Duplication of the Median Cubital Vein – Case Report with Commentaries on Clinical Significance

Total Page:16

File Type:pdf, Size:1020Kb

Duplication of the Median Cubital Vein – Case Report with Commentaries on Clinical Significance Translational Research in Anatomy 24 (2021) 100114 Contents lists available at ScienceDirect Translational Research in Anatomy journal homepage: www.elsevier.com/locate/tria Duplication of the median cubital vein – Case report with commentaries on clinical significance _ a b,c,d,e b,d,f g Andrzej Zytkowski , R. Shane Tubbs , Joe Iwanaga , Agata Olszewska , Beata Kunikowska h, Grzegorz Wysiadecki g,* a Faculty of Philology, Department of Polish Dialectology and Logopedics, University of Lodz, Poland b Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA c Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, USA d Department of Neurology, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA e Department of Anatomical Sciences, Saint-George’s University, Grenada, West Indies f Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, Fukuoka, Japan g Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Lodz, Poland h Department of Nursing Theory and Skills in Nursing, Chair of Nursing Teaching, Medical University of Lodz, Poland ARTICLE INFO ABSTRACT Keywords: The median cubital vein is the most prominent superficialvein in the cubital region and usually the most clearly Anatomical variation outlined vein in the entire human body. It can be found quite easily, even in obese, swollen, or shocked patients. Bicipital aponeurosis It runs diagonally upwards, leaving the cephalic vein and traveling medially to the basilic vein. Topographical Cubital fossa relationships make the vein particularly convenient for access in various procedures such as venous punctures. Medial cutaneous nerve of the forearm However, high-risk procedures are usually performed in other areas because unusual anatomical variations are Median cubital vein Superficial veins possible. A detailed anatomical description of an unusual variant of median cubital vein duplication is presented Venipuncture in this report, including its communications with deep veins and topographical relationships to the bicipital aponeurosis, brachial artery, medial cutaneous nerve of the forearm, and the median nerve. The potential clinical significance of this variant is discussed. 1. Introduction against a physician’s knife during phlebotomy, which gave this structure the nickname grace^ a` Dieu fascia (“Praise God for her”) [2]. Even now, The median cubital vein (Latin vena mediana cubiti) is the most topographical relationships make this vein particularly convenient for prominent superficial vein in the cubital region and usually the most access in a range of procedures such as venipunctures or intravenous clearly outlined vein in the entire human body. It transfers blood from cannulation [4,5]. The median cubital vein can also be used for surgical the radial to the ulnar side of the forearm. It can be found quite easily, creation of arteriovenous fistulas for hemodialysis [6]. Therefore, even in obese, swollen, or shocked patients [1,2]. It runs diagonally medical practitioners should be aware of potential anatomical variations upwards, departing from the cephalic vein and traveling medially to the in the cubital fossa [4–13]. basilic vein. It also anastomoses with deep veins. Owing to those com­ A detailed anatomical description of an unusual variant of median munications it fillswith blood quickly, facilitating the collection of even cubital vein duplication is presented in this report, including its com­ large blood samples for diagnostic purposes [1]. From the practical point munications with deep veins and topographical relationships to the of view, it is crucial that the median cubital vein lies in front of the bicipital aponeurosis, brachial artery and medial cutaneous nerve of the brachial artery, separated by a thickened bicipital aponeurosis (also forearm, and the median nerve. The potential clinical significanceof this known as lacertus fibrosus) [3]. Straightening the elbow joint tightens variant is discussed. this aponeurosis, further increasing the safety of the vessel. In historical times, the bicipital aponeurosis was the only protection of the artery * Corresponding author. Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Lodz, ul. Zeligowskiego_ 7/9, 90–752 Łod´ ´z, Poland. E-mail address: [email protected] (G. Wysiadecki). https://doi.org/10.1016/j.tria.2021.100114 Received 30 January 2021; Accepted 5 February 2021 Available online 11 February 2021 2214-854X/© 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Pobrano z https://publicum.umed.lodz.pl / Downloaded from Repository of Medical University of Lodz 2021-10-01 _ A. Zytkowski et al. Translational Research in Anatomy 24 (2021) 100114 2. Case description vein on the lateral side of the cubital fossa (Figs. 1 and 2). It ran anterior to the radial artery with accompanying veins in its initial course. It then The anatomical variation described in this report was an incidental crossed over the distal part of the bicipital aponeurosis and the brachial finding during routine dissection of an isolated right male upper limb artery with accompanying veins (separated from those structures by the fixed in 10% formalin with phenol. The neurovascular structures were bicipital aponeurosis). It also crossed the median nerve, medially to the dissected following classical gross anatomical dissection methods. bicipital aponeurosis. It was separated from the nerve only by the thin Stratigraphic dissection of was performed according to previously antebrachial fascia. The medial cutaneous nerve of the forearm crossed described protocols [14–16]. those veins anteriorly, just at the point where the vein opened into the After the skin and subcutaneous fat tissue were removed, the pattern basilic vein. of subcutaneous veins was revealed (Fig. 1). A single cephalic vein The second median cubital vein originated slightly superior to the traveled along the lateral border of the forearm on the external surface first (Figs. 1 and 2). It anastomosed with the veins accompanying the of the brachioradialis muscle. The basilic vein was also single and radial artery, piercing the antebrachial fascia. It ran obliquely in front of coursed on the medial side of the forearm. Within the cubital fossa, it the bicipital aponeurosis, but it was not adjacent to the brachial vessels anatomosed with the venous network in the region of the elbow. at this point. It crossed over to the brachial artery with accompanying Dissection of the cubital fossa revealed duplication of the median cubital veins and the median nerve at the level of the interepicondylar line of vein (Figs. 1 and 2). The first,dominant median cubital vein arose from the humerus, medially to the bicipital aponeurosis, separated from those the cephalic vein in the proximal quarter of the forearm, ran along the structures by a thin fascia. The medial cutaneous nerve of the forearm superolateral border of the pronator teres muscle, and joined the basilic also crossed over the second median cubital vein at the point where it emptied into the basilic vein. After receiving both median cubital veins, the basilic vein pierced the brachial fascia and then accompanied the brachial vessels. It joined one of the brachial veins (the medial one) in the middle of the arm length (Fig. 2b). 3. Discussion According to Bergman et al. [8], the median cubital vein is remarkably constant and can be identifiedin 84% of cases. In one study, the cephalic vein failed to give rise to the median cubital vein in only four of 300 cases [8]. The median cubital vein can receive the median antebrachial vein as a tributary. It can also be doubled. In such in­ stances, an accessory median cubital vein is found proximal to the main trunk, as in the case presented in this report. Yammine and Eri´c [9], in their meta-analysis of patterns of the superficial veins of the cubital fossa, found that the prevalence of median cubital vein duplications reported by different authors ranges from 0.6% to 8.5%. However, Berry and Newton reported that 16% of cases show this variation [17]. The arrangement and prevalence of different variants of superficial veins in the upper limb are highly variable. Yammine and Eri´c [9] stress the proximity of those veins to adjacent arteries and nerves. According to those authors, several arrangements of the superficial veins can be distinguished, two variants being most common. Type “M” (also called “classical” or “Y” type) is the variant in which the median antebrachial vein is divided into two terminal channels, the median cephalic and median basilic veins (the latter corresponds to the median cubital vein in this type) [9]. The prevalence of this type reported by various authors ranges from 0.78% to 56.13% [9]. Type “N” (also described as “embryonal type” or type “H”) is the most common pattern, with a prevalence ranging from 9% to 98% [9]. In this variant, the median antebrachial vein is thin and opens into the median cubital vein, which connects the cephalic and basilic veins in the cubital region. Duplication of the median cubital vein resembles type “N,” in which an accessory venous channel appears. On the basis of their study, Pires et al. [5] describe duplication of the median cubital vein as the least observed pattern. Those authors found no such variant in one hundred healthy individuals. The relationships of the median cubital vein to the bicipital aponeurosis, brachial artery, and median nerve are highly variable. Fig. 1. Duplication of the median cubital vein. Wet specimen of the isolated They are crucial from the clinical point of view. Typically, the bicipital right upper extremity. General view. The quality of the specimen was affected aponeurosis separates the median cubital vein from the brachial artery by phenol as a preservative. Phenol oxidizes, causing the brownish color of the [1,2].
Recommended publications
  • DVT Upper Extremity
    UT Southwestern Department of Radiology Ultrasound – Upper Extremity Deep Venous Thrombosis Evaluation PURPOSE: To evaluate the upper extremity superficial and deep venous system for patency. SCOPE: Applies to all ultrasound venous Doppler studies of the lower extremities in Imaging Services / Radiology EPIC ORDERABLE: • UTSW: US DOPPLER VENOUS DVT UPPER EXTREMITY BILATERAL US DOPPLER VENOUS DVT UPPER EXTREMITY RIGHT US DOPPLER VENOUS DVT UPPER EXTREMITY LEFT • PHHS: US DOPPLER VENOUS DVT UPPER EXTREMITY BILATERAL US DOPPLER VENOUS DVT UPPER EXTREMITY RIGHT US DOPPLER VENOUS DVT UPPER EXTREMITY LEFT INDICATIONS: • Symptoms such as upper extremity swelling, pain, fever, warmth, change in color, palpable cord • Suspected venous occlusion, or DVT based on clinical prediction rules (eg. Well’s score or D- Dimer) • Indwelling or recent PICC or central line • Chest pain and/or shortness of breath • Suspected or known pulmonary embolus • Follow-up known deep venous thrombosis (DVT) CONTRAINDICATIONS: No absolute contraindications EQUIPMENT: Preferably a linear array transducer that allows for appropriate resolution of anatomy (frequency range of 9 mHz or greater), capable of duplex imaging. Sector or curvilinear transducers may be required for appropriate penetration in patients with edema or large body habitus. PATIENT PREPARATION: • None EXAMINATION: GENERAL GUIDELINES: A complete examination includes evaluation of the superficial and deep venous system of the upper extremity including the internal jugular, innominate, subclavian, axillary, paired brachial, basilic, and cephalic veins. EXAM INITIATION: • Introduce yourself to the patient • Verify patient identity using patient name and DOB • Explain test • Obtain patient history including symptoms. Enter and store data page US DVT Upper Extremity 05-31-2020.docx 1 | Page Revision date: 05-31-2020 UT Southwestern Department of Radiology • Place patient in supine position with arm extended TECHNICAL CONSIDERATIONS: • Review any prior imaging, making note of any previous thrombus burden.
    [Show full text]
  • Brachial Artery
    VASCULAR Anatomy of the upper limb Dr Jamila EL M edany & Dr. Essam Eldin Salama Objectives At the end of the lecture, the students should be able to: • Identify the origin of the vascular supply for the upper limb. • Describe the main arteries and their branches of the arm, forearm & hand. • Describe the vascular arches for the hand. • Describe the superficial and deep veins of the upper limb Arteries Of The Upper Limb Right subclavian Left subclavian artery artery Axillary artery Brachial artery Ulnar artery Radial artery Palmar arches The Subclavian Artery The right artery originates from the brachiocephalic artery. The left artery Cotinues as originates from Axillary artery at the arch of the the lateral border aorta of the 1st rib The Axillary Artery Begins at the lateral border of the st 1 rib as continuation of the Subclavian artery subclavian artery. Continues as brachial artery at lower border of teres major muscle. Is closely related to the cords of brachial plexus and their branches Is enclosed within the axillary sheath. Is crossed anteriorly by the pectoralis minor muscle, and is st nd divided into three parts; 1 , 2 & Brachial artery Axillary artery 3rd. The 1st part of the axillary artery . Extends from the lateral st border of 1 rib to upper 1st part border of the pectoralis 2nd part minor muscle. Highest thoracic artery a. Related: 3rd part Pectoralis • Anterioly: to the minor pectoralis major muscle • Laterally: to the cords Teres of the brachial plexus. major . It gives; ONE branch: Highest thoracic artery The 2nd part of the axillary artery .
    [Show full text]
  • Brachial Vein Transposition with Consecutive Skin Incisions in a Hemodialysis Patient with Absence of Adequate Superficial Veins: a Case Report
    Original Article Case Report Case Vascular Specialist International Vol. 36, No. 4, December 2020 pISSN 2288-7970 • eISSN 2288-7989 Brachial Vein Transposition with Consecutive Skin Incisions in a Hemodialysis Patient with Absence of Adequate Superficial Veins: A Case Report Pouya Tayebi1, Fatemeh Mahmoudlou2, Yasaman Daryabari2, and Atefeh Shamsian3 1Department of Vascular and Endovascular Surgery, Rouhani Hospital, Babol University of Medical Sciences, Babol, 2Student Research Committee, Babol University of Medical Sciences, Babol, 3MSc student in nursing, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences,Tehran, Iran The creation of an arteriovenous fistula instead of a synthetic vascular graft is a Received September 24, 2020 Revised November 5, 2020 smart decision in hemodialysis patients who do not have a suitable superficial vein. Accepted November 30, 2020 Basilic vein transposition (BVT) is a viable option in most cases, except in patients who do not have a proper basilic vein. In patients with inadequate superficial veins, another source of the autogenous vein is the brachial vein, a deep vein of the up- per arm. Most surgeons choose a full medial arm incision to perform brachial vein Corresponding author: Pouya Tayebi exploration. We describe a patient in whom BVT was not possible and so brachial Department of Vascular and Endovascular Surgery, Rouhani Hospital, Babol University vein transposition using skip incisions was performed, with good results. of Medical Sciences, Keshavarz Boulevard,
    [Show full text]
  • View, There Is No Doubt That the Elbow Should Be Reduced and Repositioned As Soon As the Diagnosis
    ACTA SCIENTIFIC MEDICAL SCIENCES (ISSN: 2582-0931) Volume 4 Issue 1 January 2020 Case Report Use of A Brachial Vein Conduit and A Rotational Skin Flap Graft Repairing A Vascular Trauma Yuniel Hernandez Castillo* Consultant Angiologist and Vascular Surgeon, General Surgery, Milton Cato Memorial Hospital, Saint Vincent and the Grenadines, Caribbean *Corresponding Author: Yuniel Hernandez Castillo, Consultant Angiologist and Vascular Surgeon, General Surgery, Milton Cato Memorial Hospital, Saint Vincent and the Grenadines, Caribbean. Received: November 22, 2019; Published: December 04, 2019 DOI: 10.31080/ASMS.2020.04.0492 Abstract Introduction: Elbow dislocations are sometimes associated with neurovascular injuries where brachial artery is the most frequently injured artery requiring emergency and adequate often complex surgical treatment in order to manage their severe complications. The literature consists of only a few limited case reports on associated vascular or neurovascular injuries resulting from this type of trauma with no reference to the particular techniques we combined to treat our patient. Presentation of Case: We present a Brachial Artery reconstruction in a 31-year-old patient with an Open Complex Right Elbow Dislocation. In the Clinical and Surgical Examination an open wound in the Anterior-Medial Right Antecubital Fossa presented with to-End Anastomosis was conducted using an Autologous Reverse Brachial Vein Conduit graft from the ipsilateral arm under General accompanying Brachial Pedicle all structures Transection was confirm. To repair the Brachial Artery a Substitution By-Pass and End- Anesthesia. For the Wound Closure a Rotational Skin and subcutaneous Fat Flap Graft. Postoperative patient progress, it was suc- cessful developing no Systemic Complications nor Ischemic Signs in the Right Upper Limb being discharge for Out-Patient follow-up through the By-pass and distal limb.
    [Show full text]
  • Vascular / Endovascular Surgery Vascular / Endovascular Surgery Combat Manual Combat Manual
    Vascular / Endovascular Surgery / Endovascular Vascular Vascular / Endovascular Surgery Combat Manual Combat Manual Combat W. L. Gore & Associates, Inc. Flagstaff, AZ 86004 +65.67332882 (Asia Pacific) 800.437.8181 (United States) 00800.6334.4673 (Europe) 928.779.2771 (United States) goremedical.com Stone Stone AbuRahma Campbell GORE®, EXCLUDER®, TAG®, VIABAHN®, and designs are trademarks of W. L. Gore & Associates. AbuRahma © 2012, 2013 W. L. Gore & Associates, Inc. AS0315-EN1 JULY 2013 Campbell Compliments of W. L. Gore & Associates, Inc. This publication, compliments of W. L. Gore & Associates, Inc. (Gore), is intended to serve as an educational resource for medical students, residents, and fellows pursuing training in vascular and endovascular surgery. Readers are reminded to consult appropriate references before engaging in any patient diagnosis, treatment, or surgery, including Prescribing Information (including boxed warnings and medication guides), Instructions for Use, and other applicable current information available from manufacturers. Gore products referenced within are used within their FDA approved / cleared indications. Gore does not have knowledge of the indications and FDA approval / clearance status of non-Gore products, and Gore does not advise or recommend any surgical methods or techniques other than those described in the Instructions for Use for its devices. Gore makes no representations or warranties as to the PERCLOSE®, PROSTAR®, SPARTACORE®, STARCLOSE®, and SUPRACORE® are trademarks of Abbott Laboratories. surgical techniques, medical conditions, or other factors that OMNI FLUSH and SIMMONS SIDEWINDER are trademarks of AngioDynamics. ICAST is a trademark of Atrium Medical Corporation. ASPIRIN® is a trademark of Bayer HealthCare, LLC. MORPH® is a trademark of BioCardia, may be described in this publication.
    [Show full text]
  • 33. Vessels of the Upper Limb
    BOGOMOLETS NATIONAL MEDICAL UNIVERSITY Department of Human Anatomy GUIDELINES Academic discipline HUMAN ANATOMY Module № 2 The theme of the lesson The vessels of the upper limb. Course І Faculties Medical 1,2,3,4, military, dental The number of hours 3 2017 1. Theme relevance: The anatomy of the shoulder and arm are very importance, because without the knowledge about peculiarities and variants of structure, form, location and mutual location of their anatomical structures, their age-specific it is impossible to diagnose in a proper time and correctly and to prescribe a necessary treatment to the patient. Surgeons and traumatologists usually pay much attention to the anatomy of the upper extremities. 2. Specific objectives: Describe, classify, analizy blood vessels of the scapular waist and forearm. a. axillaris –determine the borders of axillary artery, designate and demonstrate the branches axillary artery a.brachialis- determine the meatus, borders, branches . a. profunda brachii- branches. a.ulnaris- determine the borders, branches. a.radialis- determine the borders. Know the v.cephalica, basilica, mediana cubiti. 3. Basic level of preparation, including a knowledge of osteology, myology. The student should know the anatomy of the course: the structure, classification of the tubular bones of the upper limb, muscles of the arm and forearm, classification of the junction of the bones of the skeleton. To know peculiarities and variants of structure, form, location of upper extremities. 4. Tasks for independent work during preparation for classes. Magistral artery of the upper limb a.axillaris, a.brachalis, a.ulnaris, a.radial, superficial palmar arch, general digital palmar artery, proper palmar digital artery, deep palmar arch, palmar metacarpal artery.
    [Show full text]
  • Of the Elbow Veins
    DUPLEX PRE OPERATIVE MAPPING APPLICABILITY OF PERCUTANEOUS AVF CREATION BASED ON A PROSPECTIVE ULTRASOUND EVALUATION G.FRANCO CLINIQUE ARAGO PARIS Disclosure Speaker name: G. FRANCO ................................................................................. I have the following potential conflicts of interest to report: Consulting Employment in industry Shareholder in a healthcare company Owner of a healthcare company Other(s) + I do not have any potential conflict of interest AVF at wrist is the first option for vascular access creation (KDOQI, EBPG) despite: High early thrombosis and non-maturation rate ranging from 5 to 50% PERFORATING VEIN AT CUBITAL FOSSA Valuable resource for the creation of a vascular access Surprisingly it doesn’t take any place in the recommendations of AVF creation WHEREAS Easy to perform surgically or now better PERCUTANEOUSLY Allows future construction of AVF using the predilated veins if necessary: CV-BV -BR VEINS Percutaneous AVF creation with ELLIPSIS® vascular access system between deep communicating vein (DCV) and proximal radial artery (PRA) Needs to meet specific anatomic criteria The specific study of the deep communicating vein( DCV) at the elbow is not part of the USUAL VASCULAR MAPPING Except when it is the only drainage of the veins of the forearm BUT NOW The advent of percutaneous AVF creation MAKES THIS STUDY MANDATORY Knowledge of the venous arrangements of the cubital fossa may imply better outcomes and lower complications rates of the procedure THE ASSESSMENT BEFORE PERCUTANEOUS AV FISTULA IS FOCUSED ON THE ANTECUBITAL FOSSA. SPECIFIC EXAMINATION INCLUDES -DCV WALL QUALITY & Ø -DISTRIBUTION OF VENOUS M -PATENCY of CV/BV -RELATIONSHIP WITH THE PRA QUALITY OF PRA WALL and Ø -PATENCY OF BRACHIAL VEINS • SPONTANEOUS DRAINAGE FLOW • TOURNIQUET ABOVE THE ELBOW AND PROXIMAL • DRAINAGE TEST BELOW THE TOURNIQUET RA [BA] Calcifications downstream ∅ :2.8 mm -15mm with normal wall Proximal radial artery is about 30% bigger than distal radial artery .
    [Show full text]
  • Upper Limb- Part II
    Upper limb- Part II Muscles, Nerves and Arteries of the Arm Brachial fascia (deep fascia of the arm) Brachial fascia is a continuation of the pectoral and axillary fasciae and passes in the antebrachial fascia Brachial fascia sends 2 intermuscular septa (lateral and medial) dividing the arm into 2 compartments: Anterior compartment of arm Posterior compartment of arm Muscles of the arm Muscles of the anterior compartment of arm (flexors)- innervated by musculocutaneous nerve Coracobrachialis Biceps brachii Brachialis Muscles of the posterior compartment of arm (extensors)- innervated by radial nerve Triceps brachii Anconeus Coracobrachialis Muscles of the anterior compartment of arm Coracobrachialis Attachments Origin • Coracoid process of scapula Insertion • Medial third of medial surface of humerus body Innervation Musculocutaneous nerve which pierces its belly Muscles of the anterior compartment of arm Coracobrachialis Main action Resists downward dislocation of the head of humerus, especially during carrying heavy objects Flexion and adduction in the glenohumeral joint Biceps brachii Muscles of the anterior compartment of arm Biceps brachii Its proximal part is divided into 2 heads Short head Long head Origin of the short head Coracoid process of scapula Origin of the long head Supraglenoid tubercle of scapula Its tendon occupies intertubercular groove and is situated within the shoulder joint Insertion of the entire muscle Radial tuberosity (tendon situated within the cubital fossa) Bicipital aponeurosis
    [Show full text]
  • SVU GLOSSARY of TERMS Ampere: a Unit of Electromotive Force; One Volt Acting Against the Resistance of One Ohm (See Ohm’S Law)
    5TH EDITION GLOSSARY OF TERMS Terminology for the Vascular Ultrasound Technologist/ Sonographer SOCIETY FOR VASCULAR ULTRASOUND The VOICE for the Vascular Ultrasound Profession 5TH EDITION Glossary of Terms Terminology for the Vascular Ultrasound Technologist/ Sonographer CONTENTS Alphabetical Glossary . .1 Prefixes . .75 Suffixes . .76 Acronyms . .77 Acknowledgements The Glossary of Terms for the Vascular Technologists was first compiled in 1983 by the Education Committee of the then Society of Non-Invasive Vascular Technol- ogy, Mary Jane Pomajzl, Chair. The Glossary has since been updated three times. The second edition was published in 1989 under the direc- tion of Paula A. Heggerick, RDMS RVT FSVU, Chair, SVT Publication Committee. The third edition was published in 1995; Joanne E. Drago, LPN RVT, Chair. The fourth edition was revised and updated in 2001 due to the efforts of Jean White, RVT, Chair, and Allene Woodley, RN RVT; Joanne Spindell, RVT RDCS; Paula Gehr, RVT; Cathy Brown, BSCVN RN RVT RDCVS; and Michael Sampson, RVT. This fifth edition has been revised and updated in 2005 due to the efforts of Products Committee Chair Michel Comeaux, RN RVT RDMS FSVU; Tom Baer, MBA RVT RDMS RDCS; Debbie Pirt, AS RVT; William Harkrider, MD RVT; and Bill Zang, BS RVT RDMS. © Copyright 2005 Society for Vascular Ultrasound 4601 Presidents Drive, Suite 260 Lanham, MD 20706-4831 Tel. 301-459-7550 Fax: 301-459-5651 Web: www.svunet.org The VOICE for the Vascular Ultrasound Profession A A-C coupling (Alternating Current): Type of output signal to graphic display connection which responds to changes faster than 0.5Hz.
    [Show full text]
  • The Two-Stage Brachial Artery–Brachial Vein Autogenous Fistula for Hemodialysis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector TECHNICAL NOTES The two-stage brachial artery–brachial vein autogenous fistula for hemodialysis: An alternative autogenous option for hemodialysis access Niren Angle, MD, and Ankur Chandra, MD, San Diego, Calif The optimal dialysis access for the patient with chronic renal failure is considered to be an autogenous fistula; this is reflected in the recommendations of the National Kidney Foundation–Disease Outcomes Quality Initiatives (NKF- DOQI). If adequate superficial veins at the wrist or the forearm are not available, the next option is usually a prosthetic arteriovenous graft. In this case series, we describe our experience with an autogenous fistula constructed using the brachial vein. There were 20 patients over a 14-month period who were operated on for dialysis access. In these patients, no adequate superficial veins were found at operation. Instead of using a prosthetic graft, we performed a brachial artery–brachial vein fistula in two stages. The first stage involved a forearm anastomosis and then subsequently, weeks later, this fistula was “superficialized.” Twenty patients underwent a brachial artery–brachial vein fistula. Of these patients, all had successful maturation of their fistula and after a minimum waiting period of 12 weeks for maturation; all but one were able to be successfully dialyzed through their fistula. One patient developed arm swelling due to previously placed subclavian vein pacemaker wires. None of the other patients developed arm swelling or vascular steal. The brachial artery–brachial vein fistula is a feasible option for hemodialysis access and we suggest that this option be considered before a prosthetic arteriovenous graft is inserted.
    [Show full text]
  • Bones of Upper Limb
    ARM, CUBITAL FOSSA & ELBOW JOINT Khaleel Alyahya, PhD, MEd King Saud University College of Medicine @khaleelya OBJECTIVES At the end of the lecture, students should: o - Describe the attachments, actions and innervations of: Biceps brachii Coracobrachialis Brachialis Triceps brachii o - Demonstrate the following features of the elbow joint: Articulating bones Capsule Lateral & medial collateral ligaments Synovial membrane o - Demonstrate the movements; flexion and extension of the elbow. o - List the main muscles producing the above movements. o - Define the boundaries of the cubital fossa and enumerate its contents. THE ARM THE ARM o An aponeurotic sheet separating various muscles of Lateral Medial the upper limbs, including intermuscul intermuscul lateral and medial humeral septa. ar septum ar septum o The lateral and medial intermuscular septa divide the Neurovascul distal part of the arm into two ski ar bundle compartments: n • Anterior compartments Fasci . also known as the flexor a compartment Humer • Posterior compartments us . also known as the extensor compartment ANTERIOR FASCIAL COMPARTMENT . Muscles: Biceps brachii, Coracobrachialis &Brachialis. Blood Vessels: Brachial artery & Basilic vein. Nerves: Musculocutaneous and Median. MUSCLES OF ANTERIOR COMPARTMENT Coracobrachialis Biceps Brachii Brachialis BICEPS BRACHII . Origin: Two heads: • Long Head from supraglenoid tubercle of scapula (intracapsular) • Short Head from the tip of coracoid process of scapula • The two heads join in the middle of the arm . Insertion: • In the posterior part of the radial tuberosity. • Into the deep fascia of the medial aspect of the forearm through bicipital aponeurosis. Nerve supply: • Musculocutaneous . Action: • Strong supinator of the forearm • used in screwing. • Powerful flexor of elbow • Weak flexor of shoulder CORACOBRACHIALIS .
    [Show full text]
  • ARM and ELBOW Doctors Notes Editing File Notes/Extra Explanation Objectives
    Color Code Important ARM AND ELBOW Doctors Notes Editing file Notes/Extra explanation Objectives ü Describe the attachments, actions and innervations of: • Biceps brachii • Coracobrachialis • Brachialis • Triceps brachii ü Demonstrate the following features of the elbow joint: • Articulating bones • Capsule • Lateral & medial collateral ligaments • Synovial membrane ü Demonstrate the movements; flexion and extension of the elbow. ü List the main muscles producing the above movements. ü Define the boundaries of the cubital fossa and enumerate its contents. Shoulder THE ARM: - An aponeurotic sheet separating various muscles A R M of the upper limbs, including lateral and medial Posterior Anterior humeral septa. view view Elbow - The lateral and medial intermuscular septa divide the distal part of the arm into two compartments: Arm Humerus Lateral Medial intermuscular intermuscular Posterior septum septum Anterior (flexor (extensor compartment) compartment) Neurovascular skin bundle Fascia Humerus Note: the radial and ulnar nerves begin in Anterior Fascial Compartment: the anterior compartment then pierce the intermuscular septum and enter the posterior compartment Radial Brachialis Basilic vein Median Biceps Ulnar brachii Brachial Musculocutaneous artery coracobrachiallis muscles Blood vessels Nerves Muscles Of Anterior Compartment: Coracobrachialis Biceps Brachii Brachialis Note: Brachi- means arm so any muscle with brachi in it’s name is related to the arm Coracoid Process BICEPS BRACHII: • Long Head from supraglenoid tubercle of scapula (intracapsular) Origin • Short Head from the tip of coracoid process of scapula The two heads join in the middle of the arm Insertion • In the posterior part of the radial tuberosity. • Into the deep fascia of the medial aspect of the forearm through bicipital aponeurosis.
    [Show full text]