The Cultural Contradictions of Cryptography: a History of Secret Codes in Modern America

Total Page:16

File Type:pdf, Size:1020Kb

The Cultural Contradictions of Cryptography: a History of Secret Codes in Modern America The Cultural Contradictions of Cryptography: A History of Secret Codes in Modern America Charles Berret Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences Columbia University 2019 © 2018 Charles Berret All rights reserved Abstract The Cultural Contradictions of Cryptography Charles Berret This dissertation examines the origins of political and scientific commitments that currently frame cryptography, the study of secret codes, arguing that these commitments took shape over the course of the twentieth century. Looking back to the nineteenth century, cryptography was rarely practiced systematically, let alone scientifically, nor was it the contentious political subject it has become in the digital age. Beginning with the rise of computational cryptography in the first half of the twentieth century, this history identifies a quarter-century gap beginning in the late 1940s, when cryptography research was classified and tightly controlled in the US. Observing the reemergence of open research in cryptography in the early 1970s, a course of events that was directly opposed by many members of the US intelligence community, a wave of political scandals unrelated to cryptography during the Nixon years also made the secrecy surrounding cryptography appear untenable, weakening the official capacity to enforce this classification. Today, the subject of cryptography remains highly political and adversarial, with many proponents gripped by the conviction that widespread access to strong cryptography is necessary for a free society in the digital age, while opponents contend that strong cryptography in fact presents a danger to society and the rule of law. I argue that cryptography would not have become invested with these deep political commitments if it had not been suppressed in research and the media during the postwar years. The greater the force exerted to dissuade writers and scientists from studying cryptography, the more the subject became wrapped in an aura of civil disobedience and public need. These positive political investments in cryptography have since become widely accepted among many civil libertarians, transparency activists, journalists, and computer scientists who treat cryptography as an essential instrument for maintaining a free and open society in the digital age. Likewise, even as opponents of widespread access to strong cryptography have conceded considerable ground in recent decades, their opposition is grounded in many of the same principles that defined their stance during cryptography’s public reemergence in the 1970s. Studying this critical historical moment reveals not only the origins of cryptography’s current politics, but also the political origins of modern cryptography. Table of Contents List of Figures ii Acknowledgements iii Introduction 1 1. Cryptography and Written Culture in Nineteenth-Century America 21 2. Communication and its Limits in Cybernetics and Information Theory 70 3. Classifying Cryptography in the Postwar Years 121 4. Thinking About Information Security in the 1960s 178 5. Cryptography’s Public Reemergence in the 1970s 221 Conclusion 261 Bibliography 273 Appendix 319 Figures 322 i List of Figures Figure 1. A letter matrix used for poly-alphabetic ciphers. 277 Figure 2. Pigpen cipher inscribed on the tombstone of James Leeson in 278 Trinity Cemetery, New York, NY, 1794. Figure 3. A print designed at Riverbank Laboratory to illustrate the use 279 of the Baconian biliteral cipher in a botanical drawing. Figure 4. A second print designed at Riverbank Laboratory to illustrate 280 the use of the Baconian biliteral cipher in a botanical drawing. Figure 5. A print designed at Riverbank to illustrate the use of the 281 Baconian biliteral cipher in numerical sequences. Figure 6. Claude Shannon working at a chalkboard in the West Street 282 office of Bell Labs, New York City. Figure 7. Harold Black’s negative feedback or feedforward amplifier. 283 Figure 8. A noise measuring set in use among AT&T engineers circa early 284 twentieth century. Figure 9. The Sig-Saly encrypted telephone system. 285 Figure 10. Claude Shannon’s diagram of a communication channel and 286 its components. Figure 11. Diagram of a secrecy system and its components. 287 Figure 12. Claude Shannon’s handwritten experiment in reconstructing 288 messages through probability. Figure 13. Peter Elias’s diagram for a computer module to perform 289 probabilistic error-correction using codes derived from Shannon’s theory of communication. Figure 14. Peter Elias’s diagram to illustrate noise entering a 290 transmission, and the use of redundant codes to ensure that the message can be corrected to its original state. ii Acknowledgments My first and deepest thanks go to Michael Schudson, who advised this dissertation with wisdom, care, and patience. I was fortunate to have a second mentor in Todd Gitlin, whose intellect drove my thinking forward, and whose good judgment guided me through critical junctures. I was likewise driven by Mark Hansen’s expansive interdisciplinary knowledge, infectious curiosity, and intellectual taste. For the generosity of these three, my closest mentors, I feel inexpressibly fortunate and grateful. I have also been fortunate to study in this truly unique doctoral program, and nobody deserves more credit than Andie Tucher for building and maintaining the virtues of this program. Among the program’s other faculty, I am particularly grateful to Richard John for fostering an appreciation of archival research and its rewards. The late Frank Moretti was one of the finest teachers and one of the finest human beings I have ever known. Years later, his lessons are no less vivid. Studying with Robbie McClintock imparted the conviction that a life of scholarship is a life in service to our highest principles. And even though I never had a chance to meet the late James Carey, his work and the spirit of his work remain a living presence in the Ph.D. program he founded. Several centers and institutes across campus have given generous support to my research throughout my time at Columbia. The Brown Institute for Media Innovation has served as a home base for long stretches of my graduate work, offering both support and intellectual nourishment. Beyond Brown’s director, Mark Hansen, it has been an incredible pleasure to work alongside Michael Krisch, Rosalie Yu, David Riordan, Ann Grimes, Juan Francisco Saldarriaga, Allison McCartney, Bernd Girod, Maneesh iii Agrawala, and the Institute’s many fellows and grantees during its five inaugural years. I was also fortunate to arrive at Columbia just as Emily Bell was launching the Tow Center for Digital Journalism, and over the years she has both supported my work and invited me to assist and collaborate with her own projects. During my time at Tow, I feel especially lucky to have worked with Taylor Owen, Susan McGregor, Fergus Pitt, Claire Wardle, Nushin Rashidian, Smitha Khorana, and Pete Brown. In the broader Journalism School, I have benefitted from the kindness, support, and opportunities presented by many distinguished faculty members. Sheila Coronel, in particular, has been a strong supporter, often entrusting me with tasks well beyond my rank or prior accomplishments. Likewise, Steve Coll has generously supported my work, even contributing the preface to a study published in my fourth year. I am also grateful for the support of the Knight Foundation and the Shorenstein Center at Harvard, who have funded and promoted my work at various points. Many other teachers, at Columbia and elsewhere, have left an indelible mark on my graduate education. Casey Blake, Pablo Boczkowski, Matthew Connelly, Jonathan Crary, Lisa Gitelman, Lydia Goehr, Philip Howard, Branden Joseph, Matthew L. Jones, Mary Kinzie, Paul Kockelman, Brinkley Messick, Mara Mills, Eli Noam, Ross Posnock, Dennis Tenen, Diane Vaughan, and Mark Wigley formed a constellation of influences during my coursework. For the final stretch of writing this dissertation, I served as writer-in-residence at Yeshiva University, where I enjoyed the company of many remarkable colleagues and students as the school launched a new undergraduate program in media studies. Special thanks go to Lauren Fitzgerald, Joanne Jacobson, Liesl Schwabe, and Rachel Mesch for iv bringing me into their department and inviting me to design a completely new course centered on my own research, an opportunity rarely offered to graduate students. Over the course of writing this dissertation, I was amazed at the amount of material that resurfaced from my undergraduate years, long before I found my way to Communication and Media Studies. For this, I must thank an ensemble of world-class teachers and scholars at the University of Michigan: Fred Amrine, Edwin Curley, Sam Epstein, Allan Gibbard, Jim Joyce, Michelle Kosch, Howard Lay, Eric Lormand, Dick Mann, Alex Potts, Ian Proops, Janet Richards, the late Omry Ronen, Silke Weineck, and Rebecca Zurier. I hope they know that their dedication to undergraduate teaching really matters. My colleagues in the Communications Ph.D. program at Columbia have been an anchor of camaraderie and source of inspiration throughout my time here. I want to thank the many remarkable friends and colleagues I met here: Colin Agur, Burcu Baykurt, Gal Beckerman, Lynn Berger, Jonah Bossewitch, Kathy Brown, Deani Citra, Andrea Dixon, Rosalind Donald, Elena Egawhary, Shant Fabricatorian, Kate Fink, Max Foxman, Tom Glasier,
Recommended publications
  • Grey Noise, Dubai Unit 24, Alserkal Avenue Street 8, Al Quoz 1, Dubai
    Grey Noise, Dubai Stéphanie Saadé b. 1983, Lebanon Lives and works between Beirut, Paris and Amsterdam Education and Residencies 2018 - 2019 3 Package Deal, 1 year “Interhistoricity” (Scholarship received from the AmsterdamFonds Voor Kunst and the Bureau Broedplaatsen), In partnership with Museum Van Loon Oude Kerk, Castrum Peregrini and Reinwardt Academy, Amsterdam, Netherlands 2018 Studio Cur’art and Bema, Mexico City and Guadalajara 2017 – 2018 Maison Salvan, Labège, France Villa Empain, Fondation Boghossian, Brussels, Belgium 2015 – 2016 Cité Internationale des Arts, Paris, France (Recipient of the French Institute residency program scholarship) 2014 – 2015 Jan Van Eyck Academie, Maastricht, The Netherlands 2013 PROGR, Bern, Switzerland 2010 - 2012 China Academy of Arts, Hangzhou, China (State-funded Scholarship for post- graduate program) 2005 – 2010 École Nationale Supérieure des Beaux-Arts, Paris, France (Diplôme National Supérieur d’Arts Plastiques) Awards 2018 Recipient of the 2018 NADA MIAMI Artadia Art Award Selected Solo Exhibitions 2020 (Upcoming) AKINCI Gallery, Amsterdam, Netherlands 2019 The Travels of Here and Now, Museum Van Loon, Amsterdam, Netherlands with the support of Amsterdams fonds voor de Kunst The Encounter of the First and Last Particles of Dust, Grey Noise, Dubai L’espace De 70 Jours, La Scep, Marseille, France Unit 24, Alserkal Avenue Street 8, Al Quoz 1, Dubai, UAE / T +971 4 3790764 F +971 4 3790769 / [email protected] / www.greynoise.org Grey Noise, Dubai 2018 Solo Presentation at Nada Miami with Counter
    [Show full text]
  • ACCESSORIES and BATTERIES MTX Professional Series Portable Two-Way Radios MTX Series
    ACCESSORIES AND BATTERIES MTX Professional Series Portable Two-Way Radios MTX Series Motorola Original® Accessories let you make the most of your MTX Professional Series radio’s capabilities. You made a sound business decision when you chose your Motorola MTX Professional Series Two-Way radio. When you choose performance-matched Motorola Original® accessories, you’re making another good call. That’s because every Motorola Original® accessory is designed, built and rigorously tested to the same quality standards as Motorola radios. So you can be sure that each will be ready to do its job, time after time — helping to increase your productivity. After all, if you take a chance on a mismatched battery, a flimsy headset, or an ill-fitting carry case, your radio may not perform at the moment you have to use it. We’re pleased to bring you this collection of proven Motorola Original® accessories for your important business communication needs. You’ll find remote speaker microphones for more convenient control. Discreet earpiece systems to help ensure privacy and aid surveillance. Carry cases for ease when on the move. Headsets for hands-free operation. Premium batteries to extend work time, and more. They’re all ready to help you work smarter, harder and with greater confidence. Motorola MTX Professional Series radios keep you connected with a wider calling range, faster channel access, greater privacy and higher user and talkgroup capacity. MTX PROFESSIONAL SERIES PORTABLE RADIOS TM Intelligent radio so advanced, it practically thinks for you. MTX Series Portable MTX850 Two-Way Radios are the smart choice for your business - delivering everything you need for great business communication.
    [Show full text]
  • Bernard M. Oliver Oral History Interview
    http://oac.cdlib.org/findaid/ark:/13030/kt658038wn Online items available Bernard M. Oliver Oral History Interview Daniel Hartwig Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California November 2010 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Bernard M. Oliver Oral History SCM0111 1 Interview Overview Call Number: SCM0111 Creator: Oliver, Bernard M., 1916- Title: Bernard M. Oliver oral history interview Dates: 1985-1986 Physical Description: 0.02 Linear feet (1 folder) Summary: Transcript of an interview conducted by Arthur L. Norberg covering Oliver's early life, his education, and work experiences at Bell Laboratories and Hewlett-Packard. Subjects include television research, radar, information theory, organizational climate and objectives at both companies, Hewlett-Packard's associations with Stanford University, and Oliver's association with William Hewlett and David Packard. Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Information about Access Reproduction is prohibited. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner.
    [Show full text]
  • The NAMTA Journal
    The NAMTA Journal Back To The Future Volume 45. Number 1 May 2021 Molly OʼShaughnessy Jacqui Miller Kimberlee Belcher-Badal Ph.D. Robyn MilosGregory MacDonald Jennifer ShieldsJacquie Maughan Lena WikramaratneAudrey Sillick Gerard Leonard Kathleen Allen Jim RobbinsDeborah Bricker Dr. Maria Montessori Mario M. Montessori A.M. Joosten Mary Black Verschuur Ph.D. John McNamara David Kahn TABLE OF CONTENTS BACK TO THE FUTURE:WHY MONTESSORI STILL MATTERS …………..………….…….7 Molly O’Shaughnessy THE RETURN TO SCIENTIFIC PEDAGOGY: EMBRACING OUR ROOTS AND RESPONSIBILITIES……………………………………………………………………….33 Jacqui Miller and Kimberlee Belcher-Badal Ph.D. IN REMEMBRANCE………………………………..……………..……………………...53 Deborah Bricker TRIBUTE TO ANNETTE HAINES…………………..……………..……………………....56 Robyn Milos TRIBUTE TO KAY BAKER………………………..……………..…………………….... 59 Gregory MacDonald TRIBUTE TO JOEN BETTMANN………………..………………..………………………..62 Jennifer Shields GUIDED BY NATURE…………….…………..………….……..………………………..66 Jacquie Maughan THE CHILD IN THE WORLD OF NATURE…….………..…………………………..69 Lena Wikramaratne SOWING THE SEEDS OF SCIENCE:OUR GIFT TO THE FUTURE…………………...78 Audrey Sillick EXPERIENCES IN NATURE:RESOLUTE SECOND-PLANE DIRECTIONS……….……...88 TOWARD ERDKINDER Gerard Leonard and Kathleen Allen 2 The NAMTA Journal • Vol. 44, No. 1 • Winter 2020 ECOPSYCHOLOGY:HOW IMMERSION IN NATURE AFFECTS YOUR HEALTH……….107 TOWARD ERDKINDER Jim Robbins SILENCE AND LISTENING ……………………..………………...……..………….…….115 Gerard Leonard ABOUT THE IMPORTANCE AND THE NATURE OF THE SILENCE GAME…………………………………..………………...………………….. 117
    [Show full text]
  • NSA's Efforts to Secure Private-Sector Telecommunications Infrastructure
    Under the Radar: NSA’s Efforts to Secure Private-Sector Telecommunications Infrastructure Susan Landau* INTRODUCTION When Google discovered that intruders were accessing certain Gmail ac- counts and stealing intellectual property,1 the company turned to the National Security Agency (NSA) for help in securing its systems. For a company that had faced accusations of violating user privacy, to ask for help from the agency that had been wiretapping Americans without warrants appeared decidedly odd, and Google came under a great deal of criticism. Google had approached a number of federal agencies for help on its problem; press reports focused on the company’s approach to the NSA. Google’s was the sensible approach. Not only was NSA the sole government agency with the necessary expertise to aid the company after its systems had been exploited, it was also the right agency to be doing so. That seems especially ironic in light of the recent revelations by Edward Snowden over the extent of NSA surveillance, including, apparently, Google inter-data-center communications.2 The NSA has always had two functions: the well-known one of signals intelligence, known in the trade as SIGINT, and the lesser known one of communications security or COMSEC. The former became the subject of novels, histories of the agency, and legend. The latter has garnered much less attention. One example of the myriad one could pick is David Kahn’s seminal book on cryptography, The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet.3 It devotes fifty pages to NSA and SIGINT and only ten pages to NSA and COMSEC.
    [Show full text]
  • By Jennifer M. Fogel a Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
    A MODERN FAMILY: THE PERFORMANCE OF “FAMILY” AND FAMILIALISM IN CONTEMPORARY TELEVISION SERIES by Jennifer M. Fogel A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Communication) in The University of Michigan 2012 Doctoral Committee: Associate Professor Amanda D. Lotz, Chair Professor Susan J. Douglas Professor Regina Morantz-Sanchez Associate Professor Bambi L. Haggins, Arizona State University © Jennifer M. Fogel 2012 ACKNOWLEDGEMENTS I owe my deepest gratitude to the members of my dissertation committee – Dr. Susan J. Douglas, Dr. Bambi L. Haggins, and Dr. Regina Morantz-Sanchez, who each contributed their time, expertise, encouragement, and comments throughout this entire process. These women who have mentored and guided me for a number of years have my utmost respect for the work they continue to contribute to our field. I owe my deepest gratitude to my advisor Dr. Amanda D. Lotz, who patiently refused to accept anything but my best work, motivated me to be a better teacher and academic, praised my successes, and will forever remain a friend and mentor. Without her constructive criticism, brainstorming sessions, and matching appreciation for good television, I would have been lost to the wolves of academia. One does not make a journey like this alone, and it would be remiss of me not to express my humble thanks to my parents and sister, without whom seven long and lonely years would not have passed by so quickly. They were both my inspiration and staunchest supporters. Without their tireless encouragement, laughter, and nurturing this dissertation would not have been possible.
    [Show full text]
  • 1925-1926 Baconiana No 68-71.Pdf
    m ■ lilSl « / , . t ! i■ i J l Vol. XVIII. Third Series. Comprising March & Dec. 1925, April & Dec., 1926. BACONIAN A -A ^Periodical ^ttagazine 1 5 [ T ) ) l l 7 LONDON: > GAY & HANCOCK, Limited, \ 12 AND 13, HENRIETTA ST., STRAND, W .C. I927 ‘ ’ Therefore we shall make our judgment upon the things themselves as they give light one to another and, as we can, dig Truth out of the mine.”—Francis Bacon r '■ CONTENTS. MARCH, 1925. page. The 364th Anniversary Dinner 1 Who was Shakespeare ? 10 The Eternal Controversy about Shakespeare 15 Shakespeare’s ‘ 'Augmentations’'. 18 An Historical Sketch of Canonbury Tower. 26 Shakespeare—Bacon’s Happy Youthful Life 37 ' 'Notions are the Soul of Words’' 43 Cambridge University and Shakespeare 52 Reports of Meetings 55 Sir Thomas More Again .. 60 George Gascoigne 04 Book Notes, Notes, etc. 67 DECEMBER, 1925. Biographers of Bacon 73 Bacon the Expert on Religious Foundations S3 ‘ ‘Composita Solvantur’ ’ . 90 Notes on Anthony Bacon’s Passports of 1586 93 The Shadow of Bacon’s Mind 105 Who Wrote the “Shakespeare” play, Henry VIII ? 117 Shakespeare and the Inns of Court 127 Book Notices 133 Correspondence .. 134 Notes and Notices 140 APRIL, 1926. Introduction to the Tercentenary Number r45 Introduction by Sir John A. Cockburn M7 The “Manes Verulamiani’' (in Latin and English), with Notes 157 Bacon and Seats of Learning 203 Francis Bacon and Gray’s Inn 212 Bacon and the Drama 217 Bacon as a Poet 227 Bacon on Himself 230 Bacon’s Friends and Critics 237 Bacon in the Shadow 259 Bacon as a Cryptographer 267 Appendix 269 Pallas Athene 272 Book Notices, Notes, etc.
    [Show full text]
  • Claude Elwood Shannon (1916–2001) Solomon W
    Claude Elwood Shannon (1916–2001) Solomon W. Golomb, Elwyn Berlekamp, Thomas M. Cover, Robert G. Gallager, James L. Massey, and Andrew J. Viterbi Solomon W. Golomb Done in complete isolation from the community of population geneticists, this work went unpublished While his incredibly inventive mind enriched until it appeared in 1993 in Shannon’s Collected many fields, Claude Shannon’s enduring fame will Papers [5], by which time its results were known surely rest on his 1948 work “A mathematical independently and genetics had become a very theory of communication” [7] and the ongoing rev- different subject. After his Ph.D. thesis Shannon olution in information technology it engendered. wrote nothing further about genetics, and he Shannon, born April 30, 1916, in Petoskey, Michi- expressed skepticism about attempts to expand gan, obtained bachelor’s degrees in both mathe- the domain of information theory beyond the matics and electrical engineering at the University communications area for which he created it. of Michigan in 1936. He then went to M.I.T., and Starting in 1938 Shannon worked at M.I.T. with after spending the summer of 1937 at Bell Tele- Vannevar Bush’s “differential analyzer”, the an- phone Laboratories, he wrote one of the greatest cestral analog computer. After another summer master’s theses ever, published in 1938 as “A sym- (1940) at Bell Labs, he spent the academic year bolic analysis of relay and switching circuits” [8], 1940–41 working under the famous mathemati- in which he showed that the symbolic logic of cian Hermann Weyl at the Institute for Advanced George Boole’s nineteenth century Laws of Thought Study in Princeton, where he also began thinking provided the perfect mathematical model for about recasting communications on a proper switching theory (and indeed for the subsequent mathematical foundation.
    [Show full text]
  • Security Guide for Cisco Unified Communications Manager, Release 11.0(1) First Published: 2015-06-08
    Security Guide for Cisco Unified Communications Manager, Release 11.0(1) First Published: 2015-06-08 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • Harris Sierra II, Programmable Cryptographic
    TYPE 1 PROGRAMMABLE ENCRYPTION Harris Sierra™ II Programmable Cryptographic ASIC KEY BENEFITS When embedded in radios and other voice and data communications equipment, > Legacy algorithm support the Harris Sierra II Programmable Cryptographic ASIC encrypts classified > Low power consumption information prior to transmission and storage. NSA-certified, it is the foundation > JTRS compliant for the Harris Sierra II family of products—which includes two package options for the ASIC and supporting software. > Compliant with NSA’s Crypto Modernization Program The Sierra II ASIC offers a broad range of functionality, with data rates greater than 300 Mbps, > Compact form factor legacy algorithm support, advanced programmability and low power consumption. Its software programmability provides a low-cost migration path for future upgrades to embedded communications equipment—without the logistics and cost burden normally associated with upgrading hardware. Plus, it’s totally compliant with all Joint Tactical Radio System (JTRS) and Crypto Modernization Program requirements. The Sierra II ASIC’s small size, low power requirements, and high data rates make it an ideal choice for battery-powered applications, including military radios, wireless LANs, remote sensors, guided munitions, UAVs and any other devices that require a low-power, programmable solution for encryption. Specifications for: Harris SIERRA II™ Programmable Cryptographic ASIC GENERAL BATON/MEDLEY SAVILLE/PADSTONE KEESEE/CRAYON/WALBURN Type 1 – Cryptographic GOODSPEED Algorithms* ACCORDION FIREFLY/Enhanced FIREFLY JOSEKI Decrypt High Assurance AES DES, Triple DES Type 3 – Cryptographic AES Algorithms* Digital Signature Standard (DSS) Secure Hash Algorithm (SHA) Type 4 – Cryptographic CITADEL® Algorithms* SARK/PARK (KY-57, KYV-5 and KG-84A/C OTAR) DS-101 and DS-102 Key Fill Key Management SINCGARS Mode 2/3 Fill Benign Key/Benign Fill *Other algorithms can be added later.
    [Show full text]
  • On Security and Privacy for Networked Information Society
    Antti Hakkala On Security and Privacy for Networked Information Society Observations and Solutions for Security Engineering and Trust Building in Advanced Societal Processes Turku Centre for Computer Science TUCS Dissertations No 225, November 2017 ON SECURITY AND PRIVACY FOR NETWORKED INFORMATIONSOCIETY Observations and Solutions for Security Engineering and Trust Building in Advanced Societal Processes antti hakkala To be presented, with the permission of the Faculty of Mathematics and Natural Sciences of the University of Turku, for public criticism in Auditorium XXII on November 18th, 2017, at 12 noon. University of Turku Department of Future Technologies FI-20014 Turun yliopisto 2017 supervisors Adjunct professor Seppo Virtanen, D. Sc. (Tech.) Department of Future Technologies University of Turku Turku, Finland Professor Jouni Isoaho, D. Sc. (Tech.) Department of Future Technologies University of Turku Turku, Finland reviewers Professor Tuomas Aura Department of Computer Science Aalto University Espoo, Finland Professor Olaf Maennel Department of Computer Science Tallinn University of Technology Tallinn, Estonia opponent Professor Jarno Limnéll Department of Communications and Networking Aalto University Espoo, Finland The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service ISBN 978-952-12-3607-5 (Online) ISSN 1239-1883 To my wife Maria, I am forever grateful for everything. Thank you. ABSTRACT Our society has developed into a networked information soci- ety, in which all aspects of human life are interconnected via the Internet — the backbone through which a significant part of communications traffic is routed. This makes the Internet ar- guably the most important piece of critical infrastructure in the world.
    [Show full text]
  • Pioneers in U.S. Cryptology Ii
    PIONEERS IN U.S. CRYPTOLOGY II This brochure was produced by the Center for Cryptologic History Herbert 0. Yardley 2 Herbert 0. Yardley Herbert 0 . Yardley was born in 1889 in Worthington, Indiana. After working as a railroad telegrapher and spending a year taking an English course at the University of Chicago, he became a code clerk for the Department of State. In June 1917, Yardley received a commission in the Signal Officers Reserve Corps; in July Colonel Ralph Van Deman appointed him chief of the new cryptanalytic unit, MI-8, in the Military Intelligence division. MI-8, or the Cipher Bureau, consisted of Yardley and two clerks. At MI-8's peak in November 1918, Yardley had 18 officers, 24 civilians, and 109 typists. The section had expanded to include secret inks, code and cipher compilation, communications, and shorthand. This was the first formally organized cryptanalytic unit in the history of the U.S. government. When World War I ended, the Army was considering disbanding MI-8. Yardley presented a persuasive argument for retaining it for peacetime use. His plan called for the permanent retention of a code and cipher organization funded jointly by the State and War Departments. He demonstrated that in the past eighteen months MI-8 had read almost 11,000 messages in 579 cryptographic systems. This was in addition to everything that had been examined in connection with postal censorship. On 17 May Acting Secretary of State Frank L. Polk approved the plan, and two days later the Army Chief of Staff, General Peyton C.
    [Show full text]