SVU GLOSSARY of TERMS Ampere: a Unit of Electromotive Force; One Volt Acting Against the Resistance of One Ohm (See Ohm’S Law)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clinical Case: Post-Procedure Thrombophlebitis
Clinical Case: Post-procedure Thrombophlebitis A 46 year old female presented with long-standing history of right lower limb fatigue and aching with prolonged standing. Symptoms –Aching, cramping, heavy, tired right lower limb –Tenderness over bulging veins –Symptoms get worse at end of the day –She feels better with lower limb elevation and application of elastic compression stockings (ECS) History Medical and Surgical history: Sjogren syndrome, mixed connective tissue disease, GERD, IBS G2P2 with C-section x2, left breast biopsy No history of venous thrombosis Social history: non-smoker Family history: HTN, CAD Allergies: None Current medications: Pantoprazole Physical exam Both lower limbs were warm and well perfused Palpable distal pulses Motor and sensory were intact Prominent varicosities Right proximal posterior-lateral thigh and medial thigh No ulcers No edema Duplex ultrasound right lower limb GSV diameter was 6.4mm and had reflux from the SFJ to the distal thigh No deep venous reflux No deep vein thrombosis Duplex ultrasound right lower limb GSV tributary diameter 4.6mm Anterior thigh varicose veins diameter 1.5mm-2.6mm with reflux No superficial vein thrombosis What is the next step? –Conservative treatment – Phlebectomies –Sclerotherapy –Thermal ablation –Thermal ablation, phlebectomies and sclerotherapy Treatment Right GSV radiofrequency ablation Right leg ultrasound guided foam sclerotherapy with 0.5% sodium tetradecyl sulfate (STS) Right leg ambulatory phlebectomies x19 A compression dressing and ECS were applied to the right lower limb after the procedure. Follow-up 1 week post-procedure –The right limb was warm and well perfused –There was mild bruising, no infection and signs of mild thrombophlebitis –Right limb venous duplex revealed no deep vein thrombosis and the GSV was occluded 2 weeks post-procedure –Tender palpable cord was found in the right thigh extending into the calf with overlying hyperpigmentation. -
Five-Year Results of a Merger Between Vascular Surgeons and Interventional Radiologists in a University Medical Center
From the Eastern Vascular Society Five-year results of a merger between vascular surgeons and interventional radiologists in a university medical center Richard M. Green, MD, and David Waldman, MD, PhD, for the Center for Vascular Disease* Rochester, NY Objectives: We examined economic and practice trends after 5 years of a merger between vascular surgeons and interventional radiologists. Methods: In 1998 a merger between the Division of Vascular Surgery and the Section of Interventional Radiology at the University of Rochester established the Center for Vascular Disease (CVD). Business activity was administered from the offices of the vascular surgeons. Results: In 1998 the CVD included five vascular surgeons and three interventional radiologists, who generated a total income of $5,789,311 (34% from vascular surgeons, 24% from interventional radiologists, 42% from vascular laborato- ries). Vascular surgeon participation in endoluminal therapy was limited to repair of abdominal aortic aneurysms (AAAs). Income was derived from 1011 major vascular procedures, 10,510 catheter-based procedures in 3286 patients, and 1 inpatient and 3 outpatient vascular laboratory tests. In 2002 there were six vascular surgeons (five, full-time equivalent) and four interventional radiologists, and total income was $6,550,463 despite significant reductions in unit value reimbursement over the 5 years, a 4% reduction in the number of major vascular procedures, and a 13% reduction in income from vascular laboratories. In 2002 the number of endoluminal procedures increased to 16,026 in 7131 patients, and contributions to CVD income increased from 24% in 1998 to 31% in 2002. Three of the six vascular surgeons performed endoluminal procedures in 634 patients in 2002, compared with none in 1998. -
DVT Upper Extremity
UT Southwestern Department of Radiology Ultrasound – Upper Extremity Deep Venous Thrombosis Evaluation PURPOSE: To evaluate the upper extremity superficial and deep venous system for patency. SCOPE: Applies to all ultrasound venous Doppler studies of the lower extremities in Imaging Services / Radiology EPIC ORDERABLE: • UTSW: US DOPPLER VENOUS DVT UPPER EXTREMITY BILATERAL US DOPPLER VENOUS DVT UPPER EXTREMITY RIGHT US DOPPLER VENOUS DVT UPPER EXTREMITY LEFT • PHHS: US DOPPLER VENOUS DVT UPPER EXTREMITY BILATERAL US DOPPLER VENOUS DVT UPPER EXTREMITY RIGHT US DOPPLER VENOUS DVT UPPER EXTREMITY LEFT INDICATIONS: • Symptoms such as upper extremity swelling, pain, fever, warmth, change in color, palpable cord • Suspected venous occlusion, or DVT based on clinical prediction rules (eg. Well’s score or D- Dimer) • Indwelling or recent PICC or central line • Chest pain and/or shortness of breath • Suspected or known pulmonary embolus • Follow-up known deep venous thrombosis (DVT) CONTRAINDICATIONS: No absolute contraindications EQUIPMENT: Preferably a linear array transducer that allows for appropriate resolution of anatomy (frequency range of 9 mHz or greater), capable of duplex imaging. Sector or curvilinear transducers may be required for appropriate penetration in patients with edema or large body habitus. PATIENT PREPARATION: • None EXAMINATION: GENERAL GUIDELINES: A complete examination includes evaluation of the superficial and deep venous system of the upper extremity including the internal jugular, innominate, subclavian, axillary, paired brachial, basilic, and cephalic veins. EXAM INITIATION: • Introduce yourself to the patient • Verify patient identity using patient name and DOB • Explain test • Obtain patient history including symptoms. Enter and store data page US DVT Upper Extremity 05-31-2020.docx 1 | Page Revision date: 05-31-2020 UT Southwestern Department of Radiology • Place patient in supine position with arm extended TECHNICAL CONSIDERATIONS: • Review any prior imaging, making note of any previous thrombus burden. -
Brachial Artery
VASCULAR Anatomy of the upper limb Dr Jamila EL M edany & Dr. Essam Eldin Salama Objectives At the end of the lecture, the students should be able to: • Identify the origin of the vascular supply for the upper limb. • Describe the main arteries and their branches of the arm, forearm & hand. • Describe the vascular arches for the hand. • Describe the superficial and deep veins of the upper limb Arteries Of The Upper Limb Right subclavian Left subclavian artery artery Axillary artery Brachial artery Ulnar artery Radial artery Palmar arches The Subclavian Artery The right artery originates from the brachiocephalic artery. The left artery Cotinues as originates from Axillary artery at the arch of the the lateral border aorta of the 1st rib The Axillary Artery Begins at the lateral border of the st 1 rib as continuation of the Subclavian artery subclavian artery. Continues as brachial artery at lower border of teres major muscle. Is closely related to the cords of brachial plexus and their branches Is enclosed within the axillary sheath. Is crossed anteriorly by the pectoralis minor muscle, and is st nd divided into three parts; 1 , 2 & Brachial artery Axillary artery 3rd. The 1st part of the axillary artery . Extends from the lateral st border of 1 rib to upper 1st part border of the pectoralis 2nd part minor muscle. Highest thoracic artery a. Related: 3rd part Pectoralis • Anterioly: to the minor pectoralis major muscle • Laterally: to the cords Teres of the brachial plexus. major . It gives; ONE branch: Highest thoracic artery The 2nd part of the axillary artery . -
Structure, Function, and Molecular Control of the Skin Lymphatic System
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Structure, Function, and Molecular Control of the Skin Lymphatic System Mihaela Skobe and Michael Detmar Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, U.S.A. The mechanisms of angiogenesis have been studied phatic vasculature and the differences between blood extensively over the past years. The focus, however, and lymphatic vessels. Special attention has been has been almost exclusively on blood vessels, whereas given to the methods employed in research of the little effort has been directed toward understanding lymphatic system. Finally, we describe molecular lymphangiogenesis and the role of lymphatic vessels mechanisms involved in the regulation of lymphan- in physiology and pathology. The lymphatic system, giogenesis. Vascular endothelial growth factor and acting in concert with the blood vascular system, is vascular endothelial growth factor-C, expressed by of fundamental importance in maintaining tissue distinct skin cell populations, play an important role homeostasis, and disorders of the lymphatic system in the molecular control of skin angiogenesis and are common, often resulting in chronic, disabling lymphangiogenesis. Key words: lymphatic vessels/lymph- conditions. This overview summarizes the most angiogenesis/skin/VEGF-C. Journal of Investigative important aspects of the structure and function of Dermatology Symposium Proceedings 5:14±19, 2000 the lymphatic system with emphasis on the skin lym- ur understanding of the biology of the lymphatic covered'' (Bartels, 1909). The ancient Greeks observed structures system is well illustrated by the word lymphatic containing colorless ¯uid (Hippocrates spoke of ``white blood'') but itself; the derivation of the latin word lymphaticus their function was not understood and the signi®cance of the signi®es ``distracted and confused'' (Witte et al, ®nding was not recognized. -
Lymphatic Tissue Engineering and Regeneration Laura Alderfer1, Alicia Wei1 and Donny Hanjaya-Putra1,2,3,4,5,6*
Alderfer et al. Journal of Biological Engineering (2018) 12:32 https://doi.org/10.1186/s13036-018-0122-7 REVIEW Open Access Lymphatic Tissue Engineering and Regeneration Laura Alderfer1, Alicia Wei1 and Donny Hanjaya-Putra1,2,3,4,5,6* Abstract The lymphatic system is a major circulatory system within the body, responsible for the transport of interstitial fluid, waste products, immune cells, and proteins. Compared to other physiological systems, the molecular mechanisms and underlying disease pathology largely remain to be understood which has hindered advancements in therapeutic options for lymphatic disorders. Dysfunction of the lymphatic system is associated with a wide range of disease phenotypes and has also been speculated as a route to rescue healthy phenotypes in areas including cardiovascular disease, metabolic syndrome, and neurological conditions. This review will discuss lymphatic system functions and structure, cell sources for regenerating lymphatic vessels, current approaches for engineering lymphatic vessels, and specific therapeutic areas that would benefit from advances in lymphatic tissue engineering and regeneration. Keywords: Lymphangiogenesis, Tissue Engineering, Disease Modeling, Wound Healing, Lymphedema, Stem Cells, Biomaterials, Interstitial Fluid, Regeneration I. Introduction to the Lymphatic System and its role Interstitial fluid (IF) is a plasma filtrate that is generated Function by transcapillary filtration and is governed by Starling The lymphatic system is nearly ubiquitous in the human forces, the net difference between hydrostatic and body, present in all tissues except the epidermis, cartil- osmotic pressures, at the microcirculatory level [9]. In age, eye lens, cornea, retina, and bone marrow [1, 2]. order to maintain fluid homeostasis, lymph formation in The main functions of the lymphatic system include the initial lymphatic vessels must be balanced by the net fluid homeostasis and interstitial fluid drainage, immune flux of plasma being filtered out [4]. -
UW HEALTH JOB DESCRIPTION Radiologic Tech - Interventional Job Code: 500006 FLSA Status: Non-Exempt Mgt
UW HEALTH JOB DESCRIPTION Radiologic Tech - Interventional Job Code: 500006 FLSA Status: Non-Exempt Mgt. Approval: G. Greenwood Date: March 2020 C. Hassemer Department : Interventional Radiology/AFCH Hybrid HR Approval: J. Theisen Date: March 2020 OR/OR22 (80240/14930/52580) JOB SUMMARY The Radiologic Tech - Interventional functions independently as a member of the Vascular and Interventional Radiology (VIR), Neuro Endovascular Radiology and Vascular Surgery teams. Team members include registered nurses, IR imaging technologists, nurse practitioners, physician assistants, IR fellows and residents, neurosurgery fellows and residents, vascular surgery fellows and residents, and faculty physicians. This individual is responsible for helping perform a variety of complex specialized tasks operating fluoroscopy, computed tomography, laser, and ultrasonography equipment during vascular and neuroradiology angiographic and interventional procedures. This individual is responsible for helping develop and implement systems to assure the smooth and efficient flow of patients for procedures in the Interventional labs. Duties for this position include but are not limited to: circulating and scrubbing roles during procedures, patient teaching, assisting with patient care within scope of practice, inventory management and schedule coordination. This position requires the individual to be flexible in their work schedule. This individual has previous radiologic technologist work experience, or is a graduate of an accredited IR Technologist training program. -
Our Vascular Surgery Capabilities Include Treatment for the Following
Vascular and EXPERIENCE MATTERS Endovascular The vascular and endovascular surgeons at LVI are highly experienced at performing vascular surgery and Surgery minimally invasive vascular therapies, and they are leading national experts in limb salvage. We invite you to consult with us, and allow us the opportunity to share our experience and discuss the appropriateness of one Our vascular surgery or more of our procedures for your patients. capabilities include treatment for the following conditions: Abdominal Aortic Peripheral Aneurysm Aneurysm Peripheral Artery Aortic Dissection Disease Aortoiliac Occlusive Portal Hypertension Disease Pulmonary Embolism Ritu Aparajita, MD Tushar Barot, MD Atherosclerosis Renovascular Vascular Surgeon Vascular Surgeon Carotid Artery Disease Conditions Chronic Venous Stroke Insufficiency Thoracic Aortic Deep Vein Aneurysm Thrombosis Vascular Infections Fibromuscular Vascular Trauma Disease Medicine Vasculitis Giant Cell Arteritis Visceral Artery Lawrence Sowka, MD Mesenteric Ischemia without limits Aneurysm Vascular Surgeon 1305 Lakeland Hills Blvd. Lakeland, FL 33805 lakelandvascular.com P: 863.577.0316 F: 1.888.668.7528 PROCEDURES WE PERFORM Minimally Angiogram and Arteriogram Endovascular treatment These vascular imaging tests allow our vascular Performed inside the blood vessel, endovascular specialists to assess blood flow through the arteries treatments are minimally invasive procedures to treat invasive and and check for blockages. In some cases, treatments peripheral artery disease. may be performed during one of these tests. Hybrid Procedures for Vascular Blockage surgical Angioplasty and Vascular Stenting Combines traditional open surgery with endovascular Angioplasty uses a balloon-tipped catheter to open a therapy to repair vessels or place stents, when an blocked blood vessel. Sometimes, the placement of endovascular procedure by itself is not possible for treatment a mesh tube inside the artery is required to keep the the patient. -
Human and Nonhuman Primate Meninges Harbor Lymphatic Vessels
SHORT REPORT Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI Martina Absinta1†, Seung-Kwon Ha1†, Govind Nair1, Pascal Sati1, Nicholas J Luciano1, Maryknoll Palisoc2, Antoine Louveau3, Kareem A Zaghloul4, Stefania Pittaluga2, Jonathan Kipnis3, Daniel S Reich1* 1Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States; 2Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, United States; 3Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, United States; 4Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States Abstract Here, we report the existence of meningeal lymphatic vessels in human and nonhuman primates (common marmoset monkeys) and the feasibility of noninvasively imaging and mapping them in vivo with high-resolution, clinical MRI. On T2-FLAIR and T1-weighted black-blood imaging, lymphatic vessels enhance with gadobutrol, a gadolinium-based contrast agent with high propensity to extravasate across a permeable capillary endothelial barrier, but not with gadofosveset, a blood-pool contrast agent. The topography of these vessels, running alongside dural venous sinuses, recapitulates the meningeal lymphatic system of rodents. In primates, *For correspondence: meningeal -
Brachial Vein Transposition with Consecutive Skin Incisions in a Hemodialysis Patient with Absence of Adequate Superficial Veins: a Case Report
Original Article Case Report Case Vascular Specialist International Vol. 36, No. 4, December 2020 pISSN 2288-7970 • eISSN 2288-7989 Brachial Vein Transposition with Consecutive Skin Incisions in a Hemodialysis Patient with Absence of Adequate Superficial Veins: A Case Report Pouya Tayebi1, Fatemeh Mahmoudlou2, Yasaman Daryabari2, and Atefeh Shamsian3 1Department of Vascular and Endovascular Surgery, Rouhani Hospital, Babol University of Medical Sciences, Babol, 2Student Research Committee, Babol University of Medical Sciences, Babol, 3MSc student in nursing, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences,Tehran, Iran The creation of an arteriovenous fistula instead of a synthetic vascular graft is a Received September 24, 2020 Revised November 5, 2020 smart decision in hemodialysis patients who do not have a suitable superficial vein. Accepted November 30, 2020 Basilic vein transposition (BVT) is a viable option in most cases, except in patients who do not have a proper basilic vein. In patients with inadequate superficial veins, another source of the autogenous vein is the brachial vein, a deep vein of the up- per arm. Most surgeons choose a full medial arm incision to perform brachial vein Corresponding author: Pouya Tayebi exploration. We describe a patient in whom BVT was not possible and so brachial Department of Vascular and Endovascular Surgery, Rouhani Hospital, Babol University vein transposition using skip incisions was performed, with good results. of Medical Sciences, Keshavarz Boulevard, -
New Brain Lymphatic Vessels Drain Old Concepts
EBioMedicine 2 (2015) 776–777 Contents lists available at ScienceDirect EBioMedicine journal homepage: www.ebiomedicine.com In Focus New Brain Lymphatic Vessels Drain Old Concepts Lasse Dissing-Olesen, Soyon Hong, Beth Stevens⁎ Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA The brain has traditionally been considered an immune privileged vessels above the dcLN completely abolished drainage of dye to these organ, in part due to the lack of evidence for lymphatic vasculature lymph nodes and additionally, increased the diameter of the meningeal (Galea et al., 2007). Two centuries ago, the existence of lymphatic ves- lymphatic vessels, indicating that these vessels drain to the dcLN. The sels on the surface of the human brain was proposed but it has since Alitalo lab further demonstrated that dye injected into the brain paren- been widely dismissed (Lukic et al., 2003). Therefore, while T cells chyma was absorbed by lymphatic vessels and preferentially drained leave all other organs via the lymphatic system to reach nearby lymph into the ipsilateral dcLN from the base of the brain. Surprisingly, Kipnis' nodes, the prevailing view has been that infiltrated T cells exit the lab excluded the best-known route of drainage into the dcLN, via the brain via venous blood circulation, circumventing the lymph nodes nasal cavity's cribriform plate and the nasal mucosa (Kida et al., 1995), (Ransohoff and Engelhardt, 2012). The recent evidence for the existence as they failed -
Extraperitoneal Laparoscopic Resection for Retroperitoneal Lymphatic Cysts
Wang et al. BMC Urology (2017) 17:101 DOI 10.1186/s12894-017-0288-1 RESEARCHARTICLE Open Access Extraperitoneal laparoscopic resection for retroperitoneal lymphatic cysts: initial experience Yichun Wang1†, Chen Chen1†, Chuanjie Zhang1†, Chao Qin2* and Ninghong Song2* Abstract Background: To assess the safety and efficacy of laparoscopic retroperitoneal resection for retroperitoneal lymphatic cysts. Methods: A retrospective analysis was conducted based on clinical data from eight patients with hydronephrosis caused by retroperitoneal lymphatic cysts. All patients underwent laparoscopic retroperitoneal lymphatic cyst resection and received postoperative follow-up. A follow-up ultrasound was performed postoperatively every 6–12 months to evaluate the recovery of the hydronephrosis. Results: All operations were successful, and their postoperative pathological results revealed lymphatic cyst walls. The operation time ranged from 43 to 88 min (mean: 62 min), with a blood loss of 20 to 130 mL (mean: 76 mL), and the length of hospital stay was 3 to 6 days (mean: 4.5 days). Within the follow-up of 12 to 36 months (mean: 28.5 months), great relief was detected in all eight cases, and no recurrence was found. Moreover, complications such as renal pedicle or renal pelvis injury were not observed. Conclusions: Laparoscopic retroperitoneal lymphatic cyst resection is an effective treatment for retroperitoneal lymphatic cysts and has the advantages of being minimally invasive, producing less intraoperative blood loss and leading to a quick recovery. This treatment thus deserves further studies. Keywords: Hydronephrosis, Lymphatic cyst, Laparoscope Background pain, obstructive uropathy, lower lymphoedema, bowel Lymphatic cysts are a rare lymphatic-vessel-generated obstruction and venous thrombosis [7–10].