Comparative Analyses of Classical Phenotypic Method and Ribosomal RNA Gene Sequencing for Identification of Medically Relevant Candida Species

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Analyses of Classical Phenotypic Method and Ribosomal RNA Gene Sequencing for Identification of Medically Relevant Candida Species 178 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 108(2): 178-185, April 2013 Comparative analyses of classical phenotypic method and ribosomal RNA gene sequencing for identification of medically relevant Candida species Constanza Giselle Taverna1/+, María Eugenia Bosco-Borgeat1, Omar Alejandro Murisengo1, Graciela Davel1, Mariana Côrtes Boité2, Elisa Cupolillo2, Cristina Elena Canteros1 1Departamento Micología, Instituto Nacional de Enfermedades Infecciosas Dr Carlos G Malbrán, Buenos Aires, Argentina 2Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil As the distribution of Candida species and their susceptibility to antifungal agents have changed, a new means of accurately and rapidly identifying these species is necessary for the successful early resolution of infection and the subsequent reduction of morbidity and mortality. The current work aimed to evaluate ribosomal RNA gene sequenc- ing for the identification of medically relevant Candida species in comparison with a standard phenotypic method. Eighteen reference strains (RSs), 69 phenotypically identified isolates and 20 inconclusively identified isolates were examined. Internal transcribed spaces (ITSs) and D1/D2 of the 26S ribosomal RNA gene regions were used as tar- gets for sequencing. Additionally, the sequences of the ITS regions were used to establish evolutionary relationships. The sequencing of the ITS regions was successful for 88% (94/107) of the RS and isolates, whereas 100% of the remaining 12% (13/107) of the samples were successfully analysed by sequencing the D1/D2 region. Similarly, geno- typic analysis identified all of the RS and isolates, including the 20 isolates that were not phenotypically identified. Phenotypic analysis, however, misidentified 10% (7/69) of the isolates. Phylogenetic analysis allowed the confirma- tion of the relationships between evolutionarily close species. Currently, the use of genotypic methods is necessary for the correct identification of Candida species. Key words: Candida - ribosomal DNA - DNA sequence analysis Candida species are fungal pathogens that can cause tropicalis (15.4%) and Candida glabrata (4.3%) are fre- a wide range of superficial and deep mycoses, collective- quently isolated species (Cordoba et al. 2011). ly known as candidiasis, that are commonly observed in The proper identification of Candida species is in- immunocompromised patients. Candidaemia is the most creasingly necessary, not only because the distribution clinically important Candida infection, both because is of Candida species has changed, but also because these the most frequent yeast infection in hospitalised patients species differ in their susceptibility to antifungal agents and because this infection results in significant mortal- (Pfaller & Diekema 2002, Ellepola & Morrison 2005). ity. The incidence has risen over the past decades as the Accurate and rapid identification can facilitate the suc- number of immunocompromised patients has increased cessful early resolution of infections and the subsequent (Pfaller & Diekema 2002, Falagas et al. 2010) and cur- reduction of morbidity and mortality (Pincus et al. 2007). rently, candidaemia is the fourth most common noso- The classical identification of fungi has been based on comial bloodstream infection in the United States of the morphological and physiological features of the sex- America (USA) (Pfaller et al. 1998, Edmond et al. 1999, ual and/or asexual state. Because most medically impor- Wisplinghoff et al. 2004). tant yeast species lack a sexual state and/or distinctive Although Candida albicans remains the most fre- asexual morphological features, the correct identification quently isolated species in human infection, more than of these species is often difficult and inconclusive when 50% of candidaemias are due to infection with other based solely on physiological traits. These morphological Candida species (Price et al. 1994, Nguyen et al. 1996, and physiological characteristics are often unstable, vari- Abi-Said et al. 1997, Trick et al. 2002, Hajjeh et al. 2004, able and subjective (Latouche et al. 1997). Furthermore, Wisplinghoff et al. 2004). For example, in Argentina, C. genetically diverse yeast species can yield similar pheno- albicans (38.4%), Candida parapsilosis (26%), Candida typic profiles, resulting in poor discrimination between unrelated yeast species (Sullivan et al. 1996). In this con- text, genotypic identification may be preferable as this method is faster and more accurate (Pincus et al. 2007). The ribosomal RNA (rDNA) gene complex is large- ly used as a target in many polymerase chain reaction (PCR)-based assays because the complex is present This study was part of the CGT thesis for the Master in Science degree/ in all microorganisms, occurs as tandem repeats of as FIOCRUZ in collaboration with the ANLIS Dr Carlos G Malbrán. + Corresponding author: [email protected] many as 100-200 copies and contains highly conserved Received 6 September 2012 domains separated by variable domains, thus enabling Accepted 12 December 2012 the design of universal PCR primers for fungi (White et online | memorias.ioc.fiocruz.br Identification of Candida species • Constanza Giselle Taverna et al. 179 al. 1990, Kurtzman & Fell 1998, Iwen et al. 2002, Pincus ITS amplification - The ITS1 (5′-TCCGTAGGTGAA- et al. 2007). Moreover, nucleotide-sequence heterogene- CCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGAT- ity within this complex may be used to phylogenetically ATGC-3′) primers were used (White et al. 1990). The classify microorganisms, including yeast species (Kurtz- reactions were performed in a volume of 100 µL con- man & Robnett 1998, Fell et al. 2000, Iwen et al. 2002). taining 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 2 mM The taxonomy of yeast and other fungal species has Mg2Cl2, 5.2% DMSO, 0.2 mM each of dATP, dCTP, profoundly changed since the advent of DNA sequencing dGTP and dTTP (Fermentas International, Inc), 0.1 µM for the classification of microorganisms. Single gene se- each of the primers ITS1 and ITS4, 1 U Taq DNA poly- quences, such as those from the D1/D2 region of 26S rDNA merase (Invitrogen-Life Technologies, Brazil) and 30 ng or from the internal transcribed space (ITS) regions, are of DNA. All of the amplifications were performed in an commonly used to identify yeast species (Kurtzman 2006, iCycler (Bio-Rad Laboratories, Inc) using the follow- 2010). Recently, the sequence of the ITS region has been ing parameters: 95ºC for 7 min, followed by 40 cycles proposed to be a primary fungal barcode marker by the at 95ºC for 1 min, 54ºC for 2 min, 72ºC for 1 min and a Consortium for the Barcode of Life (Schoch et al. 2012). final extension at 72ºC for 10 min. At present, the rDNA sequences of nearly all clini- Amplification of D1/D2 region of 26S rDNA - The NL1 cally relevant yeast species are available in public data- (5′-GCATATCAATAAGCGGAGGAAAAG-3′) and NL4 bases, such as GenBank (ncbi.nlm.nih.gov/genbank/) or (5′-GGTCCGTGTTTCAAGACGG-3′) primers were used the Centraalbureau voor Schimmelcultures (CBS) Yeast (White et al. 1990). The reactions were performed in a Database (cbs.knaw.nl), making it possible to genetical- volume of 100 µL containing 20 mM Tris-HCl (pH 8.4), ly identify one unknown yeast isolate by comparing its 50 mM KCl, 2.5 mM Mg2Cl, 5% DMSO, 0.2 mM each of rDNA sequences with those sequences in the database. dATP, dCTP, dGTP and dTTP, 0.1 µM each of the prim- The aim of the current study was to compare a clas- ers NL1 and NL4, 1 U Taq DNA polymerase and 30 ng sical phenotypic method with rDNA sequencing for the of DNA. All of the amplifications were performed in an identification of medically relevant Candida species. iCycler using the following parameters: 95ºC for 7 min, ITS sequences were also used to evaluate the genetic re- followed by 40 cycles at 95ºC for 1 min, 53ºC for 2 min, lationships between the samples analysed. 72ºC for 1 min and a final extension at 72ºC for 10 min. MATERIALS AND METHODS Agarose gel electrophoresis - The PCR products Reference strains (RSs) and isolates - Eighteen RSs, were electrophoresed on 1.5% agarose gels in 40 mM which our laboratory commonly uses for identification Tris-Acetate and 1 mM EDTA buffer (1X TAE) for 1 h and/or susceptibility testing, and 89 additional isolates at 100 V, stained with ethidium bromide (10 µg/mL) and (Supplementary data) were included in the study. The RS then visualised under ultraviolet (UV) light and photo- were obtained from the American Type Culture Collec- documented using an LAS 3000 version 2.1 (Fuji Photo Film Co, Ltd). A GeneRuler 100 bp DNA Ladder (Fer- tion, USA, the culture collection of the Carlos III Institute mentas Internationa, Inc) was used. of Health, Spain, and the culture collection of the De- partment of Mycology of the National Institute of Infec- Purification of PCR products - The PCR products tious Diseases Dr Carlos G Malbrán, Argentina. Based were purified using a PureLink PCR Purification Kit on their phenotypic identification, isolates were selected (Invitrogen). The products were then electrophoresed on from those received at the yeast identification laboratory 1.5% agarose gels in 1X TAE for 1 h at 100 V, stained from January 2009-December 2010. A total of 69 isolates with ethidium bromide (10 µg/mL) and visualised under of Candida species frequently isolated from patient in UV light. A ready-to-use MassRuler Express DNA Lad- Argentina were included in the study (Rodero et al. 2005, der, LR Reverse (Fermentas),
Recommended publications
  • Of Candida Dubliniensis, Ireland* Isolate Source Year of Isolation Location DST† Mating Type TAG Reference SL411 Ixodes Uriae Ticks 2007 GSI 27 Aa + (5) SL422 I
    cans isolates from humans and animals (3,4). The purpose Genetic Differences of our study was to use MLST, the presence or absence of a previously identified polymorphism in the CDR1 gene (8), between Avian and and mating type analysis to determine genetic relatedness between avian-associated and human C. dubliniensis iso- Human Isolates lates and whether avian-associated isolates are a source of of Candida human opportunistic infections. dubliniensis The Study To obtain avian-associated C. dubliniensis isolates Brenda A. McManus, Derek J. Sullivan, from a novel geographic site, fresh seabird excrement Gary P. Moran, Christophe d’Enfert, was sampled from the campus of Trinity College Dublin, Marie-Elisabeth Bougnoux, Miles A. Nunn, ≈150 km north of Great Saltee Island by using nitrogen- and David C. Coleman gassed VI-PAK sterile swabs (Sarstedt-Drinagh, Wexford, Ireland). Samples were plated within 2 h of collection When Candida dubliniensis isolates obtained from on CHROMagar Candida medium (CHROMagar, Paris, seabird excrement and from humans in Ireland were com- France), incubated at 30°C for 48 h, and identified as de- pared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The scribed (7,9–12). Three new C. dubliniensis isolates were remaining avian isolate was indistinguishable from a human obtained from 134 fecal samples. Like isolates from Great isolate, suggesting that transmission may occur between Saltee Island (5), these 3 isolates obtained directly from humans and birds. freshly deposited herring gull (Larus argentatus) excre- ment were ITS genotype 1 (13). Because the isolates origi- nally described by Nunn et al.
    [Show full text]
  • Identification of Culture-Negative Fungi in Blood and Respiratory Samples
    IDENTIFICATION OF CULTURE-NEGATIVE FUNGI IN BLOOD AND RESPIRATORY SAMPLES Farida P. Sidiq A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2014 Committee: Scott O. Rogers, Advisor W. Robert Midden Graduate Faculty Representative George Bullerjahn Raymond Larsen Vipaporn Phuntumart © 2014 Farida P. Sidiq All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Fungi were identified as early as the 1800’s as potential human pathogens, and have since been shown as being capable of causing disease in both immunocompetent and immunocompromised people. Clinical diagnosis of fungal infections has largely relied upon traditional microbiological culture techniques and examination of positive cultures and histopathological specimens utilizing microscopy. The first has been shown to be highly insensitive and prone to result in frequent false negatives. This is complicated by atypical phenotypes and organisms that are morphologically indistinguishable in tissues. Delays in diagnosis of fungal infections and inaccurate identification of infectious organisms contribute to increased morbidity and mortality in immunocompromised patients who exhibit increased vulnerability to opportunistic infection by normally nonpathogenic fungi. In this study we have retrospectively examined one-hundred culture negative whole blood samples and one-hundred culture negative respiratory samples obtained from the clinical microbiology lab at the University of Michigan Hospital in Ann Arbor, MI. Samples were obtained from randomized, heterogeneous patient populations collected between 2005 and 2006. Specimens were tested utilizing cetyltrimethylammonium bromide (CTAB) DNA extraction and polymerase chain reaction amplification of internal transcribed spacer (ITS) regions of ribosomal DNA utilizing panfungal ITS primers.
    [Show full text]
  • Candida Species
    Introduction Introduction ulvovaginal candidiasis (VVC) is a disease caused by V the abnormal growth of yeast-like fungi on the mucosa of the female genital tract (Souza et al., 2009). Although Candida species occur as normal vaginal flora, opportunistic conditions such as diabetes, pregnancy and other immune depressants in the host enable them to proliferate and cause infection (Pam et al., 2012). There are approximately 200 Candida species, among which are Candida albicans, glabrata, tropicalis, stellatoidea, parapsilosis, catemilata, ciferri, guilliermondii, haemulonii, kefyr and krusei. Candida albicans is the most common species (Pam et al., 2012). The most frequent cause of VVC is Candida albicans. Non-Candida albicans species of Candida, predominantly Candida glabrata, are responsible for the remainder of cases (Ge et al., 2010). It is estimated that 75% of women experience at least one episode of vulvovaginal candidiasis throughout their life and 40-50% of them have at least one recurrence (González et al., 2011). Most patients with symptomatic VVC may be readily diagnosed on the basis of microscopic examination of vaginal 1 Introduction secretions. Culture is a more sensitive method of diagnosis than vaginal smears, especially in a suspected patient with a negative result for microscopy (Khosravi et al., 2011). Antifungal agents that are used for treatment of VVC include imidazole antifungals (e.g., butoconazole, clotrimazole, and miconazole), triazole antifungals (eg, fluconazole, terconazole), and polyene antifungals (e.g., nystatin) (Abdelmonem et al., 2012). The azoles, particularly fluconazole, remain among the most common antifungal drugs used for prophylaxis and treatment (Pietrella et al., 2011). It is recommended in various guidelines as the first drug of choice because it is less toxic and can be taken as a single oral dose (Pam et al., 2012).
    [Show full text]
  • The Presence of Fluconazole-Resistant Candida Dubliniensis Strains
    44 Rev Iberoam Micol 2002; 19: 44-48 Original The presence of fluconazole-resistant Candida dubliniensis strains among Candida albicans isolates from immu- nocompromised or otherwise debili- tated HIV-negative Turkish patients A. Serda Kantarcıoglu & Ayhan Yücel Department of Microbiology and Clinical Microbiology, Cerrahpasa School of Medicine, Istanbul University, Cerrahpasa, Istanbul, Turkey Summary The newly described species Candida dubliniensis phenotypically resembles Candida albicans in many respects and so it could be easily misidentified. The present study aimed at determining the frequency at which this new Candida species was not recognized in the authors’ university hospital clinical laboratory and to assess antifungal susceptibility. In this study six identification methods based on significant phenotypic characteristics each proposed as reliable tests applicable in mycology laboratories for the differentiation of the two species were performed together to assess the clinical strains that were initially identified as C. albicans. Only the isolates which have had the parallel results in all methods were assessed as C. dubliniensis. One hundred and twentynine C. albicans strains isolated from deep mycosis suspected patients were further examined. Three of 129 C. albicans ( two from oral cavity, one from sputum) were reidenti- fied as C. dubliniensis. One of the strains isolated from oral cavity and that from sputum were obtained at two months intervals from the same patient with acute myeloid leukemia, while the other oral cavity strain was obtained from a patient who had previously been irradiated for a laryngeal malignancy. Isolates were all susceptible in vitro to amphotericin B, with the MIC range 0.125 to 0.5 µg/ml, resistant to fluconazole, with the MICs ≥ 64 µg/ml, and resistant to ketoconazole, with the MICs ≥ 16 µg/ml, dose-dependent to itraconazole with the MIC range 0.25-0.5 µg/ml, and susceptible to flucytosine, with the MIC range 1-4 µg/ml.
    [Show full text]
  • Molecular Markers of Antifungal Resistance: Potential Uses in Routine Practice and Future Perspectives
    Journal of Fungi Review Molecular Markers of Antifungal Resistance: Potential Uses in Routine Practice and Future Perspectives Guillermo Garcia-Effron 1,2 1 Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe CP3000, Argentina; [email protected]; Tel.: +54-9342-4575209 (ext. 135) 2 Consejo Nacional de Investigaciones Científicas y Tecnológicas, Santa Fe CP3000, Argentina Abstract: Antifungal susceptibility testing (AST) has come to establish itself as a mandatory routine in clinical practice. At the same time, the mycological diagnosis seems to have headed in the direction of non-culture-based methodologies. The downside of these developments is that the strains that cause these infections are not able to be studied for their sensitivity to antifungals. Therefore, at present, the mycological diagnosis is correctly based on laboratory evidence, but the antifungal treatment is undergoing a growing tendency to revert back to being empirical, as it was in the last century. One of the explored options to circumvent these problems is to couple non-cultured based diagnostics with molecular-based detection of intrinsically resistant organisms and the identification of molecular mechanisms of resistance (secondary resistance). The aim of this work is to review the available molecular tools for antifungal resistance detection, their limitations, and their advantages. A comprehensive description of commercially available and in-house methods is included. In addition, gaps in the development of these molecular technologies are discussed. Citation: Garcia-Effron, G. Molecular Keywords: antifungal resistance; molecular tools; intrinsic resistance; secondary resistance; Cyp51A; Markers of Antifungal Resistance: FKS; Candida; Aspergillus Potential Uses in Routine Practice and Future Perspectives.
    [Show full text]
  • Validation of a Simplex PCR Assay Enabling Reliable Identification Of
    Fidler et al. BMC Infectious Diseases (2018) 18:393 https://doi.org/10.1186/s12879-018-3283-6 RESEARCH ARTICLE Open Access Validation of a simplex PCR assay enabling reliable identification of clinically relevant Candida species Gabor Fidler1, Eva Leiter2, Sandor Kocsube3, Sandor Biro1 and Melinda Paholcsek1* Abstract Background: Fungal bloodstream infections (BSI) may be serious and are associated with drastic rise in mortality and health care costs. Candida spp. are the predominant etiological agent of fungal sepsis. The prompt and species-level identification of Candida may influence patient outcome and survival. The aim of this study was to develop and evaluate the CanTub-simplex PCR assay coupled with Tm calling and subsequent high resolution melting (HRM) analysis to barcode seven clinically relevant Candida species. Methods: Efficiency, coefficient of correlation and the limit of reliable detection were estimated on purified Candida EDTA-whole blood (WB) reference panels seeded with Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei, Candida guilliermondii, Candida dubliniensis cells in a 6-log range. Discriminatory power was measured on EDTA-WB clinical panels on three different PCR platforms; LightCycler®96, LightCycler® Nano, LightCycler® 2.0. Inter- and intra assay consistencies were also calculated. Results: The limit of reliable detection proved to be 0.2–2 genomic equivalent and the method was reliable on broad concentration ranges (106–10 CFU) providing distinctive melting peaks and characteristic HRM curves. The diagnostic accuracy of the discrimination proved to be the best on Roche LightCycler®2.0 platform. Repeatability was tested and proved to be % C.V.: 0.14 ± 0.06 on reference- and % C.V.: 0.14 ± 0.02 on clinical-plates accounting for a very high accuracy.
    [Show full text]
  • Presence of Candida Spp. in the Oral Cavity of Heart Transplantation Patients
    www.scielo.br/jaos Presence of Candida spp. in the oral cavity of heart transplantation patients Patrícia Monteiro RIBEIRO1, Fernando BACAL2, Cristiane Yumi KOGA-ITO3, Juliana Campos JUNQUEIRA3, Antonio Olavo Cardoso JORGE3 1- PhD, Department of Bioscience and Oral Diagnosis, São José dos Campos Dental School, São Paulo State University, São José dos Campos, SP, Brazil. 2- PhD, Heart Institute (INCOR/HCFMUSP), Medical School, University of São Paulo, São Paulo, SP, Brazil. 3- PhD, Professor of Microbiology and Immunology, Department of Bioscience and Oral Diagnosis, São José dos Campos Dental School, São Paulo State University, São José dos Campos, SP, Brazil. Corresponding address: Antonio Olavo Cardoso Jorge - Faculdade de Odontologia de São José dos Campos - UNESP - Departamento de Biociências e Diagnóstico Bucal - Disciplina de Microbiologia e Imunologia - Av. Francisco José Longo, 777, São José dos Campos - SP - 12.245-000 - Brasil - Phone: 055 12 3947 9033 - Fax: 055 12 3947 9010 - e-mail: [email protected] [ ABSTRACT andida spp. can lead to infections or even fungal sepsis particularly among C immunocompromized individuals. Objective: The aim of the present study was to analyze the presence of Candida spp. among patients subjected to orthotopic heart transplantation. Material and Methods: Oral rinses from 50 patients subjected to orthotopic heart transplantation, aged 13 to 70 years, 40 males and 10 females, were examined. Sex- age-oral conditions matched-control included 50 individuals who were not subjected to any kind of transplantation and were not immunocompromized for any other reason. Counts of yeasts were expressed as median values of logarithm of cfu/mL and were statistically compared by Mann-Whitney’s test.
    [Show full text]
  • DNA Barcoding Analysis of More Than 1000 Marine Yeast Isolates Reveals Previously Unrecorded Species
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.29.273490; this version posted September 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. DNA barcoding analysis of more than 1000 marine yeast isolates reveals previously unrecorded species Chinnamani PrasannaKumar*1,2, Shanmugam Velmurugan2,3, Kumaran Subramanian4, S. R. Pugazhvendan5, D. Senthil Nagaraj3, K. Feroz Khan2,6, Balamurugan Sadiappan1,2, Seerangan Manokaran7, Kaveripakam Raman Hemalatha8, Bhagavathi Sundaram Sivamaruthi9, Chaiyavat Chaiyasut9 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa-403004, India 2Centre of Advance studies in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu- 608502, India 3Madawalabu University, Bale, Robe, Ethiopia 4Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Tamil Nadu-600119, India 5Department of Zoology, Arignar Anna Government Arts College, Cheyyar, Tamil Nadu- 604407, India 6Research Department of Microbiology, Sadakathullah Appa College, Rahmath Nagar, Tirunelveli Tamil Nadu -627 011 7Center for Environment & Water, King Fahd University of Petroleum and Minerals, Dhahran-31261, Saudi Arabia 8Department of Microbiology, Annamalai university, Annamalai Nagar, Chidambaram, Tamil Nadu- 608 002, India 9Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand. *Corresponding author email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.29.273490; this version posted September 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Guidelines for Treatment of Candidemia in Adults
    GUIDELINES FOR TREATMENT OF CANDIDEMIA IN ADULTS General Statements: Yeast in a blood culture should NOT be considered a contaminant If there is a high suspicion that yeast growing in a blood culture is Histoplasma or Cryptococcus, do not use micafungin and consult Infectious Diseases Infectious Diseases consultation is strongly recommended in all cases of candidemia Blood cultures should be repeated every 24-48 hours until clearance has been documented Remove all intravascular catheters whenever possible. In neutropenic patients, as sources of candidiasis other than CVCs predominate, catheter removal should be considered on an individual basis Patients should have a dilated fundoscopic exam performed to rule out endophthalmitis within the first week after initiation of therapy In neutropenic patients, repeat ophthalmological exam should be considered once neutropenia has resolved Additional evaluation for metastatic foci (e.g. echocardiogram) should be considered in patients with persistently positive blood cultures Duration of therapy: o Patients with no evidence of metastatic complications should be treated for 14 days following the first negative blood culture o Patients with metastatic complications (e.g,. endophthalmitis, endocarditis) should have an ID Consult to determine length of therapy o Neutropenic patients with no evidence of metastatic complications should be treated for 14 days following the first negative blood culture, provided neutropenia has resolved INITIAL THERAPY IN PATIENTS WITH POSITIVE BLOOD CULTURES
    [Show full text]
  • Molecular Methods Developed for the Identification and Characterization
    www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com Review Article International Journal of Genetic Science Open Access Molecular Methods Developed for the Identification and Characterization of Candida Species Danielly Beraldo dos Santos Silva, Kelly Mari Pires de Oliveira, Alexéia Barufatti Grisolia* Universidade Federal da Grande Dourados, Dourados, MS, Brazil Received: 21 June, 2016; Accepted: 01 September, 2016; Published: 10 September, 2016 *Corresponding author: Grisolia AB, Faculty of Biological and Environmental Sciences (FCBA), Federal University of Grande Dourados (UFGD). Rodovia Dourados-Itahum KM 12, P.O. Box:533, Zip Code:79804-970, Dourados/ Mato Grosso do Sul/ Brazil, Tel: +55 (067) 34102223; E-mail: [email protected] Abstract Candida species Candida species are commensally microorganisms in healthy andThis reviewdiscusses summarizes future perspectives: the insights omicsthe main technologies methods used for individuals, but is also the most opportunistic fungal pathogen of in the identificationCandida and characterization species. the human. From benign skin-mucosal forms to invasive ones, Candida infection, can compromise various organs systematic and cause characterizationGeneral features: of Candida species diseases in immunocompromised or critically ill patients. Hence the Candida strains is crucial for diagnosis, clinical treatment and epidemiological Fungi, phylum Ascomycota, class Saccharomycetes, family accurate identification and characterization of the disease-causing Saccharomycetaceae,species
    [Show full text]
  • Dual DNA Barcoding for the Molecular Identification of the Agents Of
    Dual DNA Barcoding for the Molecular Identification of the Agents of Invasive Fungal Infections Minh Thuy Vi Hoang, Laszlo Irinyi, Sharon Chen, Tania Sorrell, Wieland Meyer, The Isham Barcoding of Medical Fungi Working Group, Stephane Ranque To cite this version: Minh Thuy Vi Hoang, Laszlo Irinyi, Sharon Chen, Tania Sorrell, Wieland Meyer, et al.. Dual DNA Barcoding for the Molecular Identification of the Agents of Invasive Fungal Infections. Frontiers in Microbiology, Frontiers Media, 2019, 10, 10.3389/fmicb.2019.01647. hal-02481964 HAL Id: hal-02481964 https://hal-amu.archives-ouvertes.fr/hal-02481964 Submitted on 26 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fmicb-10-01647 July 17, 2019 Time: 17:32 # 1 ORIGINAL RESEARCH published: 18 July 2019 doi: 10.3389/fmicb.2019.01647 Dual DNA Barcoding for the Molecular Identification of the Agents of Invasive Fungal Infections Minh Thuy Vi Hoang1,2, Laszlo Irinyi1,2,3, Sharon C. A. Chen1,3,4, Tania C. Sorrell1,2,3,
    [Show full text]
  • DNA Barcoding Analysis of More Than 1000 Marine Yeast Isolates Reveals Previously Unrecorded Species
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.29.273490; this version posted August 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. DNA barcoding analysis of more than 1000 marine yeast isolates reveals previously unrecorded species Chinnamani PrasannaKumar*1,2, Shanmugam Velmurugan2,3, Kumaran Subramanian4, S. R. Pugazhvendan5, D. Senthil Nagaraj3, K. Feroz Khan2,6, Balamurugan Sadiappan1,2, Seerangan Manokaran7, Kaveripakam Raman Hemalatha8 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa-403004, India 2Centre of Advance studies in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu- 608502, India 3Madawalabu University, Bale, Robe, Ethiopia 4Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Tamil Nadu-600119, India. 5Department of Zoology, Arignar Anna Government Arts College, Cheyyar, Tamil Nadu- 604407, India 6Research Department of Microbiology, Sadakathullah Appa College, Rahmath Nagar, Tirunelveli Tamil Nadu -627 011 7Center for Environment & Water, King Fahd University of Petroleum and Minerals, Dhahran-31261, Saudi Arabia 8Department of Microbiology, Annamalai university, Annamalai Nagar, Chidambaram, Tamil Nadu- 608 002, India Corresponding author email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.29.273490; this version posted August 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]