A Study on the Morphology of the Popliteus Muscle and Arcuate Popliteal Ligament
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Anatomy of the Posterolateral Aspect of the Rabbit Knee
Journal of Orthopaedic Research ELSEVIER Journal of Orthopaedic Research 2 I (2003) 723-729 www.elsevier.com/locate/orthres The anatomy of the posterolateral aspect of the rabbit knee Joshua A. Crum, Robert F. LaPrade *, Fred A. Wentorf Dc~~ur/niiviiof Orthopuer/ic Surgery. Unicrrsity o/ Minnesotu. MMC 492, 420 Dcluwur-c Si. S. E., Minnwpoli,s, MN 55455, tiSA Accepted 14 November 2002 Abstract The purpose of this study was to determine the anatomy of the posterolateral aspect of the rabbit knee to serve as a basis for future in vitro and in vivo posterolateral knee biomechanical and injury studies. Twelve nonpaired fresh-frozen New Zealand white rabbit knees were dissected to determine the anatomy of the posterolateral corner. The following main structures were consistently identified in the rabbit posterolateral knee: the gastrocnemius muscles, biceps femoris muscle, popliteus muscle and tendon, fibular collateral ligament, posterior capsule, ligament of Wrisberg, and posterior meniscotibial ligament. The fibular collateral ligament was within the joint capsule and attached to the femur at the lateral epi- condyle and to the fibula at the midportion of the fibular head. The popliteus muscle attached to the medial edge of the posterior tibia and ascended proximally to give rise to the popliteus tendon, which inserted on the proximal aspect of the popliteal sulcus just anterior to the fibular collateral ligament. The biceps femoris had no attachment to the fibula and attached to the anterior com- partment fascia of the leg. This study increased our understanding of these structures and their relationships to comparative anatomy in the human knee. -
An Evidence Based Medicine Understanding of Meniscus Injuries and How to Treat Them
An Evidence Based Medicine Understanding of Meniscus Injuries and How to Treat Them Patrick S. Buckley, MD University Orthopaedic Associates June 1, 2019 Disclosures • None www.UOANJ.com Anatomy of the Meniscus • Act as functional extensions of the tibial plateaus to increase depth of tibial articular surface • The meniscotibial attachment contributes to knee stability • Triangular in cross-section Gross Anatomy of the Meniscus • Ultrastructural Anatomy – Primarily Type I collagen (90%) – 70% water – Fiber orientation is circumferential (hoop stressing) Meniscal Vascularity • Relatively avascular • Vascular penetration – 10 - 30% medial – 10 - 25% lateral • Non-vascularized portions gain nutrients from mechanical loading and joint motion Medial Meniscus • Semilunar shape • Thin anterior horn • Broader posterior horn • More stable & less motion than the lateral = tears more often Lateral Meniscus • Almost circular in shape • Intimately associated with the ACL tibial insertion • Posterior horn attachments – Ligament of Humphrey – Ligament of Wrisberg • Lateral meniscus is a more dynamic structure with more motion Main Importance of Menisci • Load transmission • Joint stability Load Bearing / Shock Absorption • MM 50% and 70% LM of load transmitted through mensicus in extension • 85 % at 90° of flexion • Meniscectomy – 50 % decrease in contact area – 20 % less shock absorption www.UOANJ.com Meniscal effect on joint stability • Secondary restraints to anterior tibial translation in normal knees • In an ACL-deficient knee: the posterior horn of the medial meniscus is more important than the lateral meniscus Interaction of ACL and PHMM • Lack of MM in ACLD knees significantly ↑ anterior tibial translation at all knee flexion angles • Think about with high grade pivot! (Levy, JBJS,1982) (Allen, JOR,2000) C9ristiani, AJSM, 2017) Meniscus Function -Now known to be important structure for load distribution and secondary stabilizer to the knee. -
Meniscus Tear
291 North Fireweed Soldotna, AK 99669 907-262-6454 www.kenaipeninsulaortho.com ______________________________________________________________________________________ Orthopaedic Surgeon: Hand and Wrist Specialist: Henry G. Krull, M.D. Edwin D. Vyhmeister, M.D. Meniscus Tear The meniscus is the rubbery, soft cartilage cushion in the knee. There are two of the C-shaped cushions in each knee, a medial (inner) and lateral (outer) meniscus. They sit between the two bones that form the knee joint, and function to cushion and support the knee. The meniscus can tear with injury or degeneration, or a combination of both. The medial meniscus is torn about 10X more frequently than the lateral meniscus. In young people, the meniscus usually tears with an injury. In older people, the cartilage can degenerate (weaken) with age, and can tear with or without an injury; spontaneous tears can occur. Meniscal tears can occur in association with other injuries to the knee. Symptoms: Pain is the usual symptom of complaint with a meniscus tear. There is often a noticeable “pop.” Swelling and stiffness can also occur. Mechanical symptoms are common—clicking, popping, and locking. Sometimes there is just a feeling that something is wrong inside the knee. Pain can be sharp, or can be dull and aching. Meniscus tears do not heal, but sometimes the symptoms dissipate. Chronic, intermittent symptoms is very common. Meniscal tears can cause a feeling of instability, or can cause the knee to buckle or give way. Cause: Injuries, particularly with sports, are a common cause of meniscal tears in young people. As people age, the meniscus tissue weakens through the normal degenerative process, and tears can occur spontaneously, or with simple activities, such as getting up from a chair, and changing direction while walking. -
About Your Knee
OrthoInfo Basics About Your Knee What are the parts of the knee? Your knee is Your knee is made up of four main things: bones, cartilage, ligaments, the largest joint and tendons. in your body Bones. Three bones meet to form your knee joint: your thighbone and one of the (femur), shinbone (tibia), and kneecap (patella). Your patella sits in most complex. front of the joint and provides some protection. It is also vital Articular cartilage. The ends of your thighbone and shinbone are covered with articular cartilage. This slippery substance to movement. helps your knee bones glide smoothly across each other as you bend or straighten your leg. Because you use it so Two wedge-shaped pieces of meniscal cartilage act as much, it is vulnerable to Meniscus. “shock absorbers” between your thighbone and shinbone. Different injury. Because it is made from articular cartilage, the meniscus is tough and rubbery to help up of so many parts, cushion and stabilize the joint. When people talk about torn cartilage many different things in the knee, they are usually referring to torn meniscus. can go wrong. Knee pain or injury Femur is one of the most (thighbone) common reasons people Patella (kneecap) see their doctors. Most knee problems can be prevented or treated with simple measures, such as exercise or Articular cartilage training programs. Other problems require surgery Meniscus to correct. Tibia (shinbone) 1 OrthoInfo Basics — About Your Knee What are ligaments and tendons? Ligaments and tendons connect your thighbone Collateral ligaments. These are found on to the bones in your lower leg. -
Arthroscopic Partial Meniscectomy 1
Chris Lena MD, James Alvarez PAC Arthroscopic and Reconstructive Surgery of the Shoulder and Knee Sports Medicine MEA’s Karen Smith, Jackie Zuidema, Annmarie Fiore Tel: (860) 549-8249 - FAX: (860) 244-8813 www.oahct.com Arthroscopic Partial Meniscectomy 1. ACTIVITIES: No harm is done in putting full weight on your knee immediately. You are encouraged to try to walk as smoothly as possible. Do not do any strenuous activity such as running and jumping until I clear you for this. You may experience some mild discomfort as you walk. You may use crutches, but generally they are not necessary. You may start bending your knee as tolerated, the sooner the better. 2. BANDAGES: Your bandage may be removed 2 days following surgery. The knee should then be re-wrapped with only the elastic bandage for about 3-4 days or until swelling is gone. DO NOT wrap the elastic bandage too tightly, or it will act like a tourniquet and cause ankle swelling. 3. MEDICATIONS: : A prescription will be provided to help relieve pain. Please use this medication as directed. This medication is strong, and should not be taken with alcohol or other pain medications, and may cause drowsiness. Exercise good judgment in its use. You may also try over the counter pain medications such as Aleve (naprosyn) or Advil (Ibuprofen). Take as directed unless there are contraindications. Take 1 Aspirin (325 mg) daily in addition to the pain medication. 4. SHOWER: You may shower after 48 hours. Do not take a bath or submerge the knee under water for 7 days. -
Meniscus FAQ Robert T. Bents, MD
Meniscus FAQ Robert T. Bents, MD Q. What is a “meniscus”? A. The meniscus is a “C” shaped shock absorber in your knee joint. The meniscus is made of cartilage similar to your earlobe. The meniscus has several different functions‐shock absorption, joint stabilization, and joint instability. A healthy meniscus is important to protect against arthritis. Q. What does it mean to “tear” a meniscus? A. You can tear a meniscus in many different ways. As we get older the water content of the meniscus decreases and becomes more brittle. With twisting, squatting, or sporting activities the meniscus can be pinched between the femur and tibia causing it to fray, tear, or split. The tear may occur with injury or simply fray with aging. The most severe tears involve the attachment to the bone called the root. Q. What are some of the symptoms of a torn meniscus? A. Patients may have pain associated with twisting activities. The pain is usually localized along the inside (medial) or outside (lateral) part of the knee. Swelling of the joint is another common complaint. Sometimes patients will feel like something is catching or pinching in the joint. Occasionally the knee will “lock” in a certain position. Most of these symptoms are reproducible by the doctor’s examination. Q. Will an X‐ray detect a meniscal tear? A. No. The purpose of the X‐ray is to make certain that you do not have any underlying arthritis in your knee. Also a loose bone chips or “loose body” may mimic a meniscal tear. The X‐ray gives your doctor information about the “bony” anatomy of a joint. -
Understanding the Stiff-To-Compliant Transition of the Meniscal
Research Article Cite This: ACS Appl. Mater. Interfaces 2019, 11, 26559−26570 www.acsami.org Understanding the Stiff-to-Compliant Transition of the Meniscal Attachments by Spatial Correlation of Composition, Structure, and Mechanics Alexander J. Boys,† Jennie A. M. R. Kunitake,† Corinne R. Henak,‡ Itai Cohen,§ Lara A. Estroff,†,∥ and Lawrence J. Bonassar*,‡,⊥ † ‡ § ∥ Department of Materials Science & Engineering, Meinig School of Biomedical Engineering, Department of Physics, Kavli ⊥ Institute at Cornell for Nanoscale Science, and Sibley School of Mechanical Engineering, Cornell University, Ithaca, New York 14853, United States *S Supporting Information ABSTRACT: Recently, the scientific community has shown considerable interest in engineering tissues with organized compositional and structural gradients to mimic hard-to-soft tissue interfaces. This effort is hindered by an incomplete understanding of the construction of native tissue interfaces. In this work, we combined Raman microscopy and confocal elastography to map compositional, structural, and mechanical features across the stiff-to-compliant interface of the attach- ments of the meniscus in the knee. This study provides new insight into the methods by which biology mediates multiple orders of magnitude changes in stiffness over tens of microns. We identified how the nano- to mesoscale architecture mediates complex microscale transitional regions across the interface: two regions defined by chemical composition, five distinguished by structural features, and three mechanically distinct regions. We identified three major components that lead to a robust interface between a soft tissue and bone: mobile collagen fiber units, a continuous interfacial region, and a local stiffness gradient. This tissue architecture allows for large displacements of collagen fibers in the attachments, enabling meniscal movement without localizing strains to the soft tissue-to-bone interface. -
Avulsion of the Anterior Lateral Meniscal Root Secondary to Tibial Eminence Fracture
Avulsion of the Anterior Lateral Meniscal Root Secondary to Tibial Eminence Fracture Publish date: May 8, 2018 Authors: Travis J. Menge, MD Jorge Chahla, MD Justin J. Mitchell, MD Chase S. Dean, MD and Robert F. LaPrade, MD Author Affiliation | Disclosures Authors’ Disclosure Statement: Dr. LaPrade reports that he receives royalties and is a paid consultant for Smith and Nephew, Arthrex, and Össur. Dr. Menge reports that he is a paid consultant for Smith and Nephew. Dr. Mitchell reports that he has received educational and grant support from Arthrex, Smith and Nephew, and DJO, LLC. The other authors report no actual or potential conflict of interest in relation to this article. Dr. Menge is an Orthopaedic and Sports Medicine Surgeon, Spectrum Health Medical Group, Grand Rapids, Michigan. Dr. Mitchell is an Orthopaedic and Sports Medicine Surgeon, Gundersen Health System, La Crosse, Wisconsin. Dr. Chahla is a Clinical Fellow, Cedars Sinai Kerlan Jobe Institute, Santa Monica, California. Dr. Dean is an Orthopaedic Surgical Resident, University of Colorado Hospital, Denver, Colorado. Dr. LaPrade is an Orthopaedic Complex Knee and Sports Medicine Surgeon, and Chief Medical Officer and Co-Director of the Sports Medicine Fellowship, Steadman Philippon Research Institute, The Steadman Clinic, Vail, Colorado. Address correspondence to: Robert F. LaPrade MD, PhD, Steadman Philippon Research Institute, The Steadman Clinic, 181 West Meadow Drive, Suite 400, Vail, Colorado 81657 (email, [email protected]). Am J Orthop. 2018;47(5). Copyright Frontline Medical Communications Inc. 2018. All rights reserved. Take-Home Points Root tears of all meniscal attachments have been described. A comprehensive anatomic understanding of the meniscal roots is of utmost importance to suspect root lesions. -
Postoperative Instructions for Knee Arthroscopy, Torn Meniscus Dr
Postoperative Instructions For Knee Arthroscopy, Torn Meniscus Dr. Jeffrey J. Mair, DO PAIN: You will be sent home from the surgery center with prescriptions for pain medication. Take the pain medication as prescribed. After the first few days, as the pain lessens, you may decrease the frequency with which you take the medication and taper off as you feel comfortable, but keep in mind that many people have an increase in pain around day 3 or 4 after surgery. Remember, the medications are not necessarily meant to completely eliminate your pain, only to make it more bearable. It is also helpful to use ice, as well as to elevate your leg to decrease pain and swelling. Elevation should be achieved by placing pillows under the heel or calf—not under the knee—in order to keep your leg straight. If these measures are not adequately controlling your pain, please call our office. MEDICATIONS: Most pain medications need a handwritten prescription for refills and cannot be obtained after hours or on the weekends. Please plan accordingly. Narcotic pain medications can cause constipation; you may wish to use an over-the- counter stool softener to help prevent this. DRESSINGS: You will have a soft dressing applied over your incisions. It is meant to absorb any leaking blood or fluid from the joint, and to protect from infection. Leakage immediately after surgery is normal and actually helps to drain some of the fluid that accumulates in the joint during surgery. The dressings may become moist or blood-stained; this is normal and usually not a cause for alarm. -
ACR Appropriateness Criteria® Acute Trauma to the Knee
Revised 2019 American College of Radiology ACR Appropriateness Criteria® Acute Trauma to the Knee Variant 1: Adult or child 5 years of age or older. Fall or acute twisting trauma to the knee. No focal tenderness, no effusion, able to walk. Initial imaging. Procedure Appropriateness Category Relative Radiation Level Radiography knee May Be Appropriate ☢ Bone scan with SPECT or SPECT/CT knee Usually Not Appropriate ☢☢☢ CT knee with IV contrast Usually Not Appropriate ☢ CT knee without and with IV contrast Usually Not Appropriate ☢ CT knee without IV contrast Usually Not Appropriate ☢ MR arthrography knee Usually Not Appropriate O MRA knee without and with IV contrast Usually Not Appropriate O MRA knee without IV contrast Usually Not Appropriate O MRI knee without and with IV contrast Usually Not Appropriate O MRI knee without IV contrast Usually Not Appropriate O US knee Usually Not Appropriate O Variant 2: Adult or child 5 years of age or older. Fall or acute twisting trauma to the knee. One or more of the following: focal tenderness, effusion, inability to bear weight. Initial imaging. Procedure Appropriateness Category Relative Radiation Level Radiography knee Usually Appropriate ☢ Bone scan with SPECT or SPECT/CT knee Usually Not Appropriate ☢☢☢ CT knee with IV contrast Usually Not Appropriate ☢ CT knee without and with IV contrast Usually Not Appropriate ☢ CT knee without IV contrast Usually Not Appropriate ☢ MR arthrography knee Usually Not Appropriate O MRA knee without and with IV contrast Usually Not Appropriate O MRA knee without IV contrast Usually Not Appropriate O MRI knee without and with IV contrast Usually Not Appropriate O MRI knee without IV contrast Usually Not Appropriate O US knee Usually Not Appropriate O ACR Appropriateness Criteria® 1 Acute Trauma to the Knee Variant 3: Adult or skeletally mature child. -
Popliteal Fossa, Back of Leg & Sole of Foot
Popliteal fossa, back of leg & Sole of foot Musculoskeletal block- Anatomy-lecture 16 Editing file Color guide : Only in boys slides in Blue Objectives Only in girls slides in Purple important in Red Doctor note in Green By the end of the lecture, students should be able to: Extra information in Grey ✓ The location , boundaries & contents of the popliteal fossa. ✓ The contents of posterior fascial compartment of the leg. ✓ The structures hold by retinacula at the ankle joint. ✓ Layers forming in the sole of foot & bone forming the arches of the foot. Popliteal Fossa Is a diamond-shaped intermuscular space at the back of the knee Boundaries Contents Tibial nerve Common peroneal nerve Semitendinosus Laterally Medially Roof Floor From medial to lateral (above) (above) 1.Skin 1.popliteal surface 1. Popliteal vessels (artery/vein) biceps femoris. semimembranosus 2.superficial of femur 2. Small saphenous vein & semitendinosus fascia & deep 2.posterior ligament 3. Tibial nerve fascia of the of knee joint 4. Common peroneal nerve. (Below) (Below) thigh. 3.popliteus muscle. 5. Posterior cut. nerve of thigh Lateral head of Medial head of 6. Connective tissue & popliteal lymph gastrocnemius gastrocnemius nodes. & plantaris The deepest structure is popliteal artery.* (VERY IMPORTANT) CONTENTS OF THE POSTERIOR FASCIAL COMPARTMENT OF THE LEG The transverse intermuscular septum of the leg is a septum divides the muscles of the posterior Transverse section compartment into superficial and deep groups. Contents 1. Superficial group of muscles 2. Deep group of muscles 3. Posterior tibial artery transverse intermuscular 4. Tibial nerve septum Superficial group Deep group 1. Gastrocnemius 1. -
Clinical Anatomy of the Lower Extremity
Государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Department of Operative Surgery and Topographic Anatomy Clinical anatomy of the lower extremity Teaching aid Иркутск ИГМУ 2016 УДК [617.58 + 611.728](075.8) ББК 54.578.4я73. К 49 Recommended by faculty methodological council of medical department of SBEI HE ISMU The Ministry of Health of The Russian Federation as a training manual for independent work of foreign students from medical faculty, faculty of pediatrics, faculty of dentistry, protocol № 01.02.2016. Authors: G.I. Songolov - associate professor, Head of Department of Operative Surgery and Topographic Anatomy, PhD, MD SBEI HE ISMU The Ministry of Health of The Russian Federation. O. P.Galeeva - associate professor of Department of Operative Surgery and Topographic Anatomy, MD, PhD SBEI HE ISMU The Ministry of Health of The Russian Federation. A.A. Yudin - assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU The Ministry of Health of The Russian Federation. S. N. Redkov – assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU THE Ministry of Health of The Russian Federation. Reviewers: E.V. Gvildis - head of department of foreign languages with the course of the Latin and Russian as foreign languages of SBEI HE ISMU The Ministry of Health of The Russian Federation, PhD, L.V. Sorokina - associate Professor of Department of Anesthesiology and Reanimation at ISMU, PhD, MD Songolov G.I K49 Clinical anatomy of lower extremity: teaching aid / Songolov G.I, Galeeva O.P, Redkov S.N, Yudin, A.A.; State budget educational institution of higher education of the Ministry of Health and Social Development of the Russian Federation; "Irkutsk State Medical University" of the Ministry of Health and Social Development of the Russian Federation Irkutsk ISMU, 2016, 45 p.