Cyclosporiasis: an Update

Total Page:16

File Type:pdf, Size:1020Kb

Cyclosporiasis: an Update Cyclosporiasis: An Update Cirle Alcantara Warren, MD Corresponding author Epidemiology Cirle Alcantara Warren, MD Cyclosporiasis has been reported in three epidemiologic Center for Global Health, Division of Infectious Diseases and settings: sporadic cases among local residents in an International Health, University of Virginia School of Medicine, MR4 Building, Room 3134, Lane Road, Charlottesville, VA 22908, USA. endemic area, travelers to or expatriates in an endemic E-mail: [email protected] area, and food- or water-borne outbreaks in a nonendemic Current Infectious Disease Reports 2009, 11:108–112 area. In tropical and subtropical countries (especially Current Medicine Group LLC ISSN 1523-3847 Haiti, Guatemala, Peru, and Nepal) where C. cayetanen- Copyright © 2009 by Current Medicine Group LLC sis infection is endemic, attack rates appear higher in the nonimmune population (ie, travelers, expatriates, and immunocompromised individuals). Cyclosporiasis was a Cyclosporiasis is a food- and water-borne infection leading cause of persistent diarrhea among travelers to that affects healthy and immunocompromised indi- Nepal in spring and summer and continues to be reported viduals. Awareness of the disease has increased, and among travelers in Latin America and Southeast Asia outbreaks continue to be reported among vulnera- [8–10]. Almost half (14/29) the investigated Dutch attend- ble hosts and now among local residents in endemic ees of a scientifi c meeting of microbiologists held in 2001 areas. Advances in molecular techniques have in Indonesia had C. cayetanensis in stool, confi rmed by improved identifi cation of infection, but detecting microscopy and/or polymerase chain reaction (PCR), and food and water contamination remains diffi cult. most patients had gastrointestinal symptoms, particularly Further understanding of the biology, pathogenesis, fl atulence and loss of appetite [11]. and control of infection and transmission has been Endemic infection was noted to be highest among chil- hindered by the diffi culty of propagating the organ- dren and AIDS patients in Guatemala [12,13]. In a study of ism, lack of reliable oocyst viability and infectivity 253 children with persistent diarrhea in Nepal, severe mal- assays, and inability to experimentally infect ani- nutrition and HIV infection were associated with Cylcospora mals and human volunteers. This article provides a and Cryptosporidium infections [14]. Extreme poverty, liv- general review and presents recent insights into the ing in a hut or small house, lack of latrines, and contact with organism and disease. contaminated soil were reported to be associated with infec- tion in a community-based study in Venezuela [15•]. Cyclosporiasis in developed countries occurs in the Introduction setting of food- or water-borne outbreaks. In the United Cyclospora cayetanensis is a food- and water-borne coc- States and Canada, infections have been linked to impor- cidian parasite that causes acute and chronic diarrhea tation of fresh produce such as raspberries, blackberries, in immunocompetent and immunocompromised hosts. basil, and baby lettuce leaves [16]. Guatemalan raspberries Cyclospora is classifi ed in the phylum Apicomplexa and have been associated with about 50 outbreaks from 1995 is phylogenetically related to other coccidian parasites, to 2000 [16,17]. More recently, fresh snow peas in a pasta including Eimeria, Cryptosporidium, Isospora, Toxo- salad were associated with an outbreak of cyclosporiasis in plasma, and Sarcocystis. Cyclospora spp are ubiquitous a residential facility in Pennsylvania [18]. The US Food and and infect a variety of animals, including reptiles, insecti- Drug Administration traced the snow peas to an exporter vores, and rodents. However, C. cayetanensis is the only from Guatemala. Thai basil imported from the United species known to infect humans [1,2]. The protozoan par- States was linked to an outbreak among ethnic immigrants asite initially was referred to as cyanobacteria (blue-green in Canada [19]. The use of untreated or poorly treated algae) or coccidian (“big” Cryptosporidium)-like bodies in water for irrigating crops, applying fertilizers, and wash- the stools of patients with prolonged diarrhea and fatigue ing and processing foods has been implicated as a source [3–6]. Although the organism has been recovered in stool of contamination for fruits and vegetables [20]. Cultivation from numerous regions, including North America, Cen- of produce near wastewater-fed bodies of water may also tral America, South America, Caribbean Islands, Eastern contribute to fecal and protozoal contamination of food Europe, South Africa, Southeast Asia, India, Nepal, Peru, in developing countries [21]. Although reported previ- and Haiti, infection appears to be most common in tropi- ously, cyclosporiasis associated with recreational exposure cal and subtropical countries [7]. to water, especially swimming pools, has not been noted Cyclosporiasis: An Update I Warren I 109 recently [22,23]. Food-borne outbreaks have been reported asexual (merogony and schizogony) and sexual reproduc- in passenger ships, but Cyclospora spp have been linked tion (gametogony) within the gastrointestinal epithelium to only one of the 50 outbreaks reviewed by Rooney et al. [30]. Biopsy specimens from the small intestine reveal that [24]. In this outbreak, 220 passengers and crew members C. cayetanensis infection is limited to the enterocytes and were affected. spares the lamina propia and submucosa [30,31]. Jejunal Recently, outbreaks among local residents in endemic villi are stunted, widened, and edematous, with mixed areas have been reported. The adult, local residents, espe- infl ammatory cell infi ltrate. Vascular congestion is also cially those of low socioeconomic status, initially were demonstrated. Parasitophorous vacuoles are formed at the thought to have acquired immunity to Cyclospora; thus, apical end of the enterocytes, exhibiting all the different the prevalence of the disease in this population was low. developmental stages of the parasite. Further understand- The fi rst of the three outbreaks involved attendees at a ing of how the excystation, attachment, pathologic wedding in Mexico [25]. The other two were in Peruvian changes, encystation, and clinical disease occur is ham- naval recruits in Lima [26,27•]. All the military recruits pered by the lack of animal models to study pathogenetic were male (mean age, 19 years) and of low socioeconomic mechanisms. Systematic attempts to infect numerous ani- status. The occurrence of infection in this group of healthy, mal species with C. cayetanensis have been unsuccessful young adults was suggested to be secondary to waning [32]. Similarly, a pilot study of seven healthy volunteers immunity or unequal geographic distribution of C. cay- fed 200 to 49,000 sporulated oocysts failed to induce etanensis even in endemic areas. With increased awareness clinical disease or demonstrate fecal evidence of infec- of the disease and improved diagnostic capabilities, more tion [33]. These observations highlight the need for better outbreaks among the local population in endemic settings viability and infectivity assays for C. cayetanensis. may be discovered. When freshly excreted, the oocysts of C. cayetanensis are unsporulated, thus noninfectious. Sporulation occurs in the laboratory with 2.5% potassium dichromate in Clinical Features about 1 to 2 weeks. Whether the rate of sporulation in the Cyclospora cayetanensis infects immunocompetent and environment is the same, and the environmental factors immunocompromised hosts. The incubation period is involved, are unknown. Duration of sporulation seems to estimated to be 1 to 14 days (average, 7 days) [16]. Infec- be affected variably by temperature in experiments per- tion with Cyclospora may be asymptomatic, may manifest formed in dairy and basil [34]. Extremes of temperature as mild to moderate self-limiting diarrhea (usually in the seem to be inhibitory in both food substrates, whereas no healthy host), or as protracted and severe diarrhea. In the effect was noted when incubation occurred at 4°C and immunocompetent host, the mean duration of diarrhea 23°C for up to 1 week. In another study, Cyclospora spor- ranges from 10 to 25 days in outbreak settings, which ulation was observed even with microwave exposure at may be followed by relapsing symptoms lasting several 100% power for 45 seconds [35]. Various fungicides and weeks to months [16,28]. In endemic infections and inter- insecticides also have been shown to not affect sporula- national travelers, mean duration of symptoms seems to tion [36]. Once sporulated, the Cyclospora oocysts remain be longer, about 6 to 7 weeks, but these differences may infectious and can persist in food, water, and the envi- be secondary to host factors and delayed diagnosis and ronment. Routine washing of fruits and vegetables may treatment [11,16]. In the immunocompromised host, the not be suffi cient to remove the oocysts [37]. High-hydro- diarrheal illness is usually prolonged with periods of static-pressure processing (HPP) and UV light treatment remission and relapse, and may last a few days to several have been shown to decrease the infectivity of Eimeria months. Diarrhea is characteristically watery, sometimes acervulina–contaminated raspberries and basil [38•]. explosive, and associated with nausea, anorexia, abdomi- Although Eimeria may be a surrogate for C. cayetanen- nal cramps, and bloating. Profound fatigue and weight sis, the utility
Recommended publications
  • Cyclospora Cayetanensis Infection in Transplant Traveller: a Case Report of Outbreak Małgorzata Bednarska1*, Anna Bajer1, Renata Welc-Falęciak1 and Andrzej Pawełas2
    Bednarska et al. Parasites & Vectors (2015) 8:411 DOI 10.1186/s13071-015-1026-8 SHORT REPORT Open Access Cyclospora cayetanensis infection in transplant traveller: a case report of outbreak Małgorzata Bednarska1*, Anna Bajer1, Renata Welc-Falęciak1 and Andrzej Pawełas2 Abstract Background: Cyclospora cayetanensis is a protozoan parasite causing intestinal infections. A prolonged course of infection is often observed in immunocompromised individuals. In Europe, less than 100 cases of C. cayetanensis infection have been reported to date, almost all of which being diagnosed in individuals after travelling abroad. Findings: We described cases of three businessmen who developed acute traveller’s diarrhoea after they returned to Poland from Indonesia. One of the travellers was a renal transplant recipient having ongoing immunosuppressive treatment. In each case, acute and prolonged diarrhoea and other intestinal disorders occurred. Oocysts of C. cayetanensis were identified in faecal smears of two of the travellers (one immunosuppressed and one immunocompetent). Diagnosis was confirmed by the successful amplification of parasite DNA (18S rDNA). A co-infection with Blastocystis hominis was identified in the immunocompetent man. Conclusions: Infection of C. cayetanensis shall be considered as the cause of prolonged acute diarrhoea in immunocompromised patients returning from endemic regions. Findings status of the infected individuals. Cyclosporiasis is more Cyclospora cayetanenis is a human parasite transmitted severe in children and immunosupressed individuals, i.e., through the faecal-oral route which infects the small intes- HIV/AIDS patients [15–17]. tine [1, 2]. Fresh fruits, herbs and vegetables (raspberries, In this paper, an outbreak of cyclosporiasis in three trav- blackberries, basil, lettuce) are foods most commonly iden- ellers, including one renal transplant recipient, returning tified as a source of human infection [3–7].
    [Show full text]
  • Multiyear Survey of Coccidia, Cryptosporidia, Microsporidia, Histomona, and Hematozoa in Wild Quail in the Rolling Plains Ecoregion of Texas and Oklahoma, USA
    Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Multiyear Survey of Coccidia, Cryptosporidia, Microsporidia, Histomona, and Hematozoa in Wild Quail in the Rolling Plains Ecoregion of Texas and Oklahoma, USA Lixin Xianga,b, Fengguang Guob, Yonglan Yuc, Lacy S. Parsonb, Lloyd LaCosted, Anna Gibsone, Steve M. Presleye, Markus Petersonf, Thomas M. Craigb, Dale Rollinsd,f, Alan M. Fedynichg & Guan Zhub a College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China b Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4467, USA c College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China d Rolling Plains Quail Research Foundation, San Angelo, Texas 76901, USA e Institute of Environmental & Human Health, Texas Tech University, Lubbock, Texas 79416, USA f Department of Wildlife & Fisheries Sciences, Texas A&M University, College Station, Texas 77843-2258, USA g Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, Texas 78363, USA Keywords ABSTRACT Cryptosporidium; molecular epidemiology; northern bobwhite (Colinus virginianus); pro- We developed nested PCR protocols and performed a multiyear survey on the tozoan parasites; scaled quail (Callipepla prevalence of several protozoan parasites in wild northern bobwhite (Colinus squamata). virginianus) and scaled quail (Callipepla squamata) in the Rolling Plains ecore- gion of Texas and Oklahoma (i.e. fecal pellets, bird intestines and blood Correspondence smears collected between 2010 and 2013). Coccidia, cryptosporidia, and G. Zhu, Department of Veterinary Pathobiol- microsporidia were detected in 46.2%, 11.7%, and 44.0% of the samples ogy, College of Veterinary Medicine & (n = 687), whereas histomona and hematozoa were undetected.
    [Show full text]
  • Journal of Parasitology
    Journal of Parasitology Eimeria taggarti n. sp., a Novel Coccidian (Apicomplexa: Eimeriorina) in the Prostate of an Antechinus flavipes --Manuscript Draft-- Manuscript Number: 17-111R1 Full Title: Eimeria taggarti n. sp., a Novel Coccidian (Apicomplexa: Eimeriorina) in the Prostate of an Antechinus flavipes Short Title: Eimeria taggarti n. sp. in Prostate of Antechinus flavipes Article Type: Regular Article Corresponding Author: Jemima Amery-Gale, BVSc(Hons), BAnSci, MVSc University of Melbourne Melbourne, Victoria AUSTRALIA Corresponding Author Secondary Information: Corresponding Author's Institution: University of Melbourne Corresponding Author's Secondary Institution: First Author: Jemima Amery-Gale, BVSc(Hons), BAnSci, MVSc First Author Secondary Information: Order of Authors: Jemima Amery-Gale, BVSc(Hons), BAnSci, MVSc Joanne Maree Devlin, BVSc(Hons), MVPHMgt, PhD Liliana Tatarczuch David Augustine Taggart David J Schultz Jenny A Charles Ian Beveridge Order of Authors Secondary Information: Abstract: A novel coccidian species was discovered in the prostate of an Antechinus flavipes (yellow-footed antechinus) in South Australia, during the period of post-mating male antechinus immunosuppression and mortality. This novel coccidian is unusual because it develops extra-intestinally and sporulates endogenously within the prostate gland of its mammalian host. Histological examination of prostatic tissue revealed dense aggregations of spherical and thin-walled tetrasporocystic, dizoic sporulated coccidian oocysts within tubular lumina, with unsporulated oocysts and gamogonic stages within the cytoplasm of glandular epithelial cells. This coccidian was observed occurring concurrently with dasyurid herpesvirus 1 infection of the antechinus' prostate. Eimeria- specific 18S small subunit ribosomal DNA PCR amplification was used to obtain a partial 18S rDNA nucleotide sequence from the antechinus coccidian.
    [Show full text]
  • 2013 Multistate Outbreaks of Cyclospora Cayetanensis Infections Associated with Fresh Produce: Focus on the Texas Investigations
    Epidemiol. Infect. (2015), 143, 3451–3458. © Cambridge University Press 2015 doi:10.1017/S0950268815000370 2013 multistate outbreaks of Cyclospora cayetanensis infections associated with fresh produce: focus on the Texas investigations F. ABANYIE1*, R. R. HARVEY2,3,J.R.HARRIS1,R.E.WIEGAND1,L.GAUL4, M. DESVIGNES-KENDRICK5,K.IRVIN6,I.WILLIAMS3,R.L.HALL1, B. HERWALDT1,E.B.GRAY1,Y.QVARNSTROM1,M.E.WISE3,V.CANTU4, P. T. CANTEY1,S.BOSCH3,A.J.DASILVA1,6,A.FIELDS6,H.BISHOP1, A. WELLMAN6,J.BEAL6,N.WILSON1,2,A.E.FIORE1,R.TAUXE3, S. LANCE3,6,L.SLUTSKER1,M.PARISE1, and the Multistate Cyclosporiasis Outbreak Investigation Team† 1 Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA 2 Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA 3 National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA 4 Texas Department of State Health Services, Austin, TX, USA 5 Fort Bend County Health & Human Services, Rosenberg, TX, USA 6 United States Food and Drug Administration, College Park, MD, USA Received 8 October 2014; Final revision 10 February 2015; Accepted 10 February 2015; first published online 13 April 2015 SUMMARY The 2013 multistate outbreaks contributed to the largest annual number of reported US cases of cyclosporiasis since 1997. In this paper we focus on investigations in Texas. We defined an outbreak-associated case as laboratory-confirmed cyclosporiasis in a person with illness onset between 1 June and 31 August 2013, with no history of international travel in the previous 14 days.
    [Show full text]
  • Extended-Spectrum Antiprotozoal Bumped Kinase Inhibitors: a Review
    University of Kentucky UKnowledge Veterinary Science Faculty Publications Veterinary Science 9-2017 Extended-Spectrum Antiprotozoal Bumped Kinase Inhibitors: A Review Wesley C. Van Voorhis University of Washington J. Stone Doggett Portland VA Medical Center Marilyn Parsons University of Washington Matthew A. Hulverson University of Washington Ryan Choi University of Washington Follow this and additional works at: https://uknowledge.uky.edu/gluck_facpub See next page for additional authors Part of the Animal Sciences Commons, Immunology of Infectious Disease Commons, and the Parasitology Commons Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Repository Citation Van Voorhis, Wesley C.; Doggett, J. Stone; Parsons, Marilyn; Hulverson, Matthew A.; Choi, Ryan; Arnold, Samuel L. M.; Riggs, Michael W.; Hemphill, Andrew; Howe, Daniel K.; Mealey, Robert H.; Lau, Audrey O. T.; Merritt, Ethan A.; Maly, Dustin J.; Fan, Erkang; and Ojo, Kayode K., "Extended-Spectrum Antiprotozoal Bumped Kinase Inhibitors: A Review" (2017). Veterinary Science Faculty Publications. 45. https://uknowledge.uky.edu/gluck_facpub/45 This Article is brought to you for free and open access by the Veterinary Science at UKnowledge. It has been accepted for inclusion in Veterinary Science Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Wesley C. Van Voorhis, J. Stone Doggett, Marilyn Parsons, Matthew A. Hulverson, Ryan Choi, Samuel L. M. Arnold, Michael W. Riggs, Andrew Hemphill, Daniel K. Howe, Robert H. Mealey, Audrey O. T. Lau, Ethan A. Merritt, Dustin J. Maly, Erkang Fan, and Kayode K. Ojo Extended-Spectrum Antiprotozoal Bumped Kinase Inhibitors: A Review Notes/Citation Information Published in Experimental Parasitology, v.
    [Show full text]
  • A New Species of Sarcocystis in the Brain of Two Exotic Birds1
    © Masson, Paris, 1979 Annales de Parasitologie (Paris) 1979, t. 54, n° 4, pp. 393-400 A new species of Sarcocystis in the brain of two exotic birds by P. C. C. GARNHAM, A. J. DUGGAN and R. E. SINDEN * Imperial College Field Station, Ashurst Lodge, Ascot, Berkshire and Wellcome Museum of Medical Science, 183 Euston Road, London N.W.1., England. Summary. Sarcocystis kirmsei sp. nov. is described from the brain of two tropical birds, from Thailand and Panama. Its distinction from Frenkelia is considered in some detail. Résumé. Une espèce nouvelle de Sarcocystis dans le cerveau de deux Oiseaux exotiques. Sarcocystis kirmsei est décrit du cerveau de deux Oiseaux tropicaux de Thaïlande et de Panama. Les critères de distinction entre cette espèce et le genre Frenkelia sont discutés en détail. In 1968, Kirmse (pers. comm.) found a curious parasite in sections of the brain of an unidentified bird which he had been given in Panama. He sent unstained sections to one of us (PCCG) and on examination the parasite was thought to belong to the Toxoplasmatea, either to a species of Sarcocystis or of Frenkelia. A brief description of the infection was made by Tadros (1970) in her thesis for the Ph. D. (London). The slenderness of the cystozoites resembled those of Frenkelia, but the prominent spines on the cyst wall were more like those of Sarcocystis. The distri­ bution of the cystozoites within the cyst is characteristic in that the central portion is practically empty while the outer part consists of numerous pockets of organisms, closely packed together.
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • Control of Intestinal Protozoa in Dogs and Cats
    Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 1 ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ, United Kingdom First Edition Published by ESCCAP in August 2011 Second Edition Published in February 2018 © ESCCAP 2018 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-53-1 2 TABLE OF CONTENTS INTRODUCTION 4 1: CONSIDERATION OF PET HEALTH AND LIFESTYLE FACTORS 5 2: LIFELONG CONTROL OF MAJOR INTESTINAL PROTOZOA 6 2.1 Giardia duodenalis 6 2.2 Feline Tritrichomonas foetus (syn. T. blagburni) 8 2.3 Cystoisospora (syn. Isospora) spp. 9 2.4 Cryptosporidium spp. 11 2.5 Toxoplasma gondii 12 2.6 Neospora caninum 14 2.7 Hammondia spp. 16 2.8 Sarcocystis spp. 17 3: ENVIRONMENTAL CONTROL OF PARASITE TRANSMISSION 18 4: OWNER CONSIDERATIONS IN PREVENTING ZOONOTIC DISEASES 19 5: STAFF, PET OWNER AND COMMUNITY EDUCATION 19 APPENDIX 1 – BACKGROUND 20 APPENDIX 2 – GLOSSARY 21 FIGURES Figure 1: Toxoplasma gondii life cycle 12 Figure 2: Neospora caninum life cycle 14 TABLES Table 1: Characteristics of apicomplexan oocysts found in the faeces of dogs and cats 10 Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 3 INTRODUCTION A wide range of intestinal protozoa commonly infect dogs and cats throughout Europe; with a few exceptions there seem to be no limitations in geographical distribution.
    [Show full text]
  • A Multistate Outbreak of Cyclosporiasis: a Classroom Case Study (Instructor Version)
    A Multistate Outbreak of Cyclosporiasis A Classroom Case Study INSTRUCTOR’S VERSION Original investigators: Barbara L. Herwaldt, MD, MPH1, Marta-Louise Ackers, MD1, Michael J. Beach, PhD1, and the Cyclospora Working Group 1Centers for Disease Control and Prevention Case study and instructor’s guide created by: Jeanette K. Stehr-Green, MD Reviewed by: Charles Haddad, Robert Tauxe, MD, MPH, Roderick C. Jones, MPH NOTE: This case study is based on real-life investigations undertaken in 1996 and 1997 in the United States and abroad that were published in the Morbidity and Mortality Weekly Report, the New England Journal of Medicine, and the Annals of Internal Medicine. The case study, however, is not a factual accounting of the details from these investigations. Some aspects of the investigations (and the circumstances leading up to them) have been altered to assist in meeting the desired teaching objectives. Some details have been fabricated to provide continuity to the storyline. Target audience: students with minimal knowledge of basic epidemiologic concepts who are interested in learning more about the practice of epidemiology including participants in the Knight Journalism Fellowship Program. Level of case study: basic Teaching materials required: none Time required: approximately 3 hours Language: English Training materials funded by: John S. and James L. Knight Foundation and the Centers for Disease Control and Prevention August 2004 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Centers for Disease Control and
    [Show full text]
  • Clinical Parasitology: a Practical Approach
    168 CHAPTER 7 Miscellaneous Protozoa proper personal hygiene, adequate sanitation known as Sarcocystis hominis. Similarly, Sarco- practices, and avoidance of unprotected sex, par- cystis suihominis may be found in pigs. In addi- ticularly among homosexual men. tion to these typical farm animals, a variety of wild animals may also harbor members of the Sarcocystis group. Sarcocystis lindemanni Quick Quiz! 7-5 has been designated as the umbrella term for those organisms that may potentially parasitize All the following are highly recommended when pro- humans. cessing samples for the identification of Isospora belli to ensure identification except: (Objective 7-8) A. Iodine wet prep Morphology B. Decreased microscope light level Mature Oocysts. Members of the genus Sar- C. Modified acid-fast stain cocystis were originally classified and considered D. Saline wet prep as members of the genus Isospora, in part because of the striking morphologic similarities of these parasites (Fig. 7-8; Table 7-4). The oval transpar- Quick Quiz! 7-6 ent organism consists of two mature sporocysts that each average from 10 to 18 μm in length. Which stage of reproduction is considered capable of Each sporocyst is equipped with four sausage- initiating another infection of Isospora belli? (Objec- shaped sporozoites. A double-layered clear and tives 7-5) colorless cell wall surrounds the sporocysts. A. Sporozoites B. Immature oocysts Laboratory Diagnosis C. Merozoites D. Mature oocysts Stool is the specimen of choice for the recovery of Sarcocystis organisms. The oocysts are usually passed into the feces fully developed. When present, these mature oocysts are typically seen Quick Quiz! 7-7 Which of the following patients would be more likely to contract an infection with Isospora belli? (Objective 7-6) Double layered A.
    [Show full text]
  • Enteric Protozoa in the Developed World: a Public Health Perspective
    Enteric Protozoa in the Developed World: a Public Health Perspective Stephanie M. Fletcher,a Damien Stark,b,c John Harkness,b,c and John Ellisa,b The ithree Institute, University of Technology Sydney, Sydney, NSW, Australiaa; School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australiab; and St. Vincent’s Hospital, Sydney, Division of Microbiology, SydPath, Darlinghurst, NSW, Australiac INTRODUCTION ............................................................................................................................................420 Distribution in Developed Countries .....................................................................................................................421 EPIDEMIOLOGY, DIAGNOSIS, AND TREATMENT ..........................................................................................................421 Cryptosporidium Species..................................................................................................................................421 Dientamoeba fragilis ......................................................................................................................................427 Entamoeba Species.......................................................................................................................................427 Giardia intestinalis.........................................................................................................................................429 Cyclospora cayetanensis...................................................................................................................................430
    [Show full text]
  • Detection of Cyclospora Cayetanensis, Cryptosporidium Spp., and Toxoplasma Gondii on Imported Leafy Green Vegetables in Canadian Survey
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Food and Waterborne Parasitology 2 (2016) 8–14 Contents lists available at ScienceDirect Food and Waterborne Parasitology journal homepage: www.elsevier.com/locate/fawpar Detection of Cyclospora cayetanensis, Cryptosporidium spp., and Toxoplasma gondii on imported leafy green vegetables in Canadian survey Laura F. Lalonde, Alvin A. Gajadhar ⁎ Centre for Food-borne and Animal Parasitology, Canadian Food Inspection Agency, Saskatoon Laboratory, 116 Veterinary Road, Saskatoon, Saskatchewan S7N 2R3, Canada article info abstract Article history: A national survey was performed to determine the prevalence of Cyclospora cayetanensis, Received 17 November 2015 Cryptosporidium spp., and Toxoplasma gondii in leafy green vegetables (leafy greens) purchased Received in revised form 29 January 2016 at retail in Canada. A total of 1171 samples of pre-packaged or bulk leafy greens from domestic Accepted 29 January 2016 (24.25%) and imported (75.75%) sources were collected at retail outlets from 11 Canadian cities Available online 23 February 2016 between April 2014 and March 2015. The samples were processed by shaking or stomaching in an elution buffer followed by oocyst isolation and concentration. DNA extracted from the wash Keywords: concentrates was tested for C. cayetanensis, Cryptosporidium spp., and T. gondii using our previ- Leafy green vegetables ously developed and validated 18S rDNA qPCR assay with a universal coccidia primer cocktail Food safety and melting curve analysis. Test samples that amplified and had a melting temperature and Cyclospora Cryptosporidium melt curve shape matching the C. cayetanensis, C. parvum, C.
    [Show full text]