Entamoeba Histolytica?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Intestinal Protozoa
The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately. -
6.5 X 11 Double Line.P65
Cambridge University Press 978-0-521-53026-2 - The Cambridge Historical Dictionary of Disease Edited by Kenneth F. Kiple Index More information Name Index A Baillie, Matthew, 80, 113–14, 278 Abercrombie, John, 32, 178 Baillou, Guillaume de, 83, 224, 361 Abreu, Aleixo de, 336 Baker, Brenda, 333 Adams, Joseph, 140–41 Baker, George, 187 Adams, Robert, 157 Balardini, Lodovico, 243 Addison, Thomas, 22, 350 Balfour, Francis, 152 Aesculapius, 246 Balmis, Francisco Xavier, 303 Aetius of Amida, 82, 232, 248 Bancroft, Edward, 364 Afzelius, Arvid, 203 Bancroft, Joseph, 128 Ainsworth, Geoffrey C., 128–32, 132–34 Bancroft, Thomas, 87, 128 Albert, Jose, 48 Bang, Bernhard, 60 Alexander of Tralles, 135 Bannwarth, A., 203 Alibert, Jean Louis, 147, 162, 359 Bard, Samuel, 83 Ali ibn Isa, 232 Barensprung,¨ F. von, 360 Allchin, W. H., 177 Bargen, J. A., 177 Allison, A. C., 25, 300 Barker, William H., 57–58 Allison, Marvin J., 70–71, 191–92 Barthelemy,´ Eloy, 31 Alpert, S., 178 Bartlett, Elisha, 351 Altman, Roy D., 238–40 Bartoletti, Fabrizio, 103 Alzheimer, Alois, 14, 17 Barton, Alberto, 69 Ammonios, 358 Bartram, M., 328 Amos, H. L., 162 Bassereau, Leon,´ 317 Andersen, Dorothy, 84 Bateman, Thomas, 145, 162 Anderson, John, 353 Bateson, William, 141 Andral, Gabriel, 80 Battistine, T., 69 Annesley, James, 21 Baumann, Eugen, 149 Arad-Nana, 246 Beard, George, 106 Archibald, R. G., 131 Beet, E. A., 24, 25 Aretaeus the Cappadocian, 80, 82, 88, 177, 257, 324 Behring, Emil, 95–96, 325 Aristotle, 135, 248, 272, 328 Bell, Benjamin, 152 Armelagos, George, 333 Bell, J., 31 Armstrong, B. -
Amoebic Dysentery
University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1934 Amoebic dysentery H. C. Dix University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Dix, H. C., "Amoebic dysentery" (1934). MD Theses. 320. https://digitalcommons.unmc.edu/mdtheses/320 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. A MOE B leD Y SEN T E R Y By H. c. Dix University of Nebraska College of Medicine Omaha, N~braska April 1934 Preface This paper is presented to the University of Nebraska College of MediCine to fulfill the senior requirements. The subject of amoebic dysentery wa,s chosen due to the interest aroused from the previous epidemic, which started in Chicago la,st summer (1933). This disea,se has previously been considered as a tropical disease, B.nd was rarely seen and recognized in the temperate zone. Except in indl vidu8,ls who had been in the tropics previously. In reviewing the literature, I find that amoebio dysentery may be seen in any part of the world, and from surveys made, the incidence is five in every hun- dred which harbor the Entamoeba histolytlca, it being the only pathogeniC amoeba of the human gastro-intes tinal tract. -
Enteric Protozoa in the Developed World: a Public Health Perspective
Enteric Protozoa in the Developed World: a Public Health Perspective Stephanie M. Fletcher,a Damien Stark,b,c John Harkness,b,c and John Ellisa,b The ithree Institute, University of Technology Sydney, Sydney, NSW, Australiaa; School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australiab; and St. Vincent’s Hospital, Sydney, Division of Microbiology, SydPath, Darlinghurst, NSW, Australiac INTRODUCTION ............................................................................................................................................420 Distribution in Developed Countries .....................................................................................................................421 EPIDEMIOLOGY, DIAGNOSIS, AND TREATMENT ..........................................................................................................421 Cryptosporidium Species..................................................................................................................................421 Dientamoeba fragilis ......................................................................................................................................427 Entamoeba Species.......................................................................................................................................427 Giardia intestinalis.........................................................................................................................................429 Cyclospora cayetanensis...................................................................................................................................430 -
38 Entamoeba Histolytica and Other Rhizophodia
MODULE Entamoeba Histolytica and Other Rhizophodia Microbiology 38 Notes ENTAMOEBA HISTOLYTICA AND OTHER RHIZOPHODIA 38.1 INTRODUCTION Amoebae can be pathogenic called Entamoeba histolytica and non pathogenic called Entamoeba coli (large intestines), Entamoeba gingivalis (oral cavity). These parasites are motile with pseudopodia. The pseudopodia are cytoplasmic processes which are thrown out. OBJECTIVES After reading this lesson you will be able to: z describe morphology, its life cycle, pathogenecity of Entameba Histolytica, other amoebae and free living amoeba z differentiate between amoebic and Bacillary dysentery z differentiate between Entamoeba Histolytica and Entamoeba Coli z demonstrate Laboratory diagnosis of Entameba 38.2 ENTAMOEBA HISTOLYTICA It belongs to the class Rhizopoda and family Entamoebidae. It is the causative agent of amoebiasis. Amoebiasis can be intestinal and extra intestinal like amoebic hepatitis, amoebic liver abscess. 38.3 MORPHOLOGY The Entamoeba is seen in three stages 344 MICROBIOLOGY Entamoeba Histolytica and Other Rhizophodia MODULE (a) Trophozoite: The trophozoite is 18-40 µm in size. The trophozoite is Microbiology actively motile. The cytoplasm is demarcated into endoplasm and ectoplasm. Ingested food particles and red blood cells are seen in the cytoplasm No bacteria are seen in the cytoplasm. The nucleus is 6-15 µm and has a central rounded karyosome. Nuclear membrane has chromatin granules and spoke like radial arrangement of chromatin fibrils. Notes Fig. 38.1 (b) Precyst: Smaller in size. 10-20 µm in diameter. It is round to oval in shape with blunt pseudopodium. The nuclei is similar to the trophozoite. (c) Cyst: These are round 10-15 µm in diameter. It is surrounded by a refractile membrane called as the cyst wall. -
Acanthamoeba Castellanii
Int. J. Biol. Sci. 2018, Vol. 14 306 Ivyspring International Publisher International Journal of Biological Sciences 2018; 14(3): 306-320. doi: 10.7150/ijbs.23869 Research Paper Environmental adaptation of Acanthamoeba castellanii and Entamoeba histolytica at genome level as seen by comparative genomic analysis Victoria Shabardina1, Tabea Kischka1, Hanna Kmita2, Yutaka Suzuki3, Wojciech Maka owski1 1. Institute of Bioinformatics, University Münster, Niels-Stensen Strasse 14, Münster 48149, Germany ł 2. Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University 3. Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan Corresponding author: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2017.11.15; Accepted: 2017.12.30; Published: 2018.02.12 Abstract Amoebozoans are in many aspects interesting research objects, as they combine features of single-cell organisms with complex signaling and defense systems, comparable to multicellular organisms. Acanthamoeba castellanii is a cosmopolitan species and developed diverged feeding abilities and strong anti-bacterial resistance; Entamoeba histolytica is a parasitic amoeba, who underwent massive gene loss and its genome is almost twice smaller than that of A. castellanii. Nevertheless, both species prosper, demonstrating fitness to their specific environments. Here we compare transcriptomes of A. castellanii and E. histolytica with application of orthologs’ search and gene ontology to learn how different life strategies influence genome evolution and restructuring of physiology. -
Entamoeba Histolytica Internal Transcribed Spacer 2 (ITS2)
PCRmax Ltd TM qPCR test Entamoeba histolytica internal transcribed spacer 2 (ITS2) 150 tests For general laboratory and research use only 1 Introduction to Entamoeba histolytica Entamoeba histolytica is an anaerobic, protozoan, intestinal parasite responsible for a disease called amoebiasis. It usually occurs in the large intestine and causes internal inflammation. It belongs to the genus Entamoeba and class Archamoeba. Amongst parasitic diseases, E. histolytica is one of the leading causes of morbidity and mortality in developing countries. E. histolytica is transmitted by ingestion of exit body containing cysts from faecally contaminated food and water or from hands. Due to their protective walls, the cysts can remain viable for several weeks in external environments. Species within this genus are small, single celled organisms with an anterior bulge representing a lobose pseudopod. The E. histolytica trophozoites are oblong and approximately 15-20µM in length, whereas the cysts are spherical and typically 12-15 µM in diameter. Entamoeba cysts are most commonly transmitted by ingestion so must be extremely robust to survive the hostile environment of the stomach. The cysts transform to trophozoites in the small intestine where they multiply by binary fission to then colonise the large intestine. They cause major calcium ion influx to the cells of the large intestine resulting in cell death and ulcer formation. The Trophozoites subsequently form new cysts which are excreted once more in faeces. Infection with E. histolytica generally causes mild symptoms such as abdominal pain, flatulence and diarrhoea, but more severe infections can lead to amoebosis. This is a condition encompassing amoebic dysentery characterized by severe abdominal pain, fever and blood in the faeces and less commonly amoebic liver abscesses. -
Endolimax Nana
Autonomous University of San Luis Potosí Faculty of Chemical Sciences Laboratory of General Microbiology Searching for intestinal parasites in vegetables Members: Canela Costilla Aaron Jared Gómez Hernández Christiane Lucille Castillo Guevara Diana Zuzim Teacher: Juana Tovar Oviedo Teacher: Rosa Elvia Noyola Medina Days: Tuesday-Thrusday Schedule: 08:00-09:00 hrs Abril 5th of 2017 Objective To perform the search of parasitic forms of protozoa and intestinal helminths in vegetables sold in home samples, using the saline centrifugation technique, microscopic observation with 10X and 40X objective, using lugol as a contrast dye Introduction Protozoans are unicellular microorganisms that lack a cell wall. They usually lack color and are mobile. They are distinguished from prokaryotes by their larger size, algae lacking chloroplast and chlorophyll, yeasts and fungi by being mobile and mucosal fungi because of their inability to form fruiting bodies Because of their appreciable content of ascorbic acid, carotene and dietary fiber, vegetables are widely recommended as part of the daily diet. Celery, lettuce, cabbage, brussels sprouts and other vegetables that are generally eaten raw have been associated with outbreaks of diarrhea and even listeriosis. In addition, contamination with parasitic eggs such as Ascaris lumbricoides, Trichocephalus trichiurus, Entamoeba histolytica cysts, Giardia intestinalis and viruses such as hepatitis A has been found in this type of plant. Collection and preservation of vegetables Vegetables should The sample is allowed Vegetables are be fresh at the time to soak in saline solution chopped and cut of sampling 0.85% for 24 hours into pieces They are placed in The contents are We weigh 40g of the glass glasses and 400ml shaken and left to sample in a granataria of saline solution is stand for 24 hours scale added 0.9% Process 9. -
ZOOLOGY Biology of Parasitism Morphology, Life Cycle
Paper : 08 Biology of Parasitism Module : 18 Morphology, Life cycle, Pathogenecity, Diagnosis and Prophylaxis of Entamoeba Part 1 Development Team Principal Investigator : Prof. Neeta Sehgal Department of Zoology, University of Delhi Co-Principal Investigator : Prof. D.K. Singh Department of Zoology, University of Delhi Paper Coordinator : Dr. Pawan Malhotra ICGEB, New Delhi Content Writer : Dr. Ranjana Saxena Dyal Singh College, University of Delhi Content Reviewer : Prof. Rajgopal Raman Department of Zoology, University of Delhi 1 Biology of Parasitism ZOOLOGY Morphology, Life cycle, Pathogenecity, Diagnosis and Prophylaxis of Entamoeba Part 1 Description of Module Subject Name ZOOLOGY Paper Name Biology of Parasitism; Zool 008 Module Name/Title Protozoans Module Id M18: Morphology, Life cycle, Pathogenecity, Diagnosis and Prophylaxis of Entamoeba Part 1 Keywords Trophozoite, precyst, cyst, chromatoidal bars, excystation, encystation, metacystictrophozoites, amoebiasis, amoebic dysentery, extraintestinalinvasion. Contents 1. Learning Outcomes 2. Introduction 3. History of Entamoeba 4. Classification of Entamoeba 5. Geographical distribution of Entamoeba histolytica 6. Habit and Habitat 7. Host 8. Reservoir 9. Morphology 10. Life cycle 11. Transmission 12. Entamoeba dispar 13. Entamoeba gingivalis 14. Entamoeba coli 15. Entamoeba hartmanni 16. Comparison between the various Entamoeba 17. Summary of Entamoeba histolytica 2 Biology of Parasitism ZOOLOGY Morphology, Life cycle, Pathogenecity, Diagnosis and Prophylaxis of Entamoeba Part 1 1. Learning Outcomes After studying this unit you will be able to: Classify Entamoeba Understand the medical importance of Entamoeba Distinguish between the different species of Entamoeba Identify the pathogenic species of Entamoeba Describe the morphology ofEntamoeba histolytica Explain the life cycle of Entamoeba histolytica Compare the life cycle of different species of Entamoeba 2. -
Entamoeba Histolytica Genesig Easy
Primerdesign TM Ltd Entamoeba histolytica genesig® Easy Kit for use on the genesig® q16 50 reaction For general laboratory and research use only Entamoeba histolytica 1 genesig Easy kit handbook HB10.18.07 Published Date: 09/11/2018 genesig® Easy: at a glance guide For each DNA test Component Volume Lab-in-a-box pipette E.histolytica reaction mix 10 µl Your DNA sample 10 µl For each positive control Component Volume Lab-in-a-box pipette E.histolytica reaction mix 10 µl Positive control template 10 µl For each negative control Component Volume Lab-in-a-box pipette E.histolytica reaction mix 10 µl Water 10 µl Entamoeba histolytica 2 genesig Easy kit handbook HB10.18.07 Published Date: 09/11/2018 Kit Contents • E.histolytica specific primer/probe mix (BROWN) Once resuspended the kits should remain at -20ºC until ready to use. • Lyophilised oasigTM Master Mix • Lyophilised oasigTM Master Mix resuspension buffer (BLUE lid) • E.histolytica positive control template (RED lid) • Internal extraction control DNA (BLUE lid) • RNase/DNase free water (WHITE lid) • Template preparation buffer (YELLOW lid) • 54 x genesig® q16 reaction tubes Reagents and equipment to be supplied by the user genesig® q16 instrument genesig® Easy Extraction Kit This kit is designed to work well with all processes that yield high quality RNA and DNA but the genesig Easy extraction method is recommended for ease of use. genesig® Lab-In-A-Box The genesig Lab-In-A-Box contains all of the pipettes, tips and racks that you will need to use a genesig Easy kit. -
Entamoeba Histolytica
Entamoeba histolytica Trophozoite: 20-30 µm Cyst:10-20 μm Trophozoite • Active, feeding stage • Cytoplasm – Clean, not foamy • Nucleus – Central “bullseye” endosome – Thin, even chromatin lining nucleus • Found in loose stools and ectopic infections Cyst • Dormant/resistant stage • Cysts are susceptible to heat (above 40 C.), freezing (below –5 C.), and drying. • Cysts remain viable in moist environment for 1 month. • Spherical • 1-4 nuclei, (4 in mature cysts) • Bluntly rounded chromatoidal bars • Found and released in formed feces Life Cycle • CYST is ingested with food or water contaminated with feces • Excystation occurs in the small intestine in an alkaline environment. • Metacystic amoebas emerge, divide and move down into the large intestine. Habitat: Trophozoites live and may multiply indefinitely within the crypts and mucosa of the LI mucosa feeding on starches and mucous secretions. INFECTIVE STAGE: Cyst Cysts form in response to unfavorable (deteriorating) environmental conditions, as they move down the LI. DISTRIBUTION: Parasite has worldwide distribution but is most common in the tropical and subtropical areas of the world • ~ 500 million people may be affected • ~ 100,000 deaths each year • PREVALENCE: . < 1% in Canada and Alaska . 0.9% in U.S. 40% in the tropics . This parasite is likely under-reported in developing countries and potentially one of the most prevalent parasitic infections in the world. Pathology • E. histolytica has surface enzymes that can digest epithelial cells and therefore hydrolyze host tissues and cause pathology. • Usually the host’s repair of the epithelial cells can keep pace with the damage. • However, when the host is stressed, immunocompromised, has too much HCl, or a high bacterial flora, the digestion will be ahead of repair. -
The Detection and Differentiation of Entamoeba Histolytica and Entamoeba Dispar from Diarrheic Stool Samples by Real-Time PCR, ELISA and Trichrome Staining Method
The detection and differentiation of Entamoeba histolytica and Entamoeba dispar from diarrheic stool samples by real-time PCR, ELISA and Trichrome staining method Yakut Akyön1, Ahmet Pınar1, Alpaslan Alp1, Fadile Zeyrek2, Burçin Şener1, Sibel Ergüven1 1Hacettepe University, Medical Faculty, Department of Medical Microbiology, Ankara, 2Harran University, Medical Faculty, Department of Medical Microbiology, Şanlıurfa, Turkey. Introduction: Entamoeba histolytica is an intestinal protozoan parasite that causes invasive amoebiasis in 40–50 million people, resulting in 40 000–100 000 deaths worldwide each year (1). The highest prevalence of Entamoeba histolytica infection is found in countries in subtropical and tropical regions with low hygienic standards, and in countries with high population density. E. histolytica, E. dispar and E. moshkovskii are morphologically identical but are different biochemically and genetically. Although a previous study showed E. moshkovskii to be a non-pathogenic parasite, intestinal symptoms including diarrhea and other gastrointestinal disorders in individuals infected with this species have been reported (2). Also mild gastrointestinal symtoms has been reported in E. dispar infected patients, but the symptoms are self-limited. The prevalence of E. dispar is about ten times higher than E. histolytica (3). Differential diagnosis of E. histolytica, E. dispar and, E. moshkovskii which are three morphologically identical species of Entamoeba genus, is essential both for treatment decision and public health knowledge. Although the distinction between these three species is of great importance, the methods developed for this purpose either are very time-consuming or not sensitive and specific enough. In this study, the efficiency of quantitative real-time PCR method in detection of E.