Performance and Model Calibration of High-Pressure Compressors

Total Page:16

File Type:pdf, Size:1020Kb

Performance and Model Calibration of High-Pressure Compressors Performance and model calibration of high-pressure compressors Antoine Brissaud Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-TRITA-ITM-EX 2018:22 Division of Heat and Power Technology SE-100 44 STOCKHOLM Master of Science Thesis EGI TRITA-ITM-EX 2018:22 Performance and model calibration of high- pressure compressors Antoine Brissaud Approved Examiner Supervisor 2018/03/02 Paul Petrie-Repar Nenad Glodic Commissioner Contact person Abstract To fully determine the performances of high-pressure compressors (HPC), modeling and partial tests can be performed to characterize its different operating conditions. Nevertheless, there are still noticeable errors between the results of these models and the tests: deformations and differences can appear, and notably because of a modeling defect or the assumptions made during the analysis (measurement corrections for example). To model the closest to the tests, it is therefore necessary to include all the different elements impacting the performances of the compressor performance map to model the operating points correctly. The purpose of the thesis is to take in charge a new software that predicts the performances of high-pressure compressors, built in Python where a compressor can be decomposed in elementary axial and/or centrifugal compressors using their respective compressor performance map. By a stacking technique it is possible to characterize the operating point of the main compressor by knowing the inlet and the outlet conditions, and to include several deformation models such as Reynolds number effects, Variable Stator Vanes (VSV) effects, or tip clearance effects on the performances of the compressor. A calibration function also allows the development of new versions of the previous deformations models and it quantifies the unknowns and uncertainties between computed and tested results. Several working points at off-design conditions were computed with specific operating conditions such as the opening of a handling bleed valve. Deformations models of this specific condition was built to mitigate the uncertainties between computed and tested results and include the phenomenon to the modeling. Several deformations models were also compared for efficiency purposes. -2- Sammanfattning För att fullt ut kunna bestämma prestanda hos högtryckskompressorer (HPC) kan modellering och delprov utföras för att karakterisera kompressorns olika driftsförhållanden. Det finns emellertid fortfarande märkbara skillnader mellan resultaten av dessa modeller och testerna: deformationer och skillnader kan uppstå på grund av en modelleringsdefekt eller antaganden som har gjorts under analysen (t.ex. mätkorrigeringar). För att närma modellen till prov är det därför nödvändigt att inkludera alla de olika elementen som påverkar kompressorns prestanda för att korrekt modellera de olika arbetspunkterna i en kompressor mapp. Syftet med avhandlingen är att implementera en ny Python-baserad programvara som förutspår prestationerna hos högtryckskompressorer, där en kompressor kan brytas ner i elementära axiella och / eller centrifugalkompressorer med tillhörande kompressor prestandamappar. Med en staplingsteknik är det möjligt att karakterisera huvudkompressorns driftspunkt genom att känna till förhållanden vid inloppet och utloppet av huvudkompressorn. Modellen inkluderar olika effekter som Reynolds-tal effekter, ”Variable Stator Vanes”- effekter (VSV) eller påverkan av toppspel. En kalibreringsfunktion tillåter också utveckling av nya versioner av tidigare modeller och kvantifierar osäkerheter och skillnader mellan resultat från simuleringar och de från prövningar. Flera arbetspunkter vid off-design-förhållanden simulerades med specifika driftsförhållanden, såsom öppnandet av avtappningsventiler (”bleed air valves”) och deformationsmodeller för dessa specifika tillstånd togs fram för att minska osäkerheten hos simuleringsresultat. -3- Acknowledgements I would like to use this opportunity to express my gratitude to all the people who helped me throughout my master thesis within Safran Aircraft Engines. I express my deepest thanks to Antonin Meyniel and Stephen Reiser who supervised my work, guided me on the correct path during these six months, and shared their expertise and knowledge on a daily basis. Thanks also to their confidence, I was able to fulfill my missions completely. I had the excellent opportunity to complete my knowledge of companies’ organization from the inside, in one of the world leading aircraft engines manufacturers. I would like to thank Jean-Paul Thibault who supervised my work from my French Engineering School Grenoble INP – Ense3 and Nenad Glodic who accepted to be my supervisor for KTH. I would like to express all my regards and blessings to all of those who supported me in any respect during my thesis, and all the members of the Aero-Mechanical Integration Veins and Blades unit for their welcome. -4- Contents Abstract .......................................................................................................................................................................... 2 Acknowledgements....................................................................................................................................................... 4 Table of figures ............................................................................................................................................................. 7 List of symbols and acronyms .................................................................................................................................... 8 Introduction ................................................................................................................................................................. 10 Group and company presentation .................................................................................................................. 11 Safran group................................................................................................................................................... 11 1.1.1 Aviation and space ................................................................................................................................... 11 1.1.2 Defense ...................................................................................................................................................... 11 Safran Aircraft Engines ................................................................................................................................ 11 1.2.1 Divisions .................................................................................................................................................... 12 1.2.2 Integration of the thesis within the company...................................................................................... 13 Context ................................................................................................................................................................ 13 General operation of a turbojet .................................................................................................................. 13 Study compressor.......................................................................................................................................... 14 2.2.1 Basic principle .......................................................................................................................................... 14 2.2.2 Axial-centrifugal compressor ................................................................................................................. 14 2.2.3 Surge........................................................................................................................................................... 15 2.2.4 Sonic blockage and transonic flows ...................................................................................................... 15 2.2.5 Compressor performance map .............................................................................................................. 15 Deformations of the compressor performance map .............................................................................. 16 2.3.1 Reynolds effect ......................................................................................................................................... 16 2.3.2 Tip leakages effect ................................................................................................................................... 20 2.3.3 Handling bleed valve effect (HBV) ....................................................................................................... 23 The compressor stacking software ................................................................................................................. 23 Introduction to the software ....................................................................................................................... 23 Calibration function ...................................................................................................................................... 24 Stacking function .......................................................................................................................................... 25 Deformation models ...................................................................................................................................
Recommended publications
  • Robust Gas Turbine and Airframe System Design in Light of Uncertain
    Robust Gas Turbine and Airframe System Design in Light of Uncertain Fuel and CO2 Prices Stephan Langmaak1, James Scanlan2, and András Sóbester3 University of Southampton, Southampton, SO16 7QF, United Kingdom This paper presents a study that numerically investigated which cruise speed the next generation of short-haul aircraft with 150 seats should y at and whether a con- ventional two- or three-shaft turbofan, a geared turbofan, a turboprop, or an open rotor should be employed in order to make the aircraft's direct operating cost robust to uncertain fuel and carbon (CO2) prices in the Year 2030, taking the aircraft pro- ductivity, the passenger value of time, and the modal shift into account. To answer this question, an optimization loop was set up in MATLAB consisting of nine modules covering gas turbine and airframe design and performance, ight and aircraft eet sim- ulation, operating cost, and optimization. If the passenger value of time is included, the most robust aircraft design is powered by geared turbofan engines and cruises at Mach 0.80. If the value of time is ignored, however, then a turboprop aircraft ying at Mach 0.70 is the optimum solution. This demonstrates that the most fuel-ecient option, the open rotor, is not automatically the most cost-ecient solution because of the relatively high engine and airframe costs. 1 Research Engineer, Computational Engineering and Design 2 Professor of Aerospace Design, Computational Engineering and Design, AIAA member 3 Associate Professor in Aircraft Engineering, Computational Engineering and Design, AIAA member 1 I. Introduction A. Background IT takes around 5 years to develop a gas turbine engine, which then usually remains in pro- duction for more than two decades [1, 2].
    [Show full text]
  • Aerospace Engine Data
    AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16
    [Show full text]
  • Rolls-Royce / Itp Regulation
    EUROPEAN COMMISSION DG Competition Case M.8242 - ROLLS-ROYCE / ITP Only the English text is available and authentic. REGULATION (EC) No 139/2004 MERGER PROCEDURE Article 6(1)(b) in conjunction with Art 6(2) Date: 19/04/2017 In electronic form on the EUR-Lex website under document number 32017M8242 EUROPEAN COMMISSION Brussels, 19.04.2017 C(2017) 2613 final In the published version of this decision, some information has been omitted pursuant to Article PUBLIC VERSION 17(2) of Council Regulation (EC) No 139/2004 concerning non-disclosure of business secrets and other confidential information. The omissions are shown thus […]. Where possible the information omitted has been replaced by ranges of figures or a general description. To the notifying party: Subject: Case M.8242 – Rolls-Royce / ITP Commission decision pursuant to Article 6(1)(b) in conjunction with Article 6(2) of Council Regulation No 139/20041 and Article 57 of the Agreement on the European Economic Area2 Dear Sir or Madam, (1) On 24 February 2017, the European Commission received notification of a proposed concentration pursuant to Article 4 of the Merger Regulation by which the undertaking Rolls-Royce Holdings plc ("Rolls-Royce", United Kingdom) acquires within the meaning of Article 3(1)(b) of the Merger Regulation control of the whole of the undertaking Industria de Turbo Propulsores SA ("ITP", Spain) by way of a purchase of shares (the "Transaction").3 Rolls-Royce is designated hereinafter as the "Notifying Party", and Rolls-Royce and ITP are together referred to as the "Parties". 1 OJ L 24, 29.1.2004, p.
    [Show full text]
  • Livre 1.Indb
    European Aeronautic Defence and Space Company EADS N.V. Registration Document 2010 European Aeronautic Defence and Space Company EADS N.V. (the “Company” or “EADS” and together with its subsidiaries, the “Group”) is a Dutch company, which is listed in France, Germany and Spain. The applicable regulations with respect to public information and protection of investors, as well as the commitments made by the Company to securities and market authorities, are described in this registration document (the “Registration Document”). In addition to historical information, this Registration Document includes forward-looking statements. The forward-looking statements are generally identified by the use of forward-looking words, such as “anticipate”, “believe”, “estimate”, “expect”, “intend”, “plan”, “project”, “predict”, “will”, “should”, “may” or other variations of such terms, or by discussion of strategy. These statements relate to EADS’ future prospects, developments and business strategies and are based on analyses or forecasts of future results and estimates of amounts not yet determinable. These forward-looking statements represent the view of EADS only as of the dates they are made, and EADS disclaims any obligation to update forward-looking statements, except as may be otherwise required by law. The forward-looking statements in this Registration Document involve known and unknown risks, uncertainties and other factors that could cause EADS’ actual future results, performance and achievements to differ materially from those forecasted or suggested herein. These include changes in general economic and business conditions, as well as the factors described in “Risk Factors” below. This Registration Document was prepared in accordance with Annex 1 of EC Regulation 809/2004, filed in English with, and approved by, the Autoriteit Financiële Markten (the “AFM”) on 19 April 2011 in its capacity as competent authority under the Wet op het financieel toezicht (as amended) pursuant to Directive 2003/71/EC.
    [Show full text]
  • Hypervelocity Missiles for Defence
    HYPERVELOCITY MISSILES FOR DEFENCE Presented by Faqir Minhas College of Engineering PAF-Karachi Institute of Economics & Technology April 6, 2005 Table of contents 1. Prologue 3 2. Piloted aircraft and tactical missiles (technical developments) 3 3. Summary of piloted aircraft 5 4. Ballistic and cruise missiles 7 5. Ballistic trajectories 10 6. Conclusions 18 7. Hypersonic propulsion 20 8. Test facilities: 26 9. References 33 Note: This 34-page paper is abridged description of the presentation. It is condensed from the original paper of 150 pages, which contains detailed information on propulsion systems and hypersonic aerodynamics. Copies of this paper or the original paper can be obtained the Royal Aeronautical Society, Pakistan Division on demand. 2 Abstract The paper reviews the history of technical development in the field of hypervelocity missiles. It highlights the fact that the development of anti-ballistic systems in USA, Russia, France, UK, Sweden, and Israel is moving toward the final deployment stage; that USA and Israel are trying to sell PAC 2 and Arrow 2 to India; and that India’s Agni and Prithvi missiles have improved their accuracy, with assistance from Russia. Consequently, the paper proposes enhanced effort for development in Pakistan of a basic hypersonic tactical missile, with 300 KM range, 500 KG payload, and multi-role capability. The author argues that a system, developed within the country, at the existing or upgraded facilities, will not violate MTCR restrictions, and would greatly enhance the country’s defense capability. Furthermore, it would provide high technology jobs to Pakistani citizens. The paper reinforces the idea by suggesting that evolution in the field of aviation and electronics favors the development of ballistic, cruise and guided missile technologies; and that flight time of short and intermediate range missiles is so short that its interception is virtually impossible.
    [Show full text]
  • Prendre L'air
    PRENDRE L’AIR Musée Saint-Chamas – Barillet des moteurs Atar 8 et 9 N°3 La revue de l’Association des Amis du Musée Safran Décembre 2019 Contact Rond Point René Ravaud 77550 Réau Tél : 01 60 59 72 58 Mail : [email protected] Sommaire Editorial 3 Jacques Daniel Le mot du Président 3 Jean Claude Dufloux L’avionnerie isséenne 4 Henri Couturier Mr René Farsy : pilote d’essais à la Snecma 9 Jacques Daniel Le Dassault Mirage III T : banc d’essais volant 18 Jacques Daniel Le projet de Caravelle à moteurs Atar 101 22 Jacques Daniel Junkers Jumo 004 et BMW 003 26 Pierre Mouton Débuts de l’électronique à Snecma 29 Pierre Mouton Vintage Motor Cycle Club (VMCC) Manx Rally 2019 - Mésaventures et mes aventures 31 Gérard Basselin Notes de lecture 32 Jacques Daniel Crédits Photographies : Henri Couturier, Jacques Daniel Les articles et illustrations publiées dans cette revue ne peuvent être reproduits sans autorisation écrite préalable. 2 Editorial Pour ce troisième numéro, nous vous proposons un article sur l’industrie aéronautique d’Issy-les- Moulineaux du début du siècle dernier. A cette époque et jusqu’au milieu des années 1930, on utilisait plutôt le terme " avionnerie " pour désigner les constructeurs d’avions. Dans le domaine des turboréacteurs, la Snecma répondit, au début des années 1950, à un appel d’offre pour la motorisation du programme phare de l’aviation commerciale française : le SE-210 Caravelle. Entre 1951 et 1953, la société participa activement au projet en proposant des formules bi, tri et même quadriréacteurs basées sur le tout nouvel Atar 101.
    [Show full text]
  • Ahead of Its Time 75 Years of MTU History
    Annual Report 2008 Ahead of its time 75 years of MTU history. 100 years of aviation expertise. WorldReginfo - a6a23212-0bdc-4ce2-9f68-998dbc575eab Order backlog by segments (without consolidation) in € million Revenues by segments (without consolidation) in € million OEM MRO OEM MRO 2004 3,236.0 2,125.0 2004 1,375.6 575.9 2005 3,433.8 3,703.6 2005 1,434.8 766.9 2006 3,218.4 3,804.4 2006 1,483.1 954.7 2007 3,216.8 5,139.6 2007 1,599.5 1,004.7 2008 3,884.5 5,361.2 2008 1,642.9 1,113.0 EBITDA adjusted by segments (without consolidation) in € million Net profit in € million OEM MRO 2004 131.3 42.7 2004 0.2 2005 162.4 77.8 2005 32.8 2006 217.7 103.4 2006 89.1 2007 305.7 87.9 2007 154.1 2008 330.3 78.9 2008 179.7 WorldReginfo - a6a23212-0bdc-4ce2-9f68-998dbc575eab Selected consolidated financial information and key figures at a glance Change in € million (unless otherwise specified) 2008 - 2007 2008 2007 2006 Revenues and earnings Revenues 148.4 5.8 % 2,724.3 2,575.9 2,416.2 thereof: commercial and military engine business (OEM) 43.4 2.7 % 1,642.9 1,599.5 1,483.1 thereof: commercial maintenance business (MRO) 108.3 10.8 % 1,113.0 1,004.7 954.7 Earnings before interest, tax, depreciation and amortization (EBITDA) 15.6 4.0 % 408.5 392.9 335.6 Earnings before interest and tax (EBIT) 5.0 2.1 % 248.3 243.3 183.8 Net profit 25.6 16.6 % 179.7 154.1 89.1 Earnings (adjusted) Earnings before interest, tax, depreciation and amortization (EBITDA adjusted) 12.8 3.3 % 405.7 392.9 318.2 Earnings before interest and tax (EBIT adjusted) 18.4 5.9 % 331.0 312.6
    [Show full text]
  • 2019 UNIVERSAL REGISTRATION DOCUMENT Including the Annual Financial Report CONTENTS
    2019 UNIVERSAL REGISTRATION DOCUMENT Including the Annual Financial Report CONTENTS EXTRACT FROM THE INTEGRATED REPORT 2 5 NON-FINANCIAL SAFRAN AT A GLANCE 3 PERFORMANCE 241 EDITORIAL 4 5.1 Organization and management of non‑financial performance 242 GROUP PROFILE 6 5.2 Key non‑financial risks 246 ECOSYSTEM 12 5.3 Business ethics, export and customs controls 251 STRATEGY AND BUSINESS MODEL 18 5.4 Responsible purchasing 256 5.5 Climate and environment 258 CORPORATE GOVERNANCE 40 5.6 Health and safety 265 PERFORMANCE AND VALUE CREATION 46 5.7 Human resources 268 5.8 Social dialogue 275 5.9 Social impact 276 5.10 Methodological note and ITP report 278 5.11 Cross‑reference table for the Non‑financial Information Statement 284 PRESENTATION 1 OF THE GROUP 49 6 1.1 Safran overview 50 CORPORATE GOVERNANCE 287 1.2 Group businesses 54 6.1 Safran’s corporate governance structure 288 1.3 Competitive position 74 6.2 Membership structure of the Board Research and development 74 1.4 of Directors 291 1.5 Industrial investments 81 6.3 Operating procedures and work of Sites and production plants 83 1.6 the Board of Directors and the Board Safran performance and quality policy 84 1.7 Committees 324 6.4 Application of the AFEP‑MEDEF Corporate Governance Code 334 6.5 Directors’ interests in the Company’s share capital 334 2 REVIEW OF OPERATIONS IN 2019 6.6 Compensation policy and compensation AND OUTLOOK FOR 2020 87 packages for corporate officers 335 6.7 Cross‑reference table for the corporate 2.1 Comments on the Group’s performance governance report prepared
    [Show full text]
  • 2020 Integrated Report Contents Safran at a Glance 2020 Key Figures
    2020 INTEGRATED REPORT CONTENTS SAFRAN AT A GLANCE 2020 KEY FIGURES SAFRAN AT A GLANCE €1,073 million FREE CASH FLOW P. 01 rd Global aerospace group, excluding * RISK 3 airframers €2,792 million EDITORIAL MANAGEMENT NET DEBT P. 02 P. 40 REVENUE(1) CORPORATE down 33.0% (down 32.5% €449 million GROUP €16,498 million CAPEX PROFILE GOVERNANCE on organic basis) on 2019 P. 04 P. 42 RECURRING OPERATING INCOME(1) €1,213 million €1,686 million down 55.9% (down 58.6% TOTAL R&D ECOSYSTEM PERFORMANCE AND VALUE on organic basis) on 2019 (including customer-funded R&D) P. 10 CREATION (1) P. 50 PROFIT €844 million (Group share) 78,892 STRATEGY down 68.3% on 2019 EMPLOYEES AND BUSINESS (at December 31, 2020) MODEL P. 18 Long-term credit rating: BBB+ (with stable outlook) Our activities AEROSPACE AIRCRAFT AIRCRAFT PROPULSION EQUIPMENT/ INTERIORS DEFENSE/ AEROSYSTEMS BREAKDOWN OF REVENUE(1) BY SEGMENT €7,633 million €6,893 million €1,922 million BREAKDOWN OF RECURRING OPERATING INCOME(1) BY SEGMENT €1,192 million €687 million €(174) million BREAKDOWN OF RECURRING OPERATING MARGIN(1) BY SEGMENT 15.6% 10.0% (9.1)% * Classification criteria: revenue - Source: Safran. (1) Adjusted data. See section 2.1.1 of the 2020 Universal Registration Document for a reconciliation of the consolidated income statement with the adjusted income statement and a breakdown of the adjustment. 1 I SAFRAN 2020 INTEGRATED REPORT EDITORIAL EDITORIAL Message from the Chairman of the Board of Directors IN 2021, SAFRAN WILL ROSS McINNES and the Chief Executive Officer CONTINUE TO DRAW OLIVIER ANDRIÈS STRENGTH FROM ITS The total mobilization of all teams enabled Safran to tackle the crisis in 2020.
    [Show full text]
  • Aeromodeller November 1957
    N O V E M B E R 1967 ACCESSORIES for all! In addition to a complete spares range for all Davies Charlton engines we also offer many useful accessories for the discriminat­ ing modeller. They are all built to the same exacting standards as our engines and the prices quoted include Purchase Tax. PROPELLERS Available in good quality beech in two sizes, for Free Flight and C/Line except the Bambi. Price 1/9. Rapier and Manxman 1 / 10- TEAM RACE TANKS neatly fabricated in tin plate. Class "A", 15 c.c., 3/4. Class "B” 30 c.c.. 3/7. ADJUSTABLE CONTROL LINE HANDLE. A well finished aluminium casting in red stove enamel with ground spike and provision for line adjustment. Price 5/1. EXTENDED COMPRESSION SCREWS for all D/C engines excepting the Bambi. I inch 2/5. 2 b inch 2/10. EXTENDED JET NEEDLE for all D/C engines except Bambi. 2/5. RADIAL MOUNTS for Dart and Mk. I Spitfire. 4/10. FLYWHEELS. Accurately turned in brass with sceel spigots available for Dart, Merlin, at 9/7 and Spitfire, Sabre, Rapier and Manxman at 12/-. ENGINE TEST STAND Fits any engine in the D/C range and most motors up to S c.c. Accommodates both beam and radial mounting and is scurdily built in cast aluminium. Price 12/7. COMBINED JET & CUT OUT. Fils any engine in the D/C range and several others besides. Accurately made in brass with positive cut off action. 9/7. ANGLED JET ASSEMBLY . To fit all D/C engines excluding the Bambi, 5/7.
    [Show full text]
  • Prendre L'air
    PRENDRE L’AIR Dassault Etendard IV n°01 (© Dassault Aviation) N°6 La revue de l’Association des Amis du Musée Safran Juin 2021 Contact Rond Point René Ravaud 77550 Réau Tél : 01 60 59 72 58 Mail : [email protected] Sommaire Editorial 3 Jacques Daniel Le mot du Président 4 Jean Claude Dufloux Le moteur Gnome & Rhône 14 N : Les chasseurs Bloch (3me partie) 5 - Les MB.151 et 152 à la déclaration de guerre - La campagne de France - Définitivement disparus, ou presque… - MB.152, le pionnier réinventé Régis Ligonnet La famille des turbodémarreurs Noelle 11 Jacques Daniel Les Dassault Mystère IV B-06 et B-08 : bancs d’essais volants de l’Atar 8 (1957 – 1963) 15 - Spécificités - Le réacteur Atar 8 - Le Mystère IV B-06 - Le Mystère IV B-08 - Décoration et marquages - Bilan - Annexe - Mystère IV B-06 : chronologie des vols Snecma - Etapes clefs Jacques Daniel Pierre Galland : du Tiger Moth au Mirage III T 30 - Carrière militaire (1945 – 1953) - Ecole du Personnel Navigant d’Essais et Réception (1954 – 1955) - Centre d’Essais en Vol (1953 – 1961) - Essais en vol Snecma (1961 – 1967) - Repères sur la carrière de Pierre Galland - Liste des appareils pilotés - Album photo Jacques Daniel ème Le Caudron G.3 d’Elise Deroche à l’échelle 1/6 46 - Description - Montage de la maquette - Elise Deroche - Bref historique du Caudron G.3 - Le moteur Le Rhône 9 C - Caractéristiques du Caudron G.3 Jacques Daniel Le train d’atterrissage du Sepecat Jaguar 51 - Version terrestre - Version marine Jacques Daniel Quarante-cinq minutes dans le ciel sur le Stearman PT-17, le biplan d’entraînement américain de la fin des années 1930… 55 Jacques Daniel Notes de lecture 60 Jacques Daniel Les articles et illustrations publiées dans cette revue ne peuvent être reproduits sans autorisation écrite préalable.
    [Show full text]
  • Safranin 2013
    SAFRAN IN 2013 2013 REGISTRATION DOCUMENT SAFR_1402217_RA_2013_GB_CouvDocRef.indd 1 26/03/14 12:12 Contents GROUP PROFILE 1 1 PRESENTATION OF THE GROUP 8 5.3 Developing human potential 203 5.4 Aiming for excellence in health, 1.1 Overview 10 safety and environment 214 1.2 Group strategy 14 5.5 Involving our suppliers and partners 224 1.3 Group businesses 15 5.6 Investing through foundations 1.4 Competitive position 32 and corporate sponsorship 224 1.5 Research and development 32 5.7 CSR reporting methodology and Statutory 1.6 industrial investments 37 Auditors’ report 226 1.7 Sites and production plants 38 1.8 Safran Group purchasing strategy 43 6 CORPORATE GOVERNANCE 232 1.9 Safran quality performance and policy 43 6.1 Board of Directors and Executive 1.10 Safran+ progress initiative 44 Management 234 6.2 Executive Corporate Officer 2 REVIEW OF OPERATIONS IN 2013 compensation 263 AND OUTLOOK FOR 2014 46 6.3 Share transactions performed by Corporate Officers and other managers 272 2.1 Comments on the Group’s performance 6.4 Audit fees 274 in 2013 based on adjusted data 48 6.5 Report of the Chairman 2.2 Comments on the consolidated of the Board of Directors 276 financial statements 66 6.6 Statutory Auditors’ report 2.3 Comments on the parent company on the report prepared by the Chairman financial statements 69 of the Board of Directors 290 2.4 Outlook for 2014 71 2.5 Subsequent events 71 7 INFORMATION ABOUT THE COMPANY, 3 THE CAPITAL AND SHARE FINANCIAL STATEMENTS 72 OWNERSHIP 292 3.1 Consolidated financial statements 7.1 General information
    [Show full text]