Balantidium Coli
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Zealand's Genetic Diversity
1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses). -
The Intestinal Protozoa
The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately. -
Wda 2016 Conference Proceedi
The 65th International Conference of the Wildlife Disease Association July 31 August 5, 2016 Cortland, New York Sustainable Wildlife: Health Matters! Hosted by at Greek Peak Mountain Resort Cortland, New York, USA 4 Wildlife Disease Association Table of Contents Welcome from the Conference Committee 6 Conference Committee Members 7 WDA Officers 8 Plenary Speakers 9 The 2016 Carlton Herman Fund Speaker 11 Sponsors 12 Events & Meetings 15 Pre-conference Workshops 17 Program 21 Poster Sessions 34 Abstracts 40 Exhibitors 249 Index 256 65th Annual International Conference 5 Welcome from the Conference Committee Welcome to beautiful central New York, the 65th International Conference of the Wildlife Disease Association, and the 2016 Annual Meeting of the American Association of Wildlife Veterinarians. We have planned an exciting scientific program and have lots of networking and learning opportunities in store this week. There will be a break mid-week to allow time to socialize with new and old friends and take in some of the adventures the area has to offer. global challenges and opportunities in managing wildlife health issues with our excellent slate of plenary speakers. In addition, we have three special sessions: How Risk Communication Research in Wildlife Disease Management Contributes to Wildlife Trust Administration, Chelonian Diseases and Conservation, and Vaccines for Conservation. This meeting would not have been possible without the contributions of numerous people and institutions. We are grateful to Cornell University for in-kind and financial support for this event. The Atkinson Center for a Sustainable Future, College of Veterinary Medicine, Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, and Lab of Ornithology have all been integral parts of making this meeting a success. -
SNF Mobility Model: ICD-10 HCC Crosswalk, V. 3.0.1
The mapping below corresponds to NQF #2634 and NQF #2636. HCC # ICD-10 Code ICD-10 Code Category This is a filter ceThis is a filter cellThis is a filter cell 3 A0101 Typhoid meningitis 3 A0221 Salmonella meningitis 3 A066 Amebic brain abscess 3 A170 Tuberculous meningitis 3 A171 Meningeal tuberculoma 3 A1781 Tuberculoma of brain and spinal cord 3 A1782 Tuberculous meningoencephalitis 3 A1783 Tuberculous neuritis 3 A1789 Other tuberculosis of nervous system 3 A179 Tuberculosis of nervous system, unspecified 3 A203 Plague meningitis 3 A2781 Aseptic meningitis in leptospirosis 3 A3211 Listerial meningitis 3 A3212 Listerial meningoencephalitis 3 A34 Obstetrical tetanus 3 A35 Other tetanus 3 A390 Meningococcal meningitis 3 A3981 Meningococcal encephalitis 3 A4281 Actinomycotic meningitis 3 A4282 Actinomycotic encephalitis 3 A5040 Late congenital neurosyphilis, unspecified 3 A5041 Late congenital syphilitic meningitis 3 A5042 Late congenital syphilitic encephalitis 3 A5043 Late congenital syphilitic polyneuropathy 3 A5044 Late congenital syphilitic optic nerve atrophy 3 A5045 Juvenile general paresis 3 A5049 Other late congenital neurosyphilis 3 A5141 Secondary syphilitic meningitis 3 A5210 Symptomatic neurosyphilis, unspecified 3 A5211 Tabes dorsalis 3 A5212 Other cerebrospinal syphilis 3 A5213 Late syphilitic meningitis 3 A5214 Late syphilitic encephalitis 3 A5215 Late syphilitic neuropathy 3 A5216 Charcot's arthropathy (tabetic) 3 A5217 General paresis 3 A5219 Other symptomatic neurosyphilis 3 A522 Asymptomatic neurosyphilis 3 A523 Neurosyphilis, -
Enteric Protozoa in the Developed World: a Public Health Perspective
Enteric Protozoa in the Developed World: a Public Health Perspective Stephanie M. Fletcher,a Damien Stark,b,c John Harkness,b,c and John Ellisa,b The ithree Institute, University of Technology Sydney, Sydney, NSW, Australiaa; School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australiab; and St. Vincent’s Hospital, Sydney, Division of Microbiology, SydPath, Darlinghurst, NSW, Australiac INTRODUCTION ............................................................................................................................................420 Distribution in Developed Countries .....................................................................................................................421 EPIDEMIOLOGY, DIAGNOSIS, AND TREATMENT ..........................................................................................................421 Cryptosporidium Species..................................................................................................................................421 Dientamoeba fragilis ......................................................................................................................................427 Entamoeba Species.......................................................................................................................................427 Giardia intestinalis.........................................................................................................................................429 Cyclospora cayetanensis...................................................................................................................................430 -
Prevalence of Gastro-Intestinal Parasitic Infections of Cats and Efficacy of Antiparasitics Against These Infections in Mymensingh Sadar, Bangladesh
Bangl. J. Vet. Med. (2020). 18 (2): 65–73 ISSN: 1729-7893 (Print), 2308-0922 (Online) Received: 30-11-2020; Accepted: 30-12-2020 DOI: https://doi.org/10.33109/bjvmjd2020sam1 ORIGINAL ARTICLE Prevalence of gastro-intestinal parasitic infections of cats and efficacy of antiparasitics against these infections in Mymensingh sadar, Bangladesh B. H. Mehedi, A. Nahar, A. K. M. A. Rahman, M. A. Ehsan* Department of Medicine, Bangladesh Agricultural University, Mymensingh 2202. Abstract Background: Gastro-intestinal parasitic infection in cats is a major concern for public health as they have zoonotic importance. The present research was conducted to determine the prevalence of gastro-intestinal parasitic infection in cats and evaluate the efficacy of antiparasitics against these infections in different areas of Mymensingh Sadar between December, 2018 to May, 2019. Methods: The fecal samples were examined by simple sedimentation and stoll’s ova counting method for detection of eggs/cysts/oocysts of parasites. The efficacy of antiparasitics against the parasitic infections in cats was evaluated. Results: The overall prevalence of gastrointestinal parasites was 62.9% (39/62) and the mixed parasitic infection was 20.9% (13/62). The prevalence of Toxocara cati and Ancylostoma tubaeforme infections were 17.7% and 6.5%, respectively. The prevalence of Taenia pisiformis infection was 3.22%. However, the prevalence of Isospora felis, Toxoplasma gondii and Balantidium coli infections were 4.8%, 3.2% and 6.5%. The prevalence of infection was significantly (P<0.008) higher in kitten than that in adult cat. The efficacy of albendazole, fenbendazole against single helminth infection was 100%. -
Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published. -
U.S. Environmental Protection Agency Relative Risk Assessment Of
United States Environmental Protection Agency Relative Risk Assessment of Management Options for Treated Wastewater in South Florida Office of Water (4606M) EPA 816-R-03-010 www.epa.gov/safewater Recycled/Recyclable • Printed with Vegetable Oil Based Inks on April 2003 Recycled Paper (Minimum 30% Postconsumer) [ This page intentionally left blank ] TABLE OF CONTENTS Page EXECUTIVE SUMMARY ES-1 Wastewater Challenges in South Florida ES-1 Congressional Mandate for Relative Risk Assessment ES-2 Municipal Wastewater Treatment Options in South Florida ES-2 Wastewater Treatment Options ES-3 Levels of Wastewater Treatment and Disinfection ES-4 Risk Assessment ES-5 Approach Used in this Relative Risk Assessment ES-6 Deep-Well Injection ES-7 Regulatory Oversight of Deep-Well Injection ES-10 Option-Specific Risk Analysis for Deep-Well Injection ES-11 How Injected Wastewater Can Reach Drinking-Water Supplies ES-11 Human Health and Ecological Risk Characterization of Deep-Well Injection ES-13 Aquifer Recharge ES-14 Regulatory Oversight of Aquifer Recharge ES-14 Option-Specific Risk Analysis for Aquifer Recharge ES-15 Human Health and Ecological Risk Characterization of Aquifer Recharge ES-16 Discharge to Ocean Outfalls ES-16 Regulatory Oversight of Discharge to Ocean Outfalls ES-17 Option-Specific Risk Analysis for Discharge to Ocean Outfalls ES-18 Human Health and Ecological Risk Characterization of Discharge to Ocean Outfalls ES-19 Discharge to Surface Waters ES-19 Regulatory Oversight of Discharge to Surface Waters ES-20 Option-Specific Risk Analysis -
Balantidiasis in an Asiatic Elephant and Its Therapeutic Management
J Parasit Dis (Apr-June 2019) 43(2):186–189 https://doi.org/10.1007/s12639-018-1072-1 ORIGINAL ARTICLE Balantidiasis in an Asiatic elephant and its therapeutic management 1 2 1,3 1 N. Thakur • R. Suresh • G. E. Chethan • K. Mahendran Received: 8 October 2018 / Accepted: 12 December 2018 / Published online: 19 December 2018 Ó Indian Society for Parasitology 2018 Abstract A 14 years old female Asiatic elephant was Introduction presented to the hospital with a history of mucoid watery diarrhea, inappetence and lethargy. Clinical examination The causes and patho-physiologic features of chronic revealed normal body temperature (98.2 °F), tachycardia diarrhea in animals still remains a mystery in most cases. (42 bpm), eupnoea (14/min), congested mucous membrane The identification of the specific cause is essential for and dehydration. Haemato-biochemical parameters are rational treatment of clinical cases and also for prevention well within the range. Microscopic examination of faecal and control of the disease. Balantidiasis is an infectious sample revealed presence of live, motile and pear shaped disease caused by the protozoa Balantidium coli and is ciliated Balantidium coli protozoa. Based on clinical and characterized by chronic diarrhea (Islam et al. 2000; laboratory examination, the condition was diagnosed as Randhawa et al. 2010). Although the disease condition balantidiasis. The animal was treated with Tab. Metron- reported from different parts of the world, high prevalence idazole (10 mg/Kg, PO, BID) for 5 days. Supportive noticed in subtropical and tropical regions (Sampurna treatment was done with antacids, hepatoprotectants and 2007). Balantidium coli is a large, ciliated protozoan par- multivitamin supplements. -
Balantidiasis in the Gastric Lymph Nodes of Barbary Sheep (Ammotragus Lervia): an Incidental Finding
J. Vet. Sci. (2006), 7(2), 207–209 JOURNAL OF Veterinary Case Report Science Balantidiasis in the gastric lymph nodes of Barbary sheep (Ammotragus lervia): an incidental finding Ho-Seong Cho1, Sung-Shik Shin2, Nam-Yong Park1,* 1Department of Veterinary Pathology, and 2Department of Veterinary Parasitology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea A 4-year-old female Barbary sheep (Ammotragus lervia) suffered from arthritis and lameness. Two of the affected was found dead in the Gwangju Uchi Park Zoo. The animals died, and the case specifically described in this animal had previously exhibited weakness and lethargy, study was one of these 2 animals. but no signs of diarrhea. The carcass was emaciated upon The initial examination of the animal revealed that the presentation. The main gross lesion was characterized by aforementioned lameness and arthritis was the result of foot severe serous atrophy of the fat tissues of the coronary rot induced by Fusobacterium necrophorum, which was and left ventricular grooves, resulting in the transformation isolated from the lesion site. As the result of this weakness, of the fat to a gelatinous material. The rumen was fully the animal grew increasingly lethargic, and finally succumbed distended with food, while the abomasum evidenced and perished. The results of the external examination of the mucosal corrugation with slight congestion. Microscopic carcass clearly indicated emaciation and dehydration. The examination revealed the presence of Balantidium coli necropsy examination also revealed a serous atrophy of trophozoites within the lymphatic ducts of the gastric subcutaneous fat and fat deposits along the coronary and left lymph node and the abdominal submucosa. -
Common Intestinal Protozoa of Humans
Common Intestinal Protozoa of Humans* Life Cycle Charts M.M. Brooke1, Dorothy M. Melvin1, and 2 G.R. Healy 1 Division of Laboratory Training and Consultation Laboratory Program Office and 2Division of Parasitic Diseases Center for Infectious Diseases Second Edition* 1983 U .S. Department of Health and Human Services Public Health Service Centers for Disease Control Atlanta, Georgia 30333 *Updated from the original printed version in 2001. ii Contents Page I. INTRODUCTION 1 II. AMEBAE 3 Entamoeba histolytica 6 Entamoeba hartmanni 7 Entamoeba coli 8 Endolimax nana 9 Iodamoeba buetschlii 10 III. FLAGELLATES 11 Dientamoeba fragilis 14 Pentatrichomonas (Trichomonas) hominis 15 Trichomonas vaginalis 16 Giardia lamblia (syn. Giardia intestinalis) 17 Chilomastix mesnili 18 IV. CILIATE 19 Balantidium coli 20 V. COCCIDIA** 21 Isospora belli 26 Sarcocystis hominis 27 Cryptosporidium sp. 28 VI. MANUALS 29 **At the time of this publication the coccidian parasite Cyclospora cayetanensis had not been classified. iii Introduction The intestinal protozoa of humans belong to four groups: amebae, flagellates, ciliates, and coccidia. All of the protozoa are microscopic forms ranging in size from about 5 to 100 micrometers, depending on species. Size variations between different groups may be considerable. The life cycles of these single- cell organisms are simple compared to those of the helminths. With the exception of the coccidia, there are two important growth stages, trophozoite and cyst, and only asexual development occurs. The coccidia, on the other hand, have a more complicated life cycle involving asexual and sexual generations and several growth stages. Intestinal protozoan infections are primarily transmitted from human to human. Except for Sarcocystis, intermediate hosts are not required, and, with the possible exception of Balantidium coli, reservoir hosts are unimportant. -
Acute Fulminating Form of Balantidium Coli Infection in Buffaloes
Research & Reviews: Research Journal of Biology e-ISSN:2322-0066 Acute Fulminating Form of Balantidium coli Infection in Buffaloes Sivajothi S* and Sudhakara B Reddy College of Veterinary Science, Sri Venkateswara Veterinary University, Proddatur, Andhra Pradesh, India Case Report Received date: 22/02/2018 ABSTRACT Accepted date: 10/03/2018 Balantidium coli are a ciliate protozoan and it is frequently found in Published date: 17/03/2018 the intestinal tract of the different animals including humans. Acute fulmi- nating form of Balantidium coli infection was noticed in a dairy farm. Clini- *For Correspondence cal examination of the infected buffaloes showed elevated rectal temper- ature, increased heart rate, congested mucus membranes, arched back Sivajothi S, College of Veterinary Science, Sri appearance with severe straining while defecation, sunken eye balls and Venkateswara Veterinary University, Proddatur, dysentery. Foul smell dung, mixed with blood streaks and mucosal shed- Andhra Pradesh, India, Tel: 086860 78663. ding was noticed. Microscopic examination of the dung revealed numerous motile ciliated trophozoites of Balantidium coli. Buffaloes were treated with E-mail: [email protected] intravenous rehydration, metronidazole and oxytetracycline. Keywords: Dysentery, Balantidium coli, Buffaloes, Oxytetracycline, Metronidazole INTRODUCTION Buffaloes had an important role in the improvement of the farmer’s economy in rural areas. Protozoan diseases have great economic importance in ruminants and other animals. Among the protozoan diseases balantidiasis caused by Balantidium coli, is a common disease and it was present throughout the world with a wide variety of hosts, including man, various domestic and wild mammals. Balantidium coli naturally inhabitants of the caecum, colon and rectum of apparently healthy animals, but under certain circumstances it produces clinical disease [1].