Entamoeba Histolytica Internal Transcribed Spacer 2 (ITS2)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Intestinal Protozoa
The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately. -
The Nutrition and Food Web Archive Medical Terminology Book
The Nutrition and Food Web Archive Medical Terminology Book www.nafwa. -
Entamoeba Histolytica—Gut Microbiota Interaction: More Than Meets the Eye
microorganisms Review Entamoeba histolytica—Gut Microbiota Interaction: More Than Meets the Eye Serge Ankri Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Haifa 31096, Israel; [email protected] Abstract: Amebiasis is a disease caused by the unicellular parasite Entamoeba histolytica. In most cases, the infection is asymptomatic but when symptomatic, the infection can cause dysentery and invasive extraintestinal complications. In the gut, E. histolytica feeds on bacteria. Increasing evidences support the role of the gut microbiota in the development of the disease. In this review we will discuss the consequences of E. histolytica infection on the gut microbiota. We will also discuss new evidences about the role of gut microbiota in regulating the resistance of the parasite to oxidative stress and its virulence. Keywords: gut microbiota; entamoeba histolytica; resistance to oxidative stress; resistance to nitrosative stress; virulence 1. Introduction Amebiasis is caused by the protozoan parasite Entamoeba histolytica. This disease is a significant hazard in underdeveloped countries with reduced socioeconomic and poor Citation: Ankri, S. Entamoeba sanitation. It is assessed that amebiasis accounted for 55,500 deaths and 2.237 million histolytica—Gut Microbiota disability-adjusted life years (the sum of years of life lost and years lived with disability) Interaction: More Than Meets the Eye. in 2010 [1]. Amebiasis has also been diagnosed in tourists from developed countries who Microorganisms 2021, 9, 581. return from vacation in endemic regions. Inflammation of the large intestine and liver https://doi.org/10.3390/ abscess represent the main clinical manifestations of amebiasis. Amebiasis is caused by the microorganisms9030581 ingestion of food contaminated with cysts, the infective form of the parasite. -
Entamoeba Histolytica?
Amebas Friend and foe Facultative Pathogenicity of Entamoeba histolytica? Confusing History 1875 Lösch correlated dysentery with amebic trophozoites 1925 Brumpt proposed two species: E. dysenteriae and E. dispar 1970's biochemical differences noted between invasive and non-invasive isolates 80's/90's several antigenic and DNA differences demonstrated • rRNA 2.2% sequence difference 1993 Diamond and Clark proposed a new species (E. dispar) to describe non-invasive strains 1997 WHO accepted two species 1 Family Entamoebidae Family includes parasites • Entamoeba histolytica and commensals • Entamoeba dispar • Entamoeba coli Species are differentiated • Entamoeba hartmanni based on size, nuclear • Endolimax nana substructures • Iodamoeba bütschlii Entamoeba histolytica one of the most potent killers in nature Entamoeba histolytica • worldwide distribution (cosmopolitan) • higher prevalence in tropical or developing countries (20%) • 1-6% in temperate countries • Possible animal reservoirs • Amebiasis - Amebic dysentery • aka: Montezuma’s revenge Taxonomy • One parasitic species? • E. histolytica • E. dispar • E. hartmanni 2 Entamoeba Life Cycle - Direct Fecal/Oral transmission Cyst - Infective stage Resistant form Trophozoite - feeding, binary fission Different stages of cyst development Precysts - rich in glycogen Young cyst - 2, then 4 nuclei with chromotoid bodies Metacysts - infective stage Metacystic trophozoite - 8 8 Excystation Metacyst Cyst wall disruption Ameba emerges Nuclear division 48 Cytokinesis Nuclear division -
Acanthamoeba Castellanii
Int. J. Biol. Sci. 2018, Vol. 14 306 Ivyspring International Publisher International Journal of Biological Sciences 2018; 14(3): 306-320. doi: 10.7150/ijbs.23869 Research Paper Environmental adaptation of Acanthamoeba castellanii and Entamoeba histolytica at genome level as seen by comparative genomic analysis Victoria Shabardina1, Tabea Kischka1, Hanna Kmita2, Yutaka Suzuki3, Wojciech Maka owski1 1. Institute of Bioinformatics, University Münster, Niels-Stensen Strasse 14, Münster 48149, Germany ł 2. Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University 3. Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan Corresponding author: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2017.11.15; Accepted: 2017.12.30; Published: 2018.02.12 Abstract Amoebozoans are in many aspects interesting research objects, as they combine features of single-cell organisms with complex signaling and defense systems, comparable to multicellular organisms. Acanthamoeba castellanii is a cosmopolitan species and developed diverged feeding abilities and strong anti-bacterial resistance; Entamoeba histolytica is a parasitic amoeba, who underwent massive gene loss and its genome is almost twice smaller than that of A. castellanii. Nevertheless, both species prosper, demonstrating fitness to their specific environments. Here we compare transcriptomes of A. castellanii and E. histolytica with application of orthologs’ search and gene ontology to learn how different life strategies influence genome evolution and restructuring of physiology. -
Archezoa and the Origin of Eukaryotes Patrick J
Problems and paradigms A kingdom’s progress: Archezoa and the origin of eukaryotes Patrick J. Keeling* Summary The taxon Archezoa was proposed to unite a group of very odd eukaryotes that lack many of the characteristics classically associated with nucleated cells, in particular the mitochondrion. The hypothesis was that these cells diverged from other eukaryotes before these characters ever evolved, and therefore they repre- sent ancient and primitive eukaryotic lineages. The kingdom comprised four groups: Metamonada, Microsporidia, Parabasalia, and Archamoebae. Until re- cently, molecular work supported their primitive status, as they consistently branched deeply in eukaryotic phylogenetic trees. However, evidence has now emerged that many Archezoa contain genes derived from the mitochondrial symbiont, revealing that they actually evolved after the mitochondrial symbiosis. In addition, some Archezoa have now been shown to have evolved more recently than previously believed, especially the Microsporidia for which considerable evidence now indicates a relationship with fungi. In summary, the mitochondrial symbiosis now appears to predate all Archezoa and perhaps all presently known eukaryotes. BioEssays 20:87–95, 1998. 1998 John Wiley & Sons, Inc. INTRODUCTION cyanobacteria and they also lack flagella and basal bodies Prior to the popularization of the endosymbiotic theory, it was (for discussion see Ref. 1). However, according to the widely believed that the evolutionary link between prokary- endosymbiotic theory, the reason photosynthesis is so simi- otes and eukaryotes was the presence of photosynthesis in lar in cyanobacteria and photosynthetic eukaryotes is that cyanobacteria and algae. The biochemistry of oxygenic the plastids of plant and algal cells are derived from a photosynthesis was considered too complicated and too cyanobacterial symbiont. -
Trichosoma Tenax and Entamoeba Gingivalis: Pathogenic Role of Protozoic Species in Chronic Periodontal Disease Development
Journal of Human Virology & Retrovirology Review Article Open Access Trichosoma tenax and Entamoeba gingivalis: pathogenic role of protozoic species in chronic periodontal disease development Abstract Volume 6 Issue 3 - 2018 Periodontal disease is a complex inflammation/immune-mediated compromising Matteo Fanuli,1 Luca Viganò,2 Cinzia Casu3 of connective and epithelial tissues in dental periodontal ligament. Serving as a 1Department of Biomedical, Surgical and Dental Sciences, Italy stabilizing and mechanical absorption system, periodontal ligament consist in a 2 complex and organized structure presenting a really delicate balance with oral Department of Radiology, Italy 3 microbioma and immunomediated alterations. A large number of microbiological Department of Private Dental Practice, Italy assays have been developed to understand, prevent and even stabilize an advanced Luca Viganò, Department of Radiology, disease form. Specific protozoic organism, usually not triggered in conventional Correspondence: Milano, Italy, Email microbiological assays, could not be evaluated and underestimated by the clinician. Their role, pathogenetic mechanism and agonist activity is far to be completely known. Received: August 01, 2018 | Published: November 21, 2018 As a matter of fact, protozoic organism is still possibly involved in determination of chronical periodontitis and their knowledge is essential for a comprehensive overview in microbioma-mediated oral and gingival alteration. E. gingivalis and T. tenax are strongly associated with non responsive chronic periodontal disease. These pathogen organisms must be clearly and carefully identified and evaluated for a possible antagonistic spontaneous conversion. These conditions could be largely observed in unbalanced oral microbiome and patient with poor oral hygiene. Understanding prevalence, epidemiological aspects, pathological mechanism, therapies and role of hygiene therapy must be a fundamental knowledge of modern dental clinicians. -
Endolimax Nana
Autonomous University of San Luis Potosí Faculty of Chemical Sciences Laboratory of General Microbiology Searching for intestinal parasites in vegetables Members: Canela Costilla Aaron Jared Gómez Hernández Christiane Lucille Castillo Guevara Diana Zuzim Teacher: Juana Tovar Oviedo Teacher: Rosa Elvia Noyola Medina Days: Tuesday-Thrusday Schedule: 08:00-09:00 hrs Abril 5th of 2017 Objective To perform the search of parasitic forms of protozoa and intestinal helminths in vegetables sold in home samples, using the saline centrifugation technique, microscopic observation with 10X and 40X objective, using lugol as a contrast dye Introduction Protozoans are unicellular microorganisms that lack a cell wall. They usually lack color and are mobile. They are distinguished from prokaryotes by their larger size, algae lacking chloroplast and chlorophyll, yeasts and fungi by being mobile and mucosal fungi because of their inability to form fruiting bodies Because of their appreciable content of ascorbic acid, carotene and dietary fiber, vegetables are widely recommended as part of the daily diet. Celery, lettuce, cabbage, brussels sprouts and other vegetables that are generally eaten raw have been associated with outbreaks of diarrhea and even listeriosis. In addition, contamination with parasitic eggs such as Ascaris lumbricoides, Trichocephalus trichiurus, Entamoeba histolytica cysts, Giardia intestinalis and viruses such as hepatitis A has been found in this type of plant. Collection and preservation of vegetables Vegetables should The sample is allowed Vegetables are be fresh at the time to soak in saline solution chopped and cut of sampling 0.85% for 24 hours into pieces They are placed in The contents are We weigh 40g of the glass glasses and 400ml shaken and left to sample in a granataria of saline solution is stand for 24 hours scale added 0.9% Process 9. -
ZOOLOGY Biology of Parasitism Morphology, Life Cycle
Paper : 08 Biology of Parasitism Module : 18 Morphology, Life cycle, Pathogenecity, Diagnosis and Prophylaxis of Entamoeba Part 1 Development Team Principal Investigator : Prof. Neeta Sehgal Department of Zoology, University of Delhi Co-Principal Investigator : Prof. D.K. Singh Department of Zoology, University of Delhi Paper Coordinator : Dr. Pawan Malhotra ICGEB, New Delhi Content Writer : Dr. Ranjana Saxena Dyal Singh College, University of Delhi Content Reviewer : Prof. Rajgopal Raman Department of Zoology, University of Delhi 1 Biology of Parasitism ZOOLOGY Morphology, Life cycle, Pathogenecity, Diagnosis and Prophylaxis of Entamoeba Part 1 Description of Module Subject Name ZOOLOGY Paper Name Biology of Parasitism; Zool 008 Module Name/Title Protozoans Module Id M18: Morphology, Life cycle, Pathogenecity, Diagnosis and Prophylaxis of Entamoeba Part 1 Keywords Trophozoite, precyst, cyst, chromatoidal bars, excystation, encystation, metacystictrophozoites, amoebiasis, amoebic dysentery, extraintestinalinvasion. Contents 1. Learning Outcomes 2. Introduction 3. History of Entamoeba 4. Classification of Entamoeba 5. Geographical distribution of Entamoeba histolytica 6. Habit and Habitat 7. Host 8. Reservoir 9. Morphology 10. Life cycle 11. Transmission 12. Entamoeba dispar 13. Entamoeba gingivalis 14. Entamoeba coli 15. Entamoeba hartmanni 16. Comparison between the various Entamoeba 17. Summary of Entamoeba histolytica 2 Biology of Parasitism ZOOLOGY Morphology, Life cycle, Pathogenecity, Diagnosis and Prophylaxis of Entamoeba Part 1 1. Learning Outcomes After studying this unit you will be able to: Classify Entamoeba Understand the medical importance of Entamoeba Distinguish between the different species of Entamoeba Identify the pathogenic species of Entamoeba Describe the morphology ofEntamoeba histolytica Explain the life cycle of Entamoeba histolytica Compare the life cycle of different species of Entamoeba 2. -
Entamoeba Histolytica Genesig Easy
Primerdesign TM Ltd Entamoeba histolytica genesig® Easy Kit for use on the genesig® q16 50 reaction For general laboratory and research use only Entamoeba histolytica 1 genesig Easy kit handbook HB10.18.07 Published Date: 09/11/2018 genesig® Easy: at a glance guide For each DNA test Component Volume Lab-in-a-box pipette E.histolytica reaction mix 10 µl Your DNA sample 10 µl For each positive control Component Volume Lab-in-a-box pipette E.histolytica reaction mix 10 µl Positive control template 10 µl For each negative control Component Volume Lab-in-a-box pipette E.histolytica reaction mix 10 µl Water 10 µl Entamoeba histolytica 2 genesig Easy kit handbook HB10.18.07 Published Date: 09/11/2018 Kit Contents • E.histolytica specific primer/probe mix (BROWN) Once resuspended the kits should remain at -20ºC until ready to use. • Lyophilised oasigTM Master Mix • Lyophilised oasigTM Master Mix resuspension buffer (BLUE lid) • E.histolytica positive control template (RED lid) • Internal extraction control DNA (BLUE lid) • RNase/DNase free water (WHITE lid) • Template preparation buffer (YELLOW lid) • 54 x genesig® q16 reaction tubes Reagents and equipment to be supplied by the user genesig® q16 instrument genesig® Easy Extraction Kit This kit is designed to work well with all processes that yield high quality RNA and DNA but the genesig Easy extraction method is recommended for ease of use. genesig® Lab-In-A-Box The genesig Lab-In-A-Box contains all of the pipettes, tips and racks that you will need to use a genesig Easy kit. -
Entamoeba Histolytica
Entamoeba histolytica Trophozoite: 20-30 µm Cyst:10-20 μm Trophozoite • Active, feeding stage • Cytoplasm – Clean, not foamy • Nucleus – Central “bullseye” endosome – Thin, even chromatin lining nucleus • Found in loose stools and ectopic infections Cyst • Dormant/resistant stage • Cysts are susceptible to heat (above 40 C.), freezing (below –5 C.), and drying. • Cysts remain viable in moist environment for 1 month. • Spherical • 1-4 nuclei, (4 in mature cysts) • Bluntly rounded chromatoidal bars • Found and released in formed feces Life Cycle • CYST is ingested with food or water contaminated with feces • Excystation occurs in the small intestine in an alkaline environment. • Metacystic amoebas emerge, divide and move down into the large intestine. Habitat: Trophozoites live and may multiply indefinitely within the crypts and mucosa of the LI mucosa feeding on starches and mucous secretions. INFECTIVE STAGE: Cyst Cysts form in response to unfavorable (deteriorating) environmental conditions, as they move down the LI. DISTRIBUTION: Parasite has worldwide distribution but is most common in the tropical and subtropical areas of the world • ~ 500 million people may be affected • ~ 100,000 deaths each year • PREVALENCE: . < 1% in Canada and Alaska . 0.9% in U.S. 40% in the tropics . This parasite is likely under-reported in developing countries and potentially one of the most prevalent parasitic infections in the world. Pathology • E. histolytica has surface enzymes that can digest epithelial cells and therefore hydrolyze host tissues and cause pathology. • Usually the host’s repair of the epithelial cells can keep pace with the damage. • However, when the host is stressed, immunocompromised, has too much HCl, or a high bacterial flora, the digestion will be ahead of repair. -
Entamoeba Coli and Heart Diseases
Journal of Cardiology & Current Research Opinion Open Access Entamoeba coli and heart diseases Abstract Volume 12 Issue 3 - 2019 Entamoeba coli is a neglected intestinal amoeba, mostly occur in the tropical African countries. This species of amoeba transmit through feco-oral route, through ingestion Mosab Nouraldein Mohammed Hamad of cyst form, which is responsible for infection and then it transforms into trophozoite Department of Medical Parasitology, Alneelain University, Sudan stage which is pathogenic form. Most of scientists regard Entamoeba coli as a commensal intestinal amoeba, although of their bad impact on human health , it may lead to diarrhea , Correspondence: Mosab Nouraldein Mohammed Hamad, constipation , abdominal pain, fatigue and may lead to serious complications such as heart Department of Medical Parasitology, FMLS, Alneelain University, Sudan, Email diseases due to electrolytes imbalance and accumulations of cholesterol and low density lipoprotein also they affect the bleeding profile. Additional studies must be conducted to Received: April 27, 2019 | Published: May 17, 2019 reclassify this amoeba from commensal into pathogenic intestinal amoeba. Keywords: amoeba, Entamoeba, coli, heart, diseases, amebic dysentery, intestinal, lipoprotein, hartmanni Opinion with antibiotics, particularly in individuals eating a diet low in vitamin K, can result in low plasma prothrombin levels and a tendency to bleed. The term “amoeba” refers to uncomplicated eukaryotic organisms Intestinal bacteria also synthesize biotin, vitamin B12, folic acid, and that move in a characteristic crawling fashion. On the other hand, a thiamine. Due to their bad effect on bacteria flora it may affect the comparison of the genetic content of the various amoebae shows that bleeding profile, further more it leads to accumulation of cholesterol 1 these organisms are not necessarily closely related.