The Intestinal Protozoa

Total Page:16

File Type:pdf, Size:1020Kb

The Intestinal Protozoa The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately. b. type of motility - directional or non-directional; sluggish or fast. c. cytoplasmic inclusions - chromatoid bars (coalesced RNA); red blood cells; food vacuoles containing bacteria, yeast, etc. d. appearance of cytoplasm - smooth & clean or vacuolated. 5. endosome - also called the “karyosome,” this is a mass of chromatin within IntProt.doc 1 of 15 nucleus. The size, shape, and location of this structure are helpful in identification of organisms. 6. chromatin - nuclear DNA 7. chromatoid body or “bar” - coalesced RNA within the cytoplasm in the cyst stage. This is not always present, but when it is, its size and shape are helpful in determining species identification. II. Class Lobosea - The Amoebae A. Life cycle - 1. The definitive host ingests the infective cyst stage from fecal contamination in environment. 2. The cyst passes into the small intestine & excystation occurs with transformation to the trophozoite stage. 3. Trophozoites in the large intestine colonize the host by multiplying asexually via binary fission. They can remain in the lumen or invade the wall of the intestine (pathogenic species only) & multiply, from here they can be transported via the circulation to other organs (liver, lungs, etc.). 4. Cysts and trophozoites are passed in the feces of the infected host. 5. Infective stage - the mature cyst. 6. Diagnostic stage - the trophozoite or cyst in stool or tissue specimens. B. Genus Entamoeba - contains the most important of the amoebae causing disease in humans. 1. Entamoeba histolytica Entamoeba histolytica trophozoites Entamoeba histolytica trophozoite with ingested red blood cells with ingested red blood cells Entamoeba histolytica cyst Entamoeba histolytica cyst E. histolytica cyst with chromatoid bar with chromatoid bar (iodine stain) a. Epidemiology - Occurs worldwide; the highest incidence and prevalence is found in areas with poor sanitation where as many as 80% of a population may be infected. Highest in children >5 years of age; more IntProt.doc 2 of 15 prevalent in males than in females; common in mental hospitals, prisons, orphanages. b. Pathology and Clinical Manifestations - the most pathogenic of all; causes amoebic dysentery; can become extra-intestinal (liver, lungs, etc.; can be fatal. c. Morphology & Laboratory Identification - the trophozoite ranges between 12 and 30 microns in diameter. Its nucleus has an even distribution of peripheral chromatin and a small, compact, centrally located karyosome. The cytoplasm is typically smooth and granular with inclusions, if present, containing red blood cells. The cyst ranges between 10 and 30 microns in diameter and contains four nuclei when mature. Cigar-shaped chromatoid bars may be present in some cysts. d. Treatment - depends upon location of infection (lumen vs. tissue) e. Distribution - worldwide, mostly in tropics and sub-tropics. f. Note - chronic infections may last for years; they are often confused with other conditions (colitis, cancer). Hepatic abscess is the most common and dangerous complication. 2. Entamoeba hartmanni Entamoeba hartmanni trophozoite Entamoeba hartmanni trophozoite trichrome stain iron-hematoxylin stain Entamoeba hartmanni cyst (iodine stain) a. Formerly called the “small race” of Entamoeba histolytica. b. Technologists must be able to differentiate this organism from E. histolytica because E. hartmanni is non-pathogenic. c. Morphology & Laboratory Identification - this organism is very similar to E. histolytica. The difference lies in the respective sizes of the organisms. Trophozoites of Entamoeba hartmanni will measure less than 12 microns, while cysts will measure less than 10 microns. It is strongly recommended that more than one organism be measured when determining size. IntProt.doc 3 of 15 2. Entamoeba coli Entamoeba coli trophozoite E. coli trophozoite E. coli cyst E. coli cyst (iodine) a. Morphology - trophozoites range from 10 to 35 microns in diameter; cysts range from 10 to 30 microns in diameter and contain 8 to 16 nuclei when mature; the nucleus exhibits an eccentric karyosome with irregular, coarse chromatin. The cytoplasm is heavily vacuolated, containing yeast, bacteria, and debris. b. Significance - this is a harmless commensal but must be differentiated from the pathogens. 2. Entamoeba gingivalis Entamoeba gingivalis trophozoite a. Infective site - in the mouth; the organism thrives in diseased gums, but is not considered a causal agent or pathogen. If swallowed, it is destroyed in stomach. b. Transmission - contact with fomites (drinking glasses, eating utensils, etc.; kissing. c. Morphology - resembles E. histolytica, but has no cyst stage. It is the only species, which ingests leucocytes. C. Other amoebae of significance 1. Endolimax nana Endolimax nana trophozoite E. nana cyst E. nana cyst (iodine) a. Occurrence - occurs in about 14% of the US population; 21% worldwide. IntProt.doc 4 of 15 b. Pathogenicity - none. c. Morphology - trophozoites range from 5 to 10 microns in diameter. The nucleus contains a large, blot-like karyosome and has little or no peripheral chromatin. Cysts are usually sub-oval, measuring 4 to 6 by 6 to 10 microns 2. Iodamoeba butschlii Iodamoeba butschlii trophozoite I. Butschlii cyst I. Butschlii cyst (iodine) a. Pathogenicity - none. b. Morphology – often called iodine cyst - striking characteristic is large glycogen vacuole - stains dark brown with iodine. 3. Naegleria fowleri Naegleria fowleri trophozoite in CSF N. fowleri trophozoites a. Classification - an ameboflagellate and a free-living organism; it alternates between amoeboid and bi-flagellated forms; only the amoeboid form is found in tissues. Disease occurs during summer months. Occurs only in fresh water, can tolerate chlorinated swimming pools. b. Life cycle - the amoeba gains entry via the nasal mucosa, usually during a swimming event; it moves along the olfactory nerve, gaining access to the brain via the cribriform plate. It rapidly colonizes the brain, and cases are invariably fatal. Infections do not spread form person-to-person. c. Symptoms - Symptoms are dramatic and rapidly progressive. Headache, fever, nausea & vomiting occur within 1 to 2 days. Meningoencephalitis, irrational behavior, coma & death usually occur within 9 days of exposure. d. Diagnosis - Usually made at autopsy. CSF contains a large number of segmenters with no bacteria present. Motile amoebae can be seen in wet mounts of CSF. Early diagnosis is critical. CSF specimens can be plated onto non-nutrient agar containing a lawn of bacteria; amoebae, which grow out, can be transferred into sterile filtered water to determine IntProt.doc 5 of 15 if the organisms present transform into the bi-flagellated stage. e. Treatment - Amphotericin B (Intravenous and Intrathecal) with rifampin is the only regimen to date that has proven successful in saving a patient. 4. Acanthamoeba spp. Acanthamoeba spp. trophozoite a. Life cycle - also a free-living amoeba. The amoeba reaches the brain hematogenously after entering a wound or lesion on the skin. More commonly, the organism is associated with getting into eyes via contaminated or homemade cleaning solutions. b. Symptoms - slow onset (10 or more days). Presents as chronic, granulomatous lesions in brain. In eye lesions, the infection resembles a herpes virus infection. c. Acanthamoeba keratitis - affects healthy persons; sometimes associated with eye trauma; most recently has been associated with users of extended-wear contact lenses. Cysts are resistant to drying and disinfection via chlorine. III. Superclass Mastigophora - the flagellates; members of this group can inhabit mouth, bloodstream, tissues, gastrointestinal, or urogenital tracts. A. Members: Giardia lamblia Dientamoeba fragilis Chilomastix
Recommended publications
  • Balantidium Coli
    GLOBAL WATER PATHOGEN PROJECT PART THREE. SPECIFIC EXCRETED PATHOGENS: ENVIRONMENTAL AND EPIDEMIOLOGY ASPECTS BALANTIDIUM COLI Francisco Ponce-Gordo Complutense University Madrid, Spain Kateřina Jirků-Pomajbíková Institute of Parasitology Biology Centre, ASCR, v.v.i. Budweis, Czech Republic Copyright: This publication is available in Open Access under the Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) license (http://creativecommons.org/licenses/by-sa/3.0/igo). By using the content of this publication, the users accept to be bound by the terms of use of the UNESCO Open Access Repository (http://www.unesco.org/openaccess/terms-use-ccbysa-en). Disclaimer: The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The ideas and opinions expressed in this publication are those of the authors; they are not necessarily those of UNESCO and do not commit the Organization. Citation: Ponce-Gordo, F., Jirků-Pomajbíková, K. 2017. Balantidium coli. In: J.B. Rose and B. Jiménez-Cisneros, (eds) Global Water Pathogens Project. http://www.waterpathogens.org (R. Fayer and W. Jakubowski, (eds) Part 3 Protists) http://www.waterpathogens.org/book/balantidium-coli Michigan State University, E. Lansing, MI, UNESCO. Acknowledgements: K.R.L. Young, Project Design editor; Website Design (http://www.agroknow.com) Published: January 15, 2015, 11:50 am, Updated: October 18, 2017, 5:43 pm Balantidium coli Summary 1.1.1 Global distribution Balantidium coli is reported worldwide although it is To date, Balantidium coli is the only ciliate protozoan more common in temperate and tropical regions (Areán and reported to infect the gastrointestinal track of humans.
    [Show full text]
  • Exposure to Parasitic Protists and Helminths Changes the Intestinal Community Structure Of
    bioRxiv preprint doi: https://doi.org/10.1101/717165; this version posted July 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: Exposure to parasitic protists and helminths changes the intestinal community structure of 2 bacterial microbiota but not of eukaryotes in a cohort of mother-child binomial from a semi-rural 3 setting in Mexico 4 Running title: Parasites affect intestinal microbiome 5 Oswaldo Partida-Rodriguez1,2, Miriam Nieves-Ramirez1,2, Isabelle Laforest-Lapointe3,4, Eric Brown2, 6 Laura Parfrey5,6, Lisa Reynolds2, Alicia Valadez-Salazar1, Lisa Thorson2, Patricia Morán1, Enrique 7 Gonzalez1, Edgar Rascon1, Ulises Magaña1, Eric Hernandez1, Liliana Rojas-V1, Javier Torres7, Marie 8 Claire Arrieta2,3,4*, Cecilia Ximenez1*#, Brett Finlay2,8,9* 9 * Senior authors, contributed equally. 10 1Laboratorio de Inmunología del Departamento de Medicina Experimental, UNAM, Mexico City, Mexico 11 2Michael Smith Laboratories, Department of Microbiology & Immunology, University of British 12 Columbia, Vancouver, British Columbia, Canada 13 3Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada 14 4Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada 15 5Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada 16 6Department of Botany, University
    [Show full text]
  • Protistology Mitochondrial Genomes of Amoebozoa
    Protistology 13 (4), 179–191 (2019) Protistology Mitochondrial genomes of Amoebozoa Natalya Bondarenko1, Alexey Smirnov1, Elena Nassonova1,2, Anna Glotova1,2 and Anna Maria Fiore-Donno3 1 Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia 2 Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, 194064 Saint Petersburg, Russia 3 University of Cologne, Institute of Zoology, Terrestrial Ecology, 50674 Cologne, Germany | Submitted November 28, 2019 | Accepted December 10, 2019 | Summary In this mini-review, we summarize the current knowledge on mitochondrial genomes of Amoebozoa. Amoebozoa is a major, early-diverging lineage of eukaryotes, containing at least 2,400 species. At present, 32 mitochondrial genomes belonging to 18 amoebozoan species are publicly available. A dearth of information is particularly obvious for two major amoebozoan clades, Variosea and Tubulinea, with just one mitochondrial genome sequenced for each. The main focus of this review is to summarize features such as mitochondrial gene content, mitochondrial genome size variation, and presence or absence of RNA editing, showing if they are unique or shared among amoebozoan lineages. In addition, we underline the potential of mitochondrial genomes for multigene phylogenetic reconstruction in Amoebozoa, where the relationships among lineages are not fully resolved yet. With the increasing application of next-generation sequencing techniques and reliable protocols, we advocate mitochondrial
    [Show full text]
  • Download the Abstract Book
    1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing.
    [Show full text]
  • The Behavioral Ecology of the Tibetan Macaque
    Fascinating Life Sciences Jin-Hua Li · Lixing Sun Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associ- ated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthu- siasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Jin-Hua Li • Lixing Sun • Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Editors Jin-Hua Li Lixing Sun School of Resources Department of Biological Sciences, Primate and Environmental Engineering Behavior and Ecology Program Anhui University Central Washington University Hefei, Anhui, China Ellensburg, WA, USA International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology Anhui, China School of Life Sciences Hefei Normal University Hefei, Anhui, China Peter M. Kappeler Behavioral Ecology and Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research Göttingen, Germany Department of Anthropology/Sociobiology University of Göttingen Göttingen, Germany ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-030-27919-6 ISBN 978-3-030-27920-2 (eBook) https://doi.org/10.1007/978-3-030-27920-2 This book is an open access publication.
    [Show full text]
  • Acanthamoeba Spp., Balamuthia Mandrillaris, Naegleria Fowleri, And
    MINIREVIEW Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris , Naegleria fowleri , and Sappinia diploidea Govinda S. Visvesvara1, Hercules Moura2 & Frederick L. Schuster3 1Division of Parasitic Diseases, National Center for Infectious Diseases, Atlanta, Georgia, USA; 2Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA; and 3Viral and Rickettsial Diseases Laboratory, California Department of Health Services, Richmond, California, USA Correspondence: Govinda S. Visvesvara, Abstract Centers for Disease Control and Prevention, Chamblee Campus, F-36, 4770 Buford Among the many genera of free-living amoebae that exist in nature, members of Highway NE, Atlanta, Georgia 30341-3724, only four genera have an association with human disease: Acanthamoeba spp., USA. Tel.: 1770 488 4417; fax: 1770 488 Balamuthia mandrillaris, Naegleria fowleri and Sappinia diploidea. Acanthamoeba 4253; e-mail: [email protected] spp. and B. mandrillaris are opportunistic pathogens causing infections of the central nervous system, lungs, sinuses and skin, mostly in immunocompromised Received 8 November 2006; revised 5 February humans. Balamuthia is also associated with disease in immunocompetent chil- 2007; accepted 12 February 2007. dren, and Acanthamoeba spp. cause a sight-threatening infection, Acanthamoeba First published online 11 April 2007. keratitis, mostly in contact-lens wearers. Of more than 30 species of Naegleria, only one species, N. fowleri, causes an acute and fulminating meningoencephalitis in DOI:10.1111/j.1574-695X.2007.00232.x immunocompetent children and young adults. In addition to human infections, Editor: Willem van Leeuwen Acanthamoeba, Balamuthia and Naegleria can cause central nervous system infections in animals. Because only one human case of encephalitis caused by Keywords Sappinia diploidea is known, generalizations about the organism as an agent of primary amoebic meningoencephalitis; disease are premature.
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • Experimental Listeria–Tetrahymena–Amoeba Food Chain Functioning Depends on Bacterial Virulence Traits Valentina I
    Pushkareva et al. BMC Ecol (2019) 19:47 https://doi.org/10.1186/s12898-019-0265-5 BMC Ecology RESEARCH ARTICLE Open Access Experimental Listeria–Tetrahymena–Amoeba food chain functioning depends on bacterial virulence traits Valentina I. Pushkareva1, Julia I. Podlipaeva2, Andrew V. Goodkov2 and Svetlana A. Ermolaeva1,3* Abstract Background: Some pathogenic bacteria have been developing as a part of terrestrial and aquatic microbial eco- systems. Bacteria are consumed by bacteriovorous protists which are readily consumed by larger organisms. Being natural predators, protozoa are also an instrument for selection of virulence traits in bacteria. Moreover, protozoa serve as a “Trojan horse” that deliver pathogens to the human body. Here, we suggested that carnivorous amoebas feeding on smaller bacteriovorous protists might serve as “Troy” themselves when pathogens are delivered to them with their preys. A dual role might be suggested for protozoa in the development of traits required for bacterial passage along the food chain. Results: A model food chain was developed. Pathogenic bacteria L. monocytogenes or related saprophytic bacteria L. innocua constituted the base of the food chain, bacteriovorous ciliate Tetrahymena pyriformis was an intermedi- ate consumer, and carnivorous amoeba Amoeba proteus was a consumer of the highest order. The population of A. proteus demonstrated variations in behaviour depending on whether saprophytic or virulent Listeria was used to feed the intermediate consumer, T. pyriformis. Feeding of A. proteus with T. pyriformis that grazed on saprophytic bacteria caused prevalence of pseudopodia-possessing hungry amoebas. Statistically signifcant prevalence of amoebas with spherical morphology typical for fed amoebas was observed when pathogenic L.
    [Show full text]
  • A KEY to the COMMON PARASITIC PROTOZOANS of NORTH AMERICAN FISHES Thomas L. Wellborn, Jr. and Wilmer A. Rogers Zoology-Ent
    . A KEY to the COMMON PARASITIC PROTOZOANS of NORTH AMERICAN FISHES Thomas L. Wellborn, Jr. and Wilmer A. Rogers Zoology-Entomology Department Series Fisheries No. 4 AGRICULTURAL EXPERIMENT STATION AUBURN UNIVERSITY E. V. Smith, Director March 1966 Auburn, Alabama (Revised June 1970) A KEY TO THE COMMON PARASITIC PROTOZOANS 1 OF NORTH AMERICAN FISHES Thomas L. Wellborn, Jr. 2/— and Wilmer A. Rogers 3/— Private, state, and federal fish husbandry industries suffer great losses each year because of disease and parasites. The parasitic protozoans included in this key are the ones most commonly associated with fish mortalities. A total of 23 genera of parasitic protozoans may be identified by use of this key. The fish protozoan parasites are responsible for a large part of the mortalities that occur at fish hatcheries each year. This is because they are capable of building up tremendous populations within relatively short periods of time, and some are capable of causing extreme damage to fish. Proper treatment and control of the diseases caused by the various protozoans are impossible without knowing their identity. This key will be helpful to fishery workers in identifying the more common genera. It must be remembered, however, that a microscope and knowledge of its use are absolute prerequisites for identifying protozoans. Certain parasitic protozoans cannot be identified below the rank of Order - without use of special techniques; therefore, all known genera are not included in the herein reported key. Protozoans belonging to such Orders should be sent to a specialist for identification. 1/ Supported in part by Southeastern Cooperative Fish Parasite and Disease Project (Fish Restoration Funds).
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Clinical Parasitology: a Practical Approach
    168 CHAPTER 7 Miscellaneous Protozoa proper personal hygiene, adequate sanitation known as Sarcocystis hominis. Similarly, Sarco- practices, and avoidance of unprotected sex, par- cystis suihominis may be found in pigs. In addi- ticularly among homosexual men. tion to these typical farm animals, a variety of wild animals may also harbor members of the Sarcocystis group. Sarcocystis lindemanni Quick Quiz! 7-5 has been designated as the umbrella term for those organisms that may potentially parasitize All the following are highly recommended when pro- humans. cessing samples for the identification of Isospora belli to ensure identification except: (Objective 7-8) A. Iodine wet prep Morphology B. Decreased microscope light level Mature Oocysts. Members of the genus Sar- C. Modified acid-fast stain cocystis were originally classified and considered D. Saline wet prep as members of the genus Isospora, in part because of the striking morphologic similarities of these parasites (Fig. 7-8; Table 7-4). The oval transpar- Quick Quiz! 7-6 ent organism consists of two mature sporocysts that each average from 10 to 18 μm in length. Which stage of reproduction is considered capable of Each sporocyst is equipped with four sausage- initiating another infection of Isospora belli? (Objec- shaped sporozoites. A double-layered clear and tives 7-5) colorless cell wall surrounds the sporocysts. A. Sporozoites B. Immature oocysts Laboratory Diagnosis C. Merozoites D. Mature oocysts Stool is the specimen of choice for the recovery of Sarcocystis organisms. The oocysts are usually passed into the feces fully developed. When present, these mature oocysts are typically seen Quick Quiz! 7-7 Which of the following patients would be more likely to contract an infection with Isospora belli? (Objective 7-6) Double layered A.
    [Show full text]
  • CH28 PROTISTS.Pptx
    9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3.
    [Show full text]