Estimate of Aeolian Dust Thickness in Arabia Terra, Mars

Total Page:16

File Type:pdf, Size:1020Kb

Estimate of Aeolian Dust Thickness in Arabia Terra, Mars Géomorphologie : relief, processus, environnement, 2009, n° 1, p. ??? Estimate of aeolian dust thickness in Arabia Terra, Mars: Implications of a thick mantle (>20 m) for hydrogen detection Estimation des épaisseurs de poussières éoliennes dans la région d’Arabia Terra, Mars : conséquences d’une couverture épaisse (> 20 m) sur la détection d’hydrogène Nicolas Mangold*, Véronique Ansan*, Philippe Masson** and Cédric Vincendon** Abstract This study describes a method for estimating dust thickness on the surface of Mars using the distribution of small impact craters (< 1 km in diameter), obtained from high resolution Mars Orbiter Camera (MOC) images on the Mars Global Surveyor (MGS) space probe. The distribution of actual impact craters is different from the theoretical distribution of meteoritic impact flux due to the progressive bury- ing of impact craters by dust deposits. The rim height for the largest buried impact crater was found to provide an approximate minimum thickness for dust blanketing the surface. This method was applied to the region of Arabia Terra, found to be covered by a dust mantle with a minimum thickness of 20 meters. The presented results indicate that Arabia Terra was a regional sink for dust during most of the Amazonian epoch (> 3 Ga). Results also suggest that hydrogen, detected by the Neutron Spectrometer within this region in the top meter, is present in the dust and not in the underlying bedrock. Keywords: Mars, eolian, dust, neutron. Résumé Notre étude présente une méthode d’estimation de l’épaisseur de poussière à la surface de Mars en utilisant les petits cratères d’im- pact (< 1 km de diamètre) observés à haute résolution avec l’imagerie de l’instrument Mars Observer Camera de la sonde Mars Global Surveyor. La distribution des petits cratères est différente de celle prédite par le flux météoritique car les cratères sont progressivement recouverts de dépôts éoliens. La hauteur des remparts des plus gros cratères non enfouis permet d’obtenir une estimation approxima- tive de l’épaisseur de ces dépôts éoliens. Cette méthode est appliquée à la région d’Arabia Terra. Les résultats montrent une couverture de poussière d’environ 20 m au minimum. Ceci indique que cette région est une zone de dépôt durant la période Amazonienne (<3 Ga). Notre étude suggère également que l’hydrogène, qui est détecté par le spectromètre Neutron de Mars Odyssey dans cette région, se localise dans les dépôts éoliens et non pas dans le socle sous-jacent. Mot clés : Mars, éolien, loess, neutron. Version française abrégée recouvert de vastes zones pendant les périodes glaciaires sur Terre. Ces poussières progressivement indurées forment La planète Mars est le lieu d’une forte activité éolienne en une couverture sédimentaire plus ou moins épaisse selon les milieu périglaciaire. L’activité éolienne la plus fréquente endroits. Des estimations d’épaisseurs métriques ont été ef- correspond à des tempêtes de poussières, un phénomène fectuées à la suite des observations des sondes Viking (Ar- connu depuis les observations astronomiques effectuées de- vidson et al., 1989 ; Greeley et al., 1992). puis la Terre. Ces tempêtes affectent parfois toute la planè- Le dépôt progressif de poussières provoque l’effacement te en modifiant et homogénéisant son albedo. Cette activité des petits cratères d’impact qui criblent la surface de la pla- a pour conséquence la retombée de poussières sur toute la nète. Des surfaces apparemment très anciennes, car cou- planète en plus ou moins grande quantité, et, notamment vertes de cratères importants (>20 km) et nombreux sur les son accumulation dans des régions dépourvues de déflation images à basse résolution, peuvent ne présenter, à haute ré- éolienne efficace. On peut assimiler ce dépôt au loess ayant solution, que quelques petits cratères en raison de ce re-sur- * LPGN, UMR6112 CNRS et université de Nantes, 2, rue de la Houssinière, 44322 NANTES. Courriel : [email protected] ** IDES, UMR8148 CNRS et université Paris Sud, Bat 509, 91405 Orsay, France Nicolas Mangold, Véronique Ansan, Philippe Masson et Cédric Vincendon façage progressif. Ce processus peut empêcher une datation re. Or, des lois empiriques permettent de déterminer cette précise de ces terrains ainsi que l’étude de la surface ro- hauteur. Nous en déduisons pour cette image qu’une épais- cheuse proprement dite, entièrement voilée par la couvertu- seur minimale de 26 m recouvre le socle rocheux, expliquant re éolienne. L’exemple de la figure 1 montre une surface très l’oblitération progressive des petits cratères. L’absence de lisse caractéristique d’un recouvrement éolien continu. Les données autour du diamètre d’un kilomètre résulte d’un saut cratères sont frais pour les plus petits (f) et donc très ré- d’échelle fréquent dans les données. Les récentes images à cents, et on observe une dégradation graduelle, qui aug- moyenne résolution acquises par HRSC de Mars Express et mente pour les cratères (ld), puis (sd) jusqu’au cratère (g) THEMIS de Mars Odyssey permettent progressivement de qui est quasiment comblé en totalité. Cependant, nous pou- combler cette lacune. vons tirer parti de cette dégradation et de cet effacement En généralisant cette méthode à toutes les images étu- progressif des petits cratères pour estimer l’épaisseur de la diées, on peut réaliser une carte de distribution de cette couverture éolienne. En effet, les cratères d’impact suivent épaisseur sur toute la zone d’Arabia Terra (fig. 5). Bien que des lois bien établies quant à leur taille (paramètres de l’on observe localement des variations importantes d’une forme bien connus) et à la distribution de leur taille (aug- image à l’autre, la carte d’interpolation des épaisseurs de mentation du nombre de petits cratères suivant une loi de terrain suggère un recouvrement très épais à proximité du puissance), qui permet de donner l’âge d’une surface. Nous cratère Cassini, atteignant 80 m, ainsi qu’un recouvrement renvoyons aux publications de Hartmann (1999) pour une moyen des surfaces de l’ordre de 50 m. Ces épaisseurs res- explication détaillée du calcul de ces distributions et des tent des ordres de grandeur. Des études plus détaillées isochrones. fondées sur les images les plus récentes permettront d’ap- La méthode de datation par les cratères d’impact utilise pliquer cette méthode de manière plus précise. Les résultats des isochrones dont les pentes correspondent à l’augmenta- montrent d’ores et déjà que les terrains représentant des tion du nombre de météores dans l’espace en fonction de la puits de poussières atmosphériques sont très épais, relative- décroissance de leur taille. La distribution en diamètre des ment aux méthodes spectrales qui ne peuvent sonder impacts d’un terrain d’âge homogène suivra un des iso- au-delà de quelques centimètres de profondeur. Cette chrones (fig. 2) qui nous donnera un âge précis à un facteur méthode est applicable sur les planètes où les processus trois près (Hartmann, 1999). Si la distribution des cratères morphologiques s’effectuent à des vitesses de même ordre ne suit pas un isochrone, cela signifie qu’une modification que le criblage par les impacts météoritiques. Enfin, la est survenue postérieurement à la formation de la surface. région d’étude Arabia Terra a été analysée par le spectro- Cette modification a lieu soit à cause de l’érosion des ter- mètre neutron à bord de Mars Odyssey dont les données rains, qui oblitère progressivement des cratères, soit par suggèrent des proportions d’hydrogène non expliquées à ce l’intermédiaire d’un recouvrement sédimentaire ou volca- jour. En effet, des proportions équivalentes de 10-12 % nique qui ennoie les petits cratères. Dans les deux cas, ceux- maximum d’eau (en poids) sont mesurées (Feldman et al., ci sont les premiers à être effacés. On utilise la morphologie 2004), avec un maximum dans les zones équatoriales, et observée sur les images à haute résolution pour distinguer interprétées fréquemment comme la présence d’un socle un processus d’érosion ou au contraire de dépôt. Notre rocheux hydraté. La détection des neutrons se limite à une étude est consacrée à la région d’Arabia fréquemment dé- profondeur d’environ un mètre (par ex. Feldman et al., crite comme étant recouverte d’une couverture éolienne im- 2004). Nos résultats suggèrent donc que cet hydrogène se portante (Zimbelman et Greeley, 1982 ; McEwen et al., trouve dans le dépôt éolien, en relation avec la présence 1988 ; Edgett et Malin, 2000 ; Edgett, 2002). d’eau adsorbée ou de minéraux hydratés enfouis dans la Sur cette région, nous avons utilisé 94 images à haute ré- poussière. solution, et les images de contexte qui leur correspondent, pour déterminer la courbe de distribution des cratères d’im- Introduction pact. L’exemple en figure 2 est typique d’un résultat de la zone d’Arabia soumise à un recouvrement progressif de The surface of Mars is covered by aeolian dust that forms poussières. Les gros cratères, de plus d’1 km de diamètre, thick and widespread deposits that are consolidated over suggèrent que les terrains ont un âge supérieur à 3 Ga ; il time by weathering and diagenesis (Kahn et al., 1992; s’agit de l’âge du socle rocheux dont l’affleurement n’est Christensen et al., 1992). Dust on Mars is transported by pas visible sur l’image haute résolution. En effet, les cra- regional and/or global dust storms. The grain size of Martian tères de plusieurs kilomètres ne sont pas enfouis complète- dust, measured by photometric data, is less than 1 µ diame- ment sous la poussière. Les petits cratères, en revanche, se ter (Kahn et al., 1992). Therefore, dust on Mars is a very regroupent autour d’isochrones de quelques millions d’an- thin material, even thinner than the loess on Earth. At pre- nées seulement, mais surtout, leur distribution ne suit pas un sent, dust accumulates preferentially at the polar ice caps isochrone en totalité, montrant qu’il s’agit d’une surface en and at high elevations where saltation is reduced, likely for- évolution.
Recommended publications
  • Minutes of the January 25, 2010, Meeting of the Board of Regents
    MINUTES OF THE JANUARY 25, 2010, MEETING OF THE BOARD OF REGENTS ATTENDANCE This scheduled meeting of the Board of Regents was held on Monday, January 25, 2010, in the Regents’ Room of the Smithsonian Institution Castle. The meeting included morning, afternoon, and executive sessions. Board Chair Patricia Q. Stonesifer called the meeting to order at 8:31 a.m. Also present were: The Chief Justice 1 Sam Johnson 4 John W. McCarter Jr. Christopher J. Dodd Shirley Ann Jackson David M. Rubenstein France Córdova 2 Robert P. Kogod Roger W. Sant Phillip Frost 3 Doris Matsui Alan G. Spoon 1 Paul Neely, Smithsonian National Board Chair David Silfen, Regents’ Investment Committee Chair 2 Vice President Joseph R. Biden, Senators Thad Cochran and Patrick J. Leahy, and Representative Xavier Becerra were unable to attend the meeting. Also present were: G. Wayne Clough, Secretary John Yahner, Speechwriter to the Secretary Patricia L. Bartlett, Chief of Staff to the Jeffrey P. Minear, Counselor to the Chief Justice Secretary T.A. Hawks, Assistant to Senator Cochran Amy Chen, Chief Investment Officer Colin McGinnis, Assistant to Senator Dodd Virginia B. Clark, Director of External Affairs Kevin McDonald, Assistant to Senator Leahy Barbara Feininger, Senior Writer‐Editor for the Melody Gonzales, Assistant to Congressman Office of the Regents Becerra Grace L. Jaeger, Program Officer for the Office David Heil, Assistant to Congressman Johnson of the Regents Julie Eddy, Assistant to Congresswoman Matsui Richard Kurin, Under Secretary for History, Francisco Dallmeier, Head of the National Art, and Culture Zoological Park’s Center for Conservation John K.
    [Show full text]
  • 1922 Elizabeth T
    co.rYRIG HT, 192' The Moootainetro !scot1oror,d The MOUNTAINEER VOLUME FIFTEEN Number One D EC E M BER 15, 1 9 2 2 ffiount Adams, ffiount St. Helens and the (!oat Rocks I ncoq)Ora,tecl 1913 Organized 190!i EDITORlAL ST AitF 1922 Elizabeth T. Kirk,vood, Eclttor Margaret W. Hazard, Associate Editor· Fairman B. L�e, Publication Manager Arthur L. Loveless Effie L. Chapman Subsc1·iption Price. $2.00 per year. Annual ·(onl�') Se,·ent�·-Five Cents. Published by The Mountaineers lncorJ,orated Seattle, Washington Enlerecl as second-class matter December 15, 19t0. at the Post Office . at . eattle, "\Yash., under the .-\0t of March 3. 1879. .... I MOUNT ADAMS lllobcl Furrs AND REFLEC'rION POOL .. <§rtttings from Aristibes (. Jhoutribes Author of "ll3ith the <6obs on lltount ®l!!mµus" �. • � J� �·,,. ., .. e,..:,L....._d.L.. F_,,,.... cL.. ��-_, _..__ f.. pt",- 1-� r�._ '-';a_ ..ll.-�· t'� 1- tt.. �ti.. ..._.._....L- -.L.--e-- a';. ��c..L. 41- �. C4v(, � � �·,,-- �JL.,�f w/U. J/,--«---fi:( -A- -tr·�� �, : 'JJ! -, Y .,..._, e� .,...,____,� � � t-..__., ,..._ -u..,·,- .,..,_, ;-:.. � --r J /-e,-i L,J i-.,( '"'; 1..........,.- e..r- ,';z__ /-t.-.--,r� ;.,-.,.....__ � � ..-...,.,-<. ,.,.f--· :tL. ��- ''F.....- ,',L � .,.__ � 'f- f-� --"- ��7 � �. � �;')'... f ><- -a.c__ c/ � r v-f'.fl,'7'71.. I /!,,-e..-,K-// ,l...,"4/YL... t:l,._ c.J.� J..,_-...A 'f ',y-r/� �- lL.. ��•-/IC,/ ,V l j I '/ ;· , CONTENTS i Page Greetings .......................................................................tlristicles }!}, Phoiitricles ........ r The Mount Adams, Mount St. Helens, and the Goat Rocks Outing .......................................... B1/.ith Page Bennett 9 1 Selected References from Preceding Mount Adams and Mount St.
    [Show full text]
  • A 1 Case-PR/ }*Rciofft.;Is Report
    .A 1 case-PR/ }*rciofft.;is Report (a) This eruption site on Mauna Loa Volcano was the main source of the voluminous lavas that flowed two- thirds of the distance to the town of Hilo (20 km). In the interior of the lava fountains, the white-orange color indicates maximum temperatures of about 1120°C; deeper orange in both the fountains and flows reflects decreasing temperatures (<1100°C) at edges and the surface. (b) High winds swept the exposed ridges, and the filter cannister was changed in the shelter of a p^hoehoc (lava) ridge to protect the sample from gas contamination. (c) Because of the high temperatures and acid gases, special clothing and equipment was necessary to protect the eyes. nose, lungs, and skin. Safety features included military flight suits of nonflammable fabric, fuil-face respirators that are equipped with dual acidic gas filters (purple attachments), hard hats, heavy, thick-soled boots, and protective gloves. We used portable radios to keep in touch with the Hawaii Volcano Observatory, where the area's seismic activity was monitored continuously. (d) Spatter activity in the Pu'u O Vent during the January 1984 eruption of Kilauea Volcano. Magma visible in the circular conduit oscillated in a piston-like fashion; spatter was ejected to heights of 1 to 10 m. During this activity, we sampled gases continuously for 5 hours at the west edge. Cover photo: This aerial view of Kilauea Volcano was taken in April 1984 during overflights to collect gas samples from the plume. The bluish portion of the gas plume contained a far higher density of fine-grained scoria (ash).
    [Show full text]
  • New Lunar Impact Melt Flows As Revealed by Mini-Rf on Lro
    43rd Lunar and Planetary Science Conference (2012) 2388.pdf NEW LUNAR IMPACT MELT FLOWS AS REVEALED BY MINI-RF ON LRO. C. D. Neish1, N. Glines2, L. M. Carter3, V. J. Bray4, B. R. Hawke5, D. B. J. Bussey1, and the Mini-RF Science Team, 1The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723 ([email protected]), 2Mount Holyoke College, South Hadley, MA, 01075, 3NASA Goddard Spaceflight Center, Greenbelt, MD, 20770, 4The University of Ari- zona, Tucson, AZ, 85721, 5The University of Hawai’i at Manoa, Honolulu, HI, 96822. Introduction: Flow-like deposits of impact melt fying impact melts. After a candidate melt is identified, are commonly observed on the Moon, typically around data from the LRO Camera (LROC) was used to iden- young fresh craters. These flows are thought to be mix- tify additional features associated with impact melt tures of clasts and melted material that are emplaced deposits, such as cooling cracks in ponds and tension during the late stages of impact crater formation [1]. cracks in veneers, confirming these features as impact Lunar impact melts have been primarily studied at op- melts. tical wavelengths, but complementary information can be obtained by observing impact melts at radar wave- lengths. Radar data is sensitive to surface and sub- surface roughness, and thus can highlight these rough surface features, even when they not easily seen in optical data due to burial or imperfect lighting condi- tions (Fig. 1). Impact melts have been identified in radar data on the lunar near side [2], but they have yet to be studied in depth on the lunar far side, given the lack of global radar data prior to the launch of NASA’s Mini-RF instrument on the Lunar Reconnaissance Or- biter (LRO) in 2009.
    [Show full text]
  • Kadiworking Paper Finalcorrected
    ACADEMY OF EUROPEAN LAW EUI Working Papers AEL 2009/10 ACADEMY OF EUROPEAN LAW CHALLENGING THE EU COUNTER-TERRORISM MEASURES THROUGH THE COURTS edited by Marise Cremona, Francesco Francioni and Sara Poli EUROPEAN UNIVERSITY INSTITUTE , FLORENCE ACADEMY OF EUROPEAN LAW ROBERT SCHUMAN CENTRE FOR ADVANCED STUDIES Challenging the EU Counter-terrorism Measures through the Courts EDITED BY MARISE CREMONA , FRANCESCO FRANCIONI AND SARA POLI EUI W orking Paper AEL 2009/10 This text may be downloaded for personal research purposes only. Any additional reproduction for other purposes, whether in hard copy or electronically, requires the consent of the author(s), editor(s). If cited or quoted, reference should be made to the full name of the author(s), editor(s), the title, the working paper or other series, the year, and the publisher. The author(s)/editor(s) should inform the Academy of European Law if the paper is to be published elsewhere, and should also assume responsibility for any consequent obligation(s). ISSN 1831-4066 © 2009 Marise Cremona, Francesco Francioni and Sara Poli (editors) Printed in Italy European University Institute Badia Fiesolana I – 50014 San Domenico di Fiesole (FI) Italy www.eui.eu cadmus.eui.eu Abstract This collection of papers examines the implications of the European Court of Justice’s approach to UN-related counter-terrorism measures against individuals (so-called ‘smart sanctions’), as expressed by its ruling in Case C-402/05P Kadi v Council and Commission , in which it annulled an EC act implementing a UN Security Council resolution. The impact of this seminal judgment on the EC legal order, on its relationship with the UN Charter, and on the case-law of the European Court of Human rights is the theme of this collection.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Testing Hypotheses for the Origin of Steep Slope of Lunar Size-Frequency Distribution for Small Craters
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Earth Planets Space, 55, 39–51, 2003 Testing hypotheses for the origin of steep slope of lunar size-frequency distribution for small craters Noriyuki Namiki1 and Chikatoshi Honda2 1Department of Earth and Planetary Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan 2The Institute of Space and Astronautical Science, Yoshinodai 3-1-1, Sagamihara 229-8510, Japan (Received June 13, 2001; Revised June 24, 2002; Accepted January 6, 2003) The crater size-frequency distribution of lunar maria is characterized by the change in slope of the population between 0.3 and 4 km in crater diameter. The origin of the steep segment in the distribution is not well understood. Nonetheless, craters smaller than a few km in diameter are widely used to estimate the crater retention age for areas so small that the number of larger craters is statistically insufficient. Future missions to the moon, which will obtain high resolution images, will provide a new, large data set of small craters. Thus it is important to review current hypotheses for their distributions before future missions are launched. We examine previous and new arguments and data bearing on the admixture of endogenic and secondary craters, horizontal heterogeneity of the substratum, and the size-frequency distribution of the primary production function. The endogenic crater and heterogeneous substratum hypotheses are seen to have little evidence in their favor, and can be eliminated. The primary production hypothesis fails to explain a wide variation of the size-frequency distribution of Apollo panoramic photographs.
    [Show full text]
  • Obituaries, A
    OBITUARIES, A - K Updated 7/31/2020 Bernardsville Library Local History Room NAME TITLE DATE OF DEATH SOURCE EDITION PAGE AGE NOTES NJ Archives Abstract & Aaron, Robert 01/13/1802 Wills Vol.X 1801-1805 7 Abantanzo, Marie 01/13/1923 Bernardsville News 01/18/1923 4 Abbate, Michael 06/22/1955 Bernardsville News 06/23/1955 1 Abberman, Jay 04/10/2005 Bernardsville News 04/14/2005 10 82 Abbey, E. Mrs. 06/02/1957 Bernardsville News 06/06/1957 4 Abbond, Doris Weakley 03/27/2000 Bernardsville News 03/30/2000 10 80 Abbond, Robert R. 02/09/1995 Bernardsville News 02/15/1995 10 82 Abbondanzo, Delores L. 11/03/2001 Bernardsville News 11/08/2001 11 75 Abbondanzo, Francis J. 12/26/1993 Bernardsville News 12/29/1993 10 69 Abbondanzo, L. Mrs. 12/22/1962 Bernardsville News 01/03/1963 2 Abbondanzo, Lena I. 05/08/2003 Bernardsville News 05/15/2003 10 80 Abbondanzo, Louis 12/23/1979 Bernardsville News 01/03/1980 6 89 Abbondanzo, Louis J. 12/25/1993 Bernardsville News 12/29/1993 10 65 Abbondanzo, Mary G. 06/12/2014 Bernardsville News 06/26/2014 8 88 Abbondanzo, Patricia A. 11/21/1983 Bernardsville News 11/24/1983 Abbondanzo, Patrick J. 12/11/2000 Bernardsville News 12/14/2000 10 78 Abbondanzo, Rose 12/22/1962 Bernardsville News 01/03/1963 2 63 Abbondanzo, Sharon J. 08/28/2013 Bernardsville News 09/05/2013 9 78 Abbondanzo, Vincent J. 07/26/1996 Bernardsville News 07/31/1996 10 66 Abbott, Charles Cortez Jr.
    [Show full text]
  • Historical Painting Techniques, Materials, and Studio Practice
    Historical Painting Techniques, Materials, and Studio Practice PUBLICATIONS COORDINATION: Dinah Berland EDITING & PRODUCTION COORDINATION: Corinne Lightweaver EDITORIAL CONSULTATION: Jo Hill COVER DESIGN: Jackie Gallagher-Lange PRODUCTION & PRINTING: Allen Press, Inc., Lawrence, Kansas SYMPOSIUM ORGANIZERS: Erma Hermens, Art History Institute of the University of Leiden Marja Peek, Central Research Laboratory for Objects of Art and Science, Amsterdam © 1995 by The J. Paul Getty Trust All rights reserved Printed in the United States of America ISBN 0-89236-322-3 The Getty Conservation Institute is committed to the preservation of cultural heritage worldwide. The Institute seeks to advance scientiRc knowledge and professional practice and to raise public awareness of conservation. Through research, training, documentation, exchange of information, and ReId projects, the Institute addresses issues related to the conservation of museum objects and archival collections, archaeological monuments and sites, and historic bUildings and cities. The Institute is an operating program of the J. Paul Getty Trust. COVER ILLUSTRATION Gherardo Cibo, "Colchico," folio 17r of Herbarium, ca. 1570. Courtesy of the British Library. FRONTISPIECE Detail from Jan Baptiste Collaert, Color Olivi, 1566-1628. After Johannes Stradanus. Courtesy of the Rijksmuseum-Stichting, Amsterdam. Library of Congress Cataloguing-in-Publication Data Historical painting techniques, materials, and studio practice : preprints of a symposium [held at] University of Leiden, the Netherlands, 26-29 June 1995/ edited by Arie Wallert, Erma Hermens, and Marja Peek. p. cm. Includes bibliographical references. ISBN 0-89236-322-3 (pbk.) 1. Painting-Techniques-Congresses. 2. Artists' materials- -Congresses. 3. Polychromy-Congresses. I. Wallert, Arie, 1950- II. Hermens, Erma, 1958- . III. Peek, Marja, 1961- ND1500.H57 1995 751' .09-dc20 95-9805 CIP Second printing 1996 iv Contents vii Foreword viii Preface 1 Leslie A.
    [Show full text]
  • Geophysical and Remote Sensing Study of Terrestrial Planets
    GEOPHYSICAL AND REMOTE SENSING STUDY OF TERRESTRIAL PLANETS A Dissertation Presented to The Academic Faculty By Lujendra Ojha In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Earth and Atmospheric Sciences Georgia Institute of Technology August, 2016 COPYRIGHT © 2016 BY LUJENDRA OJHA GEOPHYSICAL AND REMOTE SENSING STUDY OF TERRESTRIAL PLANETS Approved by: Dr. James Wray, Advisor Dr. Ken Ferrier School of Earth and Atmospheric School of Earth and Atmospheric Sciences Sciences Georgia Institute of Technology Georgia Institute of Technology Dr. Joseph Dufek Dr. Suzanne Smrekar School of Earth and Atmospheric Jet Propulsion laboratory Sciences California Institute of Technology Georgia Institute of Technology Dr. Britney Schmidt School of Earth and Atmospheric Sciences Georgia Institute of Technology Date Approved: June 27th, 2016. To Rama, Tank, Jaika, Manjesh, Reeyan, and Kali. ACKNOWLEDGEMENTS Thanks Mom, Dad and Jaika for putting up with me and always being there. Thank you Kali for being such an awesome girl and being there when I needed you. Kali, you are the most beautiful girl in the world. Never forget that! Thanks Midtown Tavern for the hangovers. Thanks Waffle House for curing my hangovers. Thanks Sarah Sutton for guiding me into planetary science. Thanks Alfred McEwen for the continued support and mentoring since 2008. Thanks Sue Smrekar for taking me under your wings and teaching me about planetary geodynamics. Thanks Dan Nunes for guiding me in the gravity world. Thanks Ken Ferrier for helping me study my favorite planet. Thanks Scott Murchie for helping me become a better scientist. Thanks Marion Masse for being such a good friend and a mentor.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • In Pdf Format
    lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te .
    [Show full text]