent processing of this data. To this end, the humanities, social sciences, and cultural heritage domains draw an increasing interest from researchers in NLP aiming at developing methods for semantic enrichment and information discovery and access.
    [Show full text]
  • Top Secret! Shhhh! Codes and Ciphers
    Top Secret! Shhhh! Codes and Ciphers 20 15 16 19 5 3 18 5 20 19 8 8 8 Can you figure out what this message says? Do you love secret codes? Do you want to be able to write messages to friends that no one else can read? In this kit you will get to try some codes and learn to code and decode messages. Materials Included in your Kit Directions and template pages Answer key for all codes in this packet starts on page 8. 1 #2 Pencil 1 Brad Fastener Tools You’ll Need from Home Scissors A Piece of Tape Terminology First let’s learn a few terms together. CODE A code is a set of letters, numbers, symbols, etc., that is used to secretly send messages to someone. CIPHER A cipher is a method of transforming a text in order to conceal its meaning. KEY PHRASE / KEY OBJECT A key phrase lets the sender tell the recipient what to use to decode a message. A key object is a physical item used to decrypt a code. ENCRYPT This means to convert something written in plain text into code. DECRYPT This means to convert something written in code into plain text. Why were codes and ciphers used? Codes have been used for thousands of years by people who needed to share secret information with one another. Your mission is to encrypt and decrypt messages using different types of code. The best way to learn to read and write in code is to practice! SCYTALE Cipher The Scytale was used by the ancient Greeks.
    [Show full text]
  • SOLVING CIPHER SECRETS Edited by M
    SOLVING CIPHER SECRETS Edited by M. E. Ghaver INTERESTED FANS SEND IN SOME LIVELY CHAT-AND SEVERAL NEW PUZZLERS ARE OFFERED FOR HUNGRY HEADS ID you ever have trouble in occasionally, notwithstanding our combined solving some particular efforts to the contrary. cipher? And did you ever This, by way of introduction, fans, to a feel like running the party sort of " get-together " celebration that we ragged that contrived the have planned in this article. affair? It's just this way. So much has been Well, that's how Frank Spalding, of received from cipher enthusiasts in the way Wrangell, Alaska, must have felt about the of interesting questions, general comments, cipher of Foster F. V. Staples, in the June ciphers, and methods of solving them, that 6 " Solving Cipher Secrets." the only adequate way to cope with the sit• " If I could have caught him last night— uation, and thus to discharge this duty to June 7," writes Mr. Spalding, " he would our readers, is for us all to get together in have had to do some tall explaining." an entire article devoted to that purpose. Nevertheless, Mr. Spalding succeeded in So let's pull up our chairs and talk things solving this cipher, as well as all the others over. It may be that your particular ques• in that issue, although he confesses that tion will not crop up. Btit in that event when he had finished the lot he was " not a you will find another case that covers the good Christian any more!" same ground more completely.
    [Show full text]
  • Cryptography
    Cryptography Well, a gentle intro to cryptography. Actually, a fairly “hand-wavy” intro to crypto (we’ll discuss why) Fall 2018 CS 334: Computer Security 1 Special Thanks: to our friends at the Australian Defense Force Academy for providing the basis for these slides Fall 2018 CS 334: Computer Security 2 Definition • Cryptology is the study of secret writing • Concerned with developing algorithms which may be used: – To conceal the content of some message from all except the sender and recipient (privacy or secrecy), and/or – Verify the correctness of a message to the recipient (authentication or integrity) • The basis of many technological solutions to computer and communication security problems Fall 2018 CS 334: Computer Security 3 Terminology • Cryptography: The art or science encompassing the principles and methods of transforming an intelligible message into one that is unintelligible, and then retransforming that message back to its original form • Plaintext: The original intelligible message • Ciphertext: The transformed message • Cipher: An algorithm for transforming an intelligible message into one that is unintelligible Fall 2018 CS 334: Computer Security 4 Terminology (cont). • Key: Some critical information used by the cipher, known only to the sender & receiver – Or perhaps only known to one or the other • Encrypt: The process of converting plaintext to ciphertext using a cipher and a key • Decrypt: The process of converting ciphertext back into plaintext using a cipher and a key • Cryptanalysis: The study of principles
    [Show full text]
  • The Reincarnation of Grille Cipher
    The Reincarnation of Grille Cipher Jia Liu, Yan Ke, Yu Lei, Yaojie Wang, Yiliang Han Minqing Zhang, Xiaoyuan Yang Key Laboratory of Network and Information Security of PAP, Engineering University of PAP, Xi’an, 710086, China [email protected] Abstract: In order to keep the data secret, various techniques have been implemented to encrypt and decrypt the secret data. Cryptography is committed to the security of content, i.e. it cannot be restored with a given ciphertext. Steganography is to hide the existence of a communication channel in a stego. However, it has been difficult to construct a cipher (cypher) that simultaneously satisfy both channel and content security for secure communication. Inspired by the Cardan grille, this paper presents a new automated framework of grille cipher, this scheme can satisfy both content and channel security simultaneously. A simple practical cipher method called Digital Cardan Grille is proposed using semantic image inpainting. We also give the difference and connection between cryptography and steganography under this new grille cipher framework. Experimental results demonstrate the promising of the proposed method. 1 Introduction In the history of cryptography, a grille cipher was a technique for encrypting a plaintext by writing it onto a sheet of paper through a pierced sheet (of paper or cardboard or similar) [1]. The earliest known description is due to the polymath Girolamo Cardano in 1550. His proposal was for a rectangular stencil allowing single letters, or words to be written, then later read, through its various apertures. The written fragments of the plaintext could be further disguised by filling the gaps between the fragments with anodyne words or letters, as shown in Fig.1 [2].
    [Show full text]
  • Cryptography Lecture 1 Principles and History Course Book, Examination
    Cryptography Lecture 1 Principles and history Course book, examination • 12 lectures • 4 lab sessions • Written exam • The first and third labs are online, supervision will be over Zoom • The second and fourth are on campus • Keep an eye out for instructions in lisam “Cryptography” is a Greek word that means “hidden writing” Used to hide message from someone, and sometimes prevent them from creating a new message Key Key Alice Encrypt Decrypt Bob Eve “Cryptography” is a Greek word that means “hidden writing” Used to hide message from someone, and sometimes prevent them from creating a new message Key Key Alice Encrypt Decrypt Bob Eve “Cryptography” is a Greek word that means “hidden writing” Used to hide message from someone, and sometimes prevent them from creating a new message Key Key Alice Sign Verify Bob Eve The message is written using an alphabet in some language • Egyptian hieroglyphs were unreadable until the Rosetta stone was found. This contained the same text in Ancient Egyptian hieroglyphs, in Demotic script, and in ancient Greek. • For example, “Nefer” meaning “good”, “beautiful” could be written or or or in a lot of other ways, like a picture of a horse • Non-standard = Encrypted? Not really. Terminology • The plaintext is the information in its normal form • The ciphertext or cryptogram is the transformed plaintext • The secret parameter for the encryption (known only to the sender and intended recipients) is called the key • The key decides how the transformation is done Kerckhoff’s principle • A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.
    [Show full text]