Knee and Thigh Overuse Tendinopathy

Total Page:16

File Type:pdf, Size:1020Kb

Knee and Thigh Overuse Tendinopathy 17 Knee and Thigh Overuse Tendinopathy Barry P. Boden As the participation in athletic activities increases around border of the patella just deep to the remaining three the world, so does the frequency of tendinopathies. tendons. While the vastus intermedius courses parallel to the femur, the line of action in reference to the femur is • The etiology of most tendon injuries is related to re- 15 to 18 degrees for the vastus medialis longus, 55 to 70 petitive mechanical overload with the development of degrees for the vastus medialis obliquus, and 20 to 45 degenerative intratendinous lesions. degrees for the vastus lateralis [3]. • Nonoperative management consisting of activity Imaging techniques for evaluating the quadriceps restriction, nonsteroidal anti-inflammatory medica- tendon include radiography, ultrasonography, and MR tions, correction of external factors such as overtrain- imaging. MRI of normal quadriceps tendons reveals a ing, and physical therapy is successful in the majority laminated appearance with 3 (56%), 2 (30%), or 4 (6%) of acute tendinosis injuries. layers [4]. • Surgery is necessary for most complete tendon rup- tures, and may be considered for partial ruptures and in chronic tendinopathy patients who fail a 3 to 6 Quadriceps Tendinopathy month course of non-operative management. Quadriceps tendinopathy is much less frequent than patellar tendinopathy in athletes. This may be related to Quadriceps Tendon the superior strength, mechanical advantage, or vascular- ity of the quadriceps tendon. In adolescent athletes, avul- Anatomy sion injuries of the proximal patellar apophysis are more common than tendinopathy of the quadriceps mechanism The quadriceps tendon connects the four extensor [5]. Patients with quadriceps tendinopathy complain of muscles of the anterior thigh, the rectus femoris, the pain at the proximal pole of the patella. The pain is vastus intermedius, the vastus medialis, and the vastus lat- typically insidious, and often associated with a recent eralis to the patella. The tendon inserts on the proximal increase in jumping, climbing, kicking, or running. pole of the patella and continues distally as a tendi- Physical examination reveals tenderness over the supe- nous expansion over the anterior patella to merge with rior pole of the patella and discomfort with resistance to the patella tendon. Most of the fibers anterior to the extension with the knee hyperflexed. Patients should be patella are a continuation of the rectus femoris tendon evaluated for any malalignment entities, although no def- [1]. inite scientific evidence exists on a cause-and-effect rela- The rectus femoris and vastus intermedius lie centrally tionship between factors such as femoral anteversion, and parallel to the femur with the rectus femoris being increased Q angle, and tibial torsion and quadriceps the more superficial muscle. The vastus medialis consists tendinopathy. Quadriceps strength and hamstring flexi- of two muscle groups based on their orientation to the bility should also be assessed. In young athletes with patella. The vastus medialis obliquus fibers are oriented quadriceps strains, plain radiographs are usually normal. obliquely and attach more distally to the patella than the However, in older individuals with quadriceps tendinopa- vastus medialis longus [1]. The vastus lateralis muscle thy, degenerative changes such as calcification in the fibers insert on the superolateral patella more proximally tendon, or spur formation at the superior pole of the than the vastus medialis [1]. The tendinous fibers of the patella may be present.When extension strength is main- vastus intermedius insert directly into the superior tained, an MRI is rarely necessary but may demonstrate 158 17. Knee and Thigh Overuse Tendinopathy 159 degenerative changes at the insertion of the tendon (see Eccentric training aims to strengthen the tendon so Figure 17-1). that it can withstand higher stresses. The program Nonoperative management is successful in the vast involves static stretching both before and after the exer- majority of patients with quadriceps tendinosis. This con- cises. Eccentric exercises are performed in 3 sets of 10 sists of activity modification, anti-inflammatory medica- repetitions. With time, the speed of contractions is tions, and physical therapy. Once the pain subsides, increased. Each week the weight applied is increased and therapy should concentrate on quadriceps strengthening the cycle is repeated. Most cases resolve by 2 to 3 weeks. exercises and increasing hamstring flexibility. Strength- Only rarely is surgical intervention necessary. Indications ening exercises should focus on eccentric training of the include extensive tendinopathy in symptomatic patients muscle-tendon complex [6,7]. The proposed advantages who have failed a 3- to 6-month trial of nonoperative of eccentric exercises are based on 3 principles: management. Surgical principles include debridement of degenerative, diseased tissue, and promotion of healing 1. Length: By increasing the resting length of the by stimulating a vascular response either by longitudinal muscle-tendon unit, the strain within the complex is tenotomy and/or needling. reduced. 2. Load: Progressively increasing the load to the myotendon unit results in increased tensile strength. Partial Tendon Ruptures 3. Speed of contraction: Increasing the speed of con- Partial ruptures of the quadriceps tendon are rare, and traction also enhances the force capacity of the muscle require a high index of suspicion and a thorough exami- tendon complex [6]. Maximum eccentric contractions can nation for diagnosis [9,10]. Patients present with pain in generate 20% to 30% higher forces than isometric or the region of the quadriceps tendon, and weakness of concentric contraction [8]. Therefore, the tendon is knee extension. Often a history of a preexisting quadri- placed in an anabolic state instead of a catabolic state, ceps injury can be elicited, followed by a traumatic knee which is induced by immobilization or corticosteroid injury during athletic activity.Typically, the patient is able injections. to participate in sports with a dramatic drop in perfor- mance. If the vastus intermedius tendon is detached, which is often the case, there may be no deformity on examination. The key finding on physical examination is weakness of extension. The ability to extend the knee from a flexed position does not exclude a partial quadri- ceps rupture: Extension strength from a flexed position needs to be compared with the contralateral side. Although strength measurement tests may be helpful in documenting the extension deficit, there is a risk of com- pleting the tear with maximum resistance. Plain films are usually normal, but may demonstrate degenerative cal- cific changes within the tendon. MRI is the best diagnos- tic test for identifying the location and extent of the injury. There is a paucity of literature on the management of partial quadriceps tendon ruptures. For tears involving greater than 50% of the quadriceps tendon or tears diag- nosed late, the author prefers surgical repair. When the diagnosis is made acutely, the tear involves less than 50% of the tendon, and there is no tendon retraction, nonop- erative management with 6 to 8 weeks of brace immobi- lization may be considered. As healing progresses, the amount of knee flexion allowed by the brace may be increased. The author has seen this injury only as a ter- tiary referral, when the injury was chronic and the tendon retracted. In these cases, surgical repair of the partially torn tendon is recommended. Surgical repair involves a longitudinal incision over the quadriceps tendon. The Figure 17-1. MRI scan of a patient with quadriceps rectus femoris tendon is split, without being detached, to tendinopathy. (Courtesy of Wayne B. Leadbetter.) gain access to the vastus intermedius tendon. A Krackow 160 B.P. Boden stitch using nonabsorbable sutures is passed through the aminar tendon complex. The anterior half of the superior vastus intermedius tendon and any detached tendons. pole of the patella is debrided and abraded down to The attachment site on the anterior half of the superior bleeding bone to stimulate healing. The tendon is then patella is abraded to bleeding bone using a curette and/or reattached to the patella through drill holes or bone bur. The tendon is then sutured to the patella through anchors. Any rents in the extensor retinaculum should be drill holes or with bone anchors. repaired. In chronic cases, when the tendon has significantly Complete Tendon Rupture shortened or the tissue is tenuous, several techniques are available to strengthen the repair. If the tendon can be Healthy tendons do not rupture [11,12], and preexisting apposed to the bone but the tissue is weak, the repair may degenerative changes or systemic illness must be present. be reinforced by a flap or turndown of healthy proximal Degenerative changes occur as a result of prior low-grade quadriceps tendon or augmented with a semitendinosus microtears from activity. As the tendon heals from mild tendon [16]. If the quadriceps has shortened and cannot insults, it develops degenerative, not inflammatory, be apposed to the patella, a lengthening procedure with lesions. Histologic analysis of surgical specimens reveals augmentation is required. Codivilla described a length- a disorganized matrix, increased fibroblasts and vascu- ening procedure in which an inverted V is cut through the larity, and occasionally fatty, mucoid, or hyaline features full thickness of the
Recommended publications
  • An Intramuscular Injection Is an Injection Given Directly Into The
    Depo Lupron and Testosterone are both given by intramuscular injection. The following is a guideline on their administration. Eileen Durham, RN, NP Version 12 Jan 2010 Description Intramuscular (IM) injections are given directly into the central area of selected muscles. There are a number of sites that are suitable for IM injections; there are three sites that are most commonly used in this procedure described below. The volume of viscosity of the medication to be injected determines the site that should be used. IM injections cause stretching of the muscle fiber so the larger the muscle used the less discomfort. Intramuscular Injection Sites Depo Lupron Depo Lupron 3 month preparation should only be injected into the Gluteus medius due to the viscosity and volume of the medication approx. 1.5 – 2 cc. Depo Lupron 1 month preparation can be injection into the vastus lateralis or the gluteus medius. Testosterone Testosterone administered to adolescents and adults can be injected into any of the sites listed below, as long as the volume is 1 cc or less. For a volume of 1.5 use the vastus lateralis or Gluteus medius, if the volume is 2 cc you must you the largest muscle the Gluteus medius. If the volume is greater then 2 cc you must divide the dose and give 2 injections as the maximum volume in the Gluteal muscle is 2 cc. Testosterone administered to infants and toddlers use only the anteriolateral aspect of the thigh. Deltoid muscle The deltoid muscle located laterally on the upper arm can be used for intramuscular injections.
    [Show full text]
  • Bacterial Meningitis and Multiple Abscess Formation in the Iliopsoas
    Yamada et al. Renal Replacement Therapy (2018) 4:22 https://doi.org/10.1186/s41100-018-0163-x CASEREPORT Open Access Bacterial meningitis and multiple abscess formation in the iliopsoas, erector spinae, and vastus lateralis muscle in a maintenance hemodialysis patient treated with continuous epidural anesthesia for herpes zoster-related pain control: a case report and review of the literature Shunsuke Yamada1, Narihito Tatsumoto1, Noriko Nakamura1, Kosuke Masutani1, Toshiro Maeda2, Takanari Kitazono1 and Kazuhiko Tsuruya1,3* Abstract Background: Infection is the second leading cause of mortality in patients who undergo maintenance hemodialysis. In this population, impairment in both cellular and humoral immunity contributes to the increased incidence of infection and infection-related hospitalization. However, these artificial devices occasionally enhance the risk of deep organ infection including muscle abscess, frequently leading to disability and mortality in hemodialysis patients. Case presentation: A 54-year-old male undergoing maintenance hemodialysis was hospitalized because of the acute onset pain in the back and bilateral legs and declining consciousness which started at 7 days after the treatment of herpes zoster-related neuralgia with continuous epidural anesthesia. Physical examination revealed purulent discharge from the insertion site of the catheter. Serum biochemical tests showed increased inflammatory response and malnutrition. Magnetic resonance imaging revealed meningitis and multiple abscesses in the iliopsoas, erector spinae, gluteus medius, and vastus lateralis muscles, where conventional antibiotic treatment often fails to cure. Staphylococcus aureus was detected in the cerebrospinal fluid. Combination of intravenous antibiotics treatment and aggressive open surgical drainage of the muscle abscesses finally cured meningitis and multiple deep muscle abscesses in this patient.
    [Show full text]
  • The Anatomy of the Posterolateral Aspect of the Rabbit Knee
    Journal of Orthopaedic Research ELSEVIER Journal of Orthopaedic Research 2 I (2003) 723-729 www.elsevier.com/locate/orthres The anatomy of the posterolateral aspect of the rabbit knee Joshua A. Crum, Robert F. LaPrade *, Fred A. Wentorf Dc~~ur/niiviiof Orthopuer/ic Surgery. Unicrrsity o/ Minnesotu. MMC 492, 420 Dcluwur-c Si. S. E., Minnwpoli,s, MN 55455, tiSA Accepted 14 November 2002 Abstract The purpose of this study was to determine the anatomy of the posterolateral aspect of the rabbit knee to serve as a basis for future in vitro and in vivo posterolateral knee biomechanical and injury studies. Twelve nonpaired fresh-frozen New Zealand white rabbit knees were dissected to determine the anatomy of the posterolateral corner. The following main structures were consistently identified in the rabbit posterolateral knee: the gastrocnemius muscles, biceps femoris muscle, popliteus muscle and tendon, fibular collateral ligament, posterior capsule, ligament of Wrisberg, and posterior meniscotibial ligament. The fibular collateral ligament was within the joint capsule and attached to the femur at the lateral epi- condyle and to the fibula at the midportion of the fibular head. The popliteus muscle attached to the medial edge of the posterior tibia and ascended proximally to give rise to the popliteus tendon, which inserted on the proximal aspect of the popliteal sulcus just anterior to the fibular collateral ligament. The biceps femoris had no attachment to the fibula and attached to the anterior com- partment fascia of the leg. This study increased our understanding of these structures and their relationships to comparative anatomy in the human knee.
    [Show full text]
  • Applications of the Pedicled Vastus Lateralis Flap for Patients with Complicated Pressure Sores
    Spinal Cord (1997) 35, 437 ± 442 1997 International Medical Society of Paraplegia All rights reserved 1362 ± 4393/97 $12.00 Applications of the pedicled vastus lateralis ¯ap for patients with complicated pressure sores AB Schmidt1, G Fromberg1 and M-H Ruidisch2 1Abt. fuÈr Plastische-, Hand-, Kiefer- und rekonstruktive Mikrochirurgie, BG Unfallklinik Murnau; 2Abt. fuÈr RuÈckenmark- und WirbelsaÈulenverletztungen, BG Unfallklinik Murnau, Germany The vastus lateralis muscle- or musculocutaneous ¯ap is a well established tool in the surgery of pressure sores of the pelvic region. Its size, its constant large axial vascular pedicle originating from the lateral circum¯ex femoral artery, and its ability to carry quite a large skin island from the distal lateral region of the upper thigh makes this ¯ap a very versatile one in the management of dicult situations. The vastus lateralis ¯ap allows the simultaneous closure of defects in the trochanteric and sacral region, a technique which has not been described previously. A pedicled vastus lateralis ¯ap may be the only remaining local salvage procedure for defects due to obstruction of internal and external iliac arteries and aortobifemoral bypass surgery. This is another application which has not yet been described in the medical literature. The outcome of a series of 38 vastus lateralis ¯aps and the complications are shown. The follow-up period ranged from 3 months to 4 years. One ¯ap was lost. More complications were seen at the donor site than at the reconstructed defect. In patients who may be able to walk or stand at a later date, potential impairment of these functions has to be considered.
    [Show full text]
  • The Role of and Relationship Between Hamstring and Quadriceps Muscle Myofascial Trigger Points in Patients with Patellofemoral Pain Syndrome
    The role of and relationship between Hamstring and Quadriceps muscle myofascial trigger points in patients with patellofemoral pain syndrome. By Karen Louise Frandsen Smith A mini-dissertation submitted in partial compliance with the requirements for the Master’s Degree in Technology: Chiropractic at the Durban University of Technology I, Karen Louise Frandsen Smith, declare that this dissertation is representative of my own work in both conception and execution (except where acknowledgements indicate to the contrary). _______________________ ________________ Karen Louise Frandsen Smith Date Approved for Submission _______________________ ________________ Dr Brian Kruger (supervisor) Date M. Tech. Chiro., C.C.S.P. Dedication I dedicate this work to everyone who loves me and have supported me throughout these years of studying and all the difficult times. It is thanks to you that I have reached my dream. Dad, you would be so proud. i Acknowledgements Thank you to the DUT staff, patients, and supervisor, Dr Brian Kruger for making this happen. Thanks to my class mates for making the years fly by, and creating lifelong memories. This dissertation would not have been completed without supportive, generous and helpful people. Special thanks to you, Dr Danella Lubbe for motivating me and thank you so much Dr Charmaine Korporaal for “picking me up” and helping me finish. Endless gratitude goes to you Damon, Cherine, Mom and Viggo. You are / were all my anchors in the storm, and without your belief in me, I would be nowhere. ii Abstract Purpose: Patellofemoral Pain Syndrome is a common condition in all age groups, with a multi- factorial etiology.
    [Show full text]
  • Popliteal Fossa, Back of Leg & Sole of Foot
    Popliteal fossa, back of leg & Sole of foot Musculoskeletal block- Anatomy-lecture 16 Editing file Color guide : Only in boys slides in Blue Objectives Only in girls slides in Purple important in Red Doctor note in Green By the end of the lecture, students should be able to: Extra information in Grey ✓ The location , boundaries & contents of the popliteal fossa. ✓ The contents of posterior fascial compartment of the leg. ✓ The structures hold by retinacula at the ankle joint. ✓ Layers forming in the sole of foot & bone forming the arches of the foot. Popliteal Fossa Is a diamond-shaped intermuscular space at the back of the knee Boundaries Contents Tibial nerve Common peroneal nerve Semitendinosus Laterally Medially Roof Floor From medial to lateral (above) (above) 1.Skin 1.popliteal surface 1. Popliteal vessels (artery/vein) biceps femoris. semimembranosus 2.superficial of femur 2. Small saphenous vein & semitendinosus fascia & deep 2.posterior ligament 3. Tibial nerve fascia of the of knee joint 4. Common peroneal nerve. (Below) (Below) thigh. 3.popliteus muscle. 5. Posterior cut. nerve of thigh Lateral head of Medial head of 6. Connective tissue & popliteal lymph gastrocnemius gastrocnemius nodes. & plantaris The deepest structure is popliteal artery.* (VERY IMPORTANT) CONTENTS OF THE POSTERIOR FASCIAL COMPARTMENT OF THE LEG The transverse intermuscular septum of the leg is a septum divides the muscles of the posterior Transverse section compartment into superficial and deep groups. Contents 1. Superficial group of muscles 2. Deep group of muscles 3. Posterior tibial artery transverse intermuscular 4. Tibial nerve septum Superficial group Deep group 1. Gastrocnemius 1.
    [Show full text]
  • Clinical Anatomy of the Lower Extremity
    Государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Department of Operative Surgery and Topographic Anatomy Clinical anatomy of the lower extremity Teaching aid Иркутск ИГМУ 2016 УДК [617.58 + 611.728](075.8) ББК 54.578.4я73. К 49 Recommended by faculty methodological council of medical department of SBEI HE ISMU The Ministry of Health of The Russian Federation as a training manual for independent work of foreign students from medical faculty, faculty of pediatrics, faculty of dentistry, protocol № 01.02.2016. Authors: G.I. Songolov - associate professor, Head of Department of Operative Surgery and Topographic Anatomy, PhD, MD SBEI HE ISMU The Ministry of Health of The Russian Federation. O. P.Galeeva - associate professor of Department of Operative Surgery and Topographic Anatomy, MD, PhD SBEI HE ISMU The Ministry of Health of The Russian Federation. A.A. Yudin - assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU The Ministry of Health of The Russian Federation. S. N. Redkov – assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU THE Ministry of Health of The Russian Federation. Reviewers: E.V. Gvildis - head of department of foreign languages with the course of the Latin and Russian as foreign languages of SBEI HE ISMU The Ministry of Health of The Russian Federation, PhD, L.V. Sorokina - associate Professor of Department of Anesthesiology and Reanimation at ISMU, PhD, MD Songolov G.I K49 Clinical anatomy of lower extremity: teaching aid / Songolov G.I, Galeeva O.P, Redkov S.N, Yudin, A.A.; State budget educational institution of higher education of the Ministry of Health and Social Development of the Russian Federation; "Irkutsk State Medical University" of the Ministry of Health and Social Development of the Russian Federation Irkutsk ISMU, 2016, 45 p.
    [Show full text]
  • Chapter 10 the Knee Joint
    The Knee Joint • Knee joint – largest joint in body Chapter 10 – very complex The Knee Joint – primarily a hinge joint Manual of Structural Kinesiology Modified for Prentice WE: Arnheim’s principles of athletic training , ed 12, New R.T. Floyd, EdD, ATC, CSCS York, 2006, McGraw-Hill; from Saladin, KS: Anatomy &physiology: the unity of forms and function , ed 2, New York, 2001, McGraw- Hill. © 2007 McGraw-Hill Higher Education. All rights reserved. 10-1 © 2007 McGraw-Hill Higher Education. All rights reserved. 10-2 Bones Bones • Enlarged femoral condyles articulate on • Fibula - lateral enlarged tibial condyles – serves as the attachment for • Medial & lateral tibial condyles (medial & knee joint lateral tibial plateaus) - receptacles for structures femoral condyles – does not articulate • Tibia – medial with femur or patella – bears most of weight – not part of knee joint Modified from Anthony CP, Kolthoff NJ: Textbook of anatomy and physiology , ed 9, St. Louis, 1975, Mosby. © 2007 McGraw-Hill Higher Education. All rights reserved. 10-3 © 2007 McGraw-Hill Higher Education. All rights reserved. 10-4 Bones Bones • Patella • Key bony landmarks – sesamoid (floating) bone – Superior & inferior patellar poles – imbedded in quadriceps – Tibial tuberosity & patellar tendon – Gerdy’s tubercle – serves similar to a pulley – Medial & lateral femoral in improving angle of condyles pull, resulting in greater – Upper anterior medial tibial mechanical advantage in surface – Head of fibula knee extension Modified from Anthony CP, Kolthoff NJ: Textbook of anatomy and physiology , ed 9, St. Louis, 1975, Mosby. © 2007 McGraw-Hill Higher Education. All rights reserved. 10-5 © 2007 McGraw-Hill Higher Education. All rights reserved.
    [Show full text]
  • Anatomy Flashcards: Hip and Thigh
    ANATOMY FLASHCARDS Hip and thigh Dear Anatomy Geek, Welcome to your Kenhub flashcards eBook. This eBook is laid out in a flashcard style format, which means that you can learn anatomy easily and on the go. Oh- and without having to deal with a tidal wave of handmade flashcards flying around. Result! So, how do I use this anatomy eBook? It couldn’t be simpler. On the first page, you will see an illustration of an anatomical structure along with a question asking you to identify it. Allow yourself a few seconds to recall the name of the structure you see as well as its purpose in the body. Once you think you’ve got it, flip the page. Here you will see the answer in English and Latin, as well as some additional information about the structure. It’s important to be honest with yourself. Did you get it right? If so, great! Move onto the next card. If not, make a note to come back to it later before you move onto the next card. And that’s it! It’s really that easy. Swipe the page to get started now. QUESTION What structure is shown here? Image by: Liene Znotina ENGLISH Lateral condyle of the femur LATIN Condylus lateralis femoris ORIGINS Popliteus muscle Image by: Liene Znotina QUESTION What structure is shown here? Image by: Liene Znotina ENGLISH Acetabulum LATIN Acetabulum Image by: Liene Znotina QUESTION What structure is shown here? Image by: Liene Znotina ENGLISH Psoas major muscle LATIN Musculus psoas major INSERTIONS Lesser trochanter INNERVATIONS Femoral nerve, Lumbar plexus FUNCTIONS Flexes the hip joint, externally rotates the hip
    [Show full text]
  • Review Paper:Role of the Popliteal Fossa in Knee Problems
    Journal of Modern Rehabilitation July 2020, Volume 14, Number 3 Review Paper: Role of the Popliteal Fossa in Knee Problems: Theoretical Considerations and Practical Implications Maghsoud Eivazi Gh1, Amin Alilou2, Sara Fereydounnia3* , James Selfe4, Sahar Zamani5 1. Faculty of General Medicine, Azerbaijan Medical University, Baku, Azerbaijan. 2. Faculty of Dentistry, Azerbaijan Medical University, Baku, Azerbaijan. 3. School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran. 4. Department of Allied Health Professions, Faculty of Health, University of Central Lancashire, Preston, England. 5. School of Rehabilitation Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Use your device to scan and read the article online Citation: Eivazi Gh M, Alilou A, Fereydounnia S, Selfe J, Zamani S. Role of the Popliteal Fossa in Knee Problems: Theoretical Considerations and Practical Implications. Journal of Modern Rehabilitation. 2020; 14(3):131-140. http://dx.doi.org/10.32598/ JMR.14.3.4 : http://dx.doi.org/10.32598/JMR.14.3.4 A B S T R A C T Article info: The popliteal fossa is located at the back of the knee joint and it is an area where blood vessels Received: 13 Jan 2020 and nerves and also lymph nodes pass. Popliteal fossa injuries includes nearly 2% of acute knee Accepted: 05 May 2020 injuries. The treatment of chronic injuries are always more difficult than acute ones, because its Available Online: 01 Jul 2020 diagnosis would depend on careful interpretation of specific clinical exams. In this review, we Keywords: describe our current understanding of role of popliteal fossa in knee problems, and summarize the anatomy and functional role of popliteal fossa and popliteomeniscal fibers, and mechanism Posterolateral corner of of popliteomeniscal fibers injuries, and discuss strategies for diagnosis of popliteomeniscal the knee, Popliteus Fossa, fibers lesions, differential diagnosis, and treatment of the posterolateral corner injuries.
    [Show full text]
  • A Study on the Morphology of the Popliteus Muscle and Arcuate Popliteal Ligament
    Folia Morphol. Vol. 65, No. 4, pp. 381–384 Copyright © 2006 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl A study on the morphology of the popliteus muscle and arcuate popliteal ligament G. Paraskevas1, B. Papaziogas1, P. Kitsoulis2, S. Spanidou1 1Department of Anatomy, Medical School of Aristotle University of Thessaloniki, Greece 2Institute of Anatomy, University of Ioannina, Greece [Received 28 December 2006; Revised 17 July 2006; Accepted 1 August 2006] The aim of this study was to investigate the origins and morphological features of the popliteus muscle in cadavers. In a sample of 40 lower limbs taken from cadavers the exact morphological features of the popliteus muscle were examined. In 100% of the cases studied we noticed, apart from the known femoral origin from the lateral femoral epicondyle, a fibular origin from the styloid process of the head of the fibula directed obliquely and blending with the main femoral origin, forming the arms of a Y-shaped structure. In all the cases a capsular origin was presented, while in 91.67% an origin lateral to it from the superior border of the posterior horn of the lateral meniscus was found. The capsular and meniscal origins formed the base of the Y-shaped structure that corresponded to the known arcuate ligament. We consider that the additional origins of the popliteus muscle form the arcuate ligament, which is not a distinct anatomical structure as it is described in tradi- tional anatomical textbooks. In addition, we have analysed the exact morpho- logical features of the capsular, fibular and meniscal origins of the popliteal muscle.
    [Show full text]
  • Anatomic Study of the Portions Long and Oblique of the Vastus Lateralis and Vastus Medialis Muscles: Review Article
    Review article Anatomic study of the portions long and oblique of the vastus lateralis and vastus medialis muscles: review article Vieira, EPL.* Departamento de Educação Física, Universidade Salgado de Oliveira – UNIVERSO, São Gonçalo, RJ, Brazil *E-mail: [email protected] Abstract Although not mentioned directly in the classical anatomical literature, the vastus lateralis and vastus medialis, which make up the quadriceps femoris muscle, show variations in their anatomical structures due to the presence of long and oblique portions receiving the designation of vastus lateralis longus, vastus lateralis obliques to the vastus lateralis and vastus medialis oblique and vastus long, for the vastus medialis. The aim of this paper is to review the scientific literature regarding the presence of long and oblique portions of the broad medial and lateral portions recognize these as integral parts, anatomically, the quadriceps femoris. To this end, we used published articles in magazines and journals, located through Medline, and Lilacs Excerpa Medica, and the Portal Capes, with the key words: quadriceps, vastus medialis, vastus lateralis, vastus medialis longus, vastus medialis oblique , vastus lateralis longus and vastus lateralis oblique. Used to, still, a master’s thesis, located at Portal Capes, plus textbooks and atlases of anatomy. Among the 27 surveyed, only two do not recognize these portions as independent structures, considering the differences in fiber orientation. Of the 18 studied anatomy books, no mention such parts. However, eight anatomy books describe differences in trajectory of fiber insertions of the vastus lateralis and vastus medialis. Before this study it was concluded that these portions have not only morphological differences but also in other respects proved through scientific studies being published in some of them considered independent muscle suggesting inclusion of muscles in Anatomical Nomina.
    [Show full text]