Office Or Center Name Here
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Typology for the Aesthetics and Top Design of Tall Buildings
G.U. Journal of Science 22(4): 371-381 (2009) www.gujs.org Typology for The Aesthetics and Top Design of Tall Buildings Ayşin SEV 1♠ 1 Mimar Sinan Fine University, Faculty of Architecture, Building Technology Department, 34427 Istanbul, TURKEY Received: 16.02.2009 Revised: 11.05.2009 Accepted: 05.06.2009 ABSTRACT The morphological character and the top is the most important component of the tall building in terms of its impression in the city silhouette. Designers of attractive tall buildings, whose investors tend to create a symbolic image, mostly prefer tops with aesthetic expressions. However many tall buildings with slipshod tops create unidentified skylines as it is the case for many modern cities of today. In this paper, the particular issue of visual impact and tops of tall buildings are addressed and a historical category system of seven periods is proposed. Then each period is illustrated in a series of outline figures showing the comparative heights and profiles of leading examples within each category. As a result, it is recognized that tall building design is a holistic process, and it is impossible to consider formal and aesthetic principles in isolation without reference to technology of the era, as well as the investors’ demands. The impact of tall building tops involves a consideration of social values followed by scale and traditional design principles versus contemporary expression of architectural design objectives. Key Words : Tall buildings, skyline, skyscraper, high-rise, aesthetic, urban context. 1. INTRODUCTION footprint buildings, which are quite tall but their size / floor area rules them out as being classed as a tall The visual impact of major buildings on the city scape building. -
Lbbert Wayne Wamer a Thesis Presented to the Graduate
I AN ANALYSIS OF MULTIPLE USE BUILDING; by lbbert Wayne Wamer A Thesis Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Master of Science in Civil Engineering Lehigh University 1982 TABLE OF CCNI'ENTS ABSI'RACI' 1 1. INTRODlCI'ICN 2 2. THE CGJCEPr OF A MULTI-USE BUILDING 3 3. HI8rORY AND GRami OF MULTI-USE BUIIDINCS 6 4. WHY MULTI-USE BUIIDINCS ARE PRACTICAL 11 4.1 CGVNI'GJN REJUVINATICN 11 4. 2 EN'ERGY SAVIN CS 11 4.3 CRIME PREVENTIOO 12 4. 4 VERI'ICAL CANYOO EFFECT 12 4. 5 OVEOCRO'IDING 13 5. DESHN CHARACTERisriCS OF MULTI-USE BUILDINCS 15 5 .1 srRlCI'URAL SYSI'EMS 15 5. 2 AOCHITECI'URAL CHARACTERisriCS 18 5. 3 ELEVATOR CHARACTERisriCS 19 6. PSYCHOI..OCICAL ASPECTS 21 7. CASE srUDIES 24 7 .1 JOHN HANCOCK CENTER 24 7 • 2 WATER TOiVER PlACE 25 7. 3 CITICORP CENTER 27 8. SUMMARY 29 9. GLOSSARY 31 10. TABLES 33 11. FIGJRES 41 12. REFERENCES 59 VITA 63 iii ACKNCMLEI)(}IIENTS The author would like to express his appreciation to Dr. Lynn S. Beedle for the supervision of this project and review of this manuscript. Research for this thesis was carried out at the Fritz Engineering Laboratory Library, Mart Science and Engineering Library, and Lindennan Library. The thesis is needed to partially fulfill degree requirenents in Civil Engineering. Dr. Lynn S. Beedle is the Director of Fritz Laboratory and Dr. David VanHom is the Chainnan of the Department of Civil Engineering. The author wishes to thank Betty Sumners, I:olores Rice, and Estella Brueningsen, who are staff menbers in Fritz Lab, for their help in locating infonnation and references. -
Structural Developments in Tall Buildings: Current Trends and Future Prospects
© 2007 University of Sydney. All rights reserved. Architectural Science Review www.arch.usyd.edu.au/asr Volume 50.3, pp 205-223 Invited Review Paper Structural Developments in Tall Buildings: Current Trends and Future Prospects Mir M. Ali† and Kyoung Sun Moon Structures Division, School of Architecture, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA †Corresponding Author: Tel: + 1 217 333 1330; Fax: +1 217 244 2900; E-mail: [email protected] Received 8 May; accepted 13 June 2007 Abstract: Tall building developments have been rapidly increasing worldwide. This paper reviews the evolution of tall building’s structural systems and the technological driving force behind tall building developments. For the primary structural systems, a new classification – interior structures and exterior structures – is presented. While most representative structural systems for tall buildings are discussed, the emphasis in this review paper is on current trends such as outrigger systems and diagrid structures. Auxiliary damping systems controlling building motion are also discussed. Further, contemporary “out-of-the-box” architectural design trends, such as aerodynamic and twisted forms, which directly or indirectly affect the structural performance of tall buildings, are reviewed. Finally, the future of structural developments in tall buildings is envisioned briefly. Keywords: Aerodynamics, Building forms, Damping systems, Diagrid structures, Exterior structures, Interior structures, Outrigger systems, Structural performance, Structural systems, Tall buildings Introduction Tall buildings emerged in the late nineteenth century in revolution – the steel skeletal structure – as well as consequent the United States of America. They constituted a so-called glass curtain wall systems, which occurred in Chicago, has led to “American Building Type,” meaning that most important tall the present state-of-the-art skyscraper. -
An Overview of Structural & Aesthetic Developments in Tall Buildings
ctbuh.org/papers Title: An Overview of Structural & Aesthetic Developments in Tall Buildings Using Exterior Bracing & Diagrid Systems Authors: Kheir Al-Kodmany, Professor, Urban Planning and Policy Department, University of Illinois Mir Ali, Professor Emeritus, School of Architecture, University of Illinois at Urbana-Champaign Subjects: Architectural/Design Structural Engineering Keywords: Structural Engineering Structure Publication Date: 2016 Original Publication: International Journal of High-Rise Buildings Volume 5 Number 4 Paper Type: 1. Book chapter/Part chapter 2. Journal paper 3. Conference proceeding 4. Unpublished conference paper 5. Magazine article 6. Unpublished © Council on Tall Buildings and Urban Habitat / Kheir Al-Kodmany; Mir Ali International Journal of High-Rise Buildings International Journal of December 2016, Vol 5, No 4, 271-291 High-Rise Buildings http://dx.doi.org/10.21022/IJHRB.2016.5.4.271 www.ctbuh-korea.org/ijhrb/index.php An Overview of Structural and Aesthetic Developments in Tall Buildings Using Exterior Bracing and Diagrid Systems Kheir Al-Kodmany1,† and Mir M. Ali2 1Urban Planning and Policy Department, University of Illinois, Chicago, IL 60607, USA 2School of Architecture, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA Abstract There is much architectural and engineering literature which discusses the virtues of exterior bracing and diagrid systems in regards to sustainability - two systems which generally reduce building materials, enhance structural performance, and decrease overall construction cost. By surveying past, present as well as possible future towers, this paper examines another attribute of these structural systems - the blend of structural functionality and aesthetics. Given the external nature of these structural systems, diagrids and exterior bracings can visually communicate the inherent structural logic of a building while also serving as a medium for artistic effect. -
Braced Tube Structural System: a Review
International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 484 ISSN 2229-5518 Braced tube Structural System: A Review Hardik J. Patel Prof. A. R. Darji PROF. (DR.). K. B. PARIKH PG Student, M.E. Structure M.E. Structure engineer,, Assistant Head of Department, engineer Professor Government Engineering Government Engineering College, Government Engineering College, College, Dahod, Gujarat, Dahod, Gujarat, India. Applied Mechanics Department, India. Abstract: The advanced construction technologies, evolution of efficient structural system, necessity of vertical growth because of scarcity of urban land and rapidly increasing population caused the development of the high rise buildings all over the world. Lateral loads i.e. earthquake loads and wind loads requires special attention in design of high rise buildings along with gravitational loading. Lateral loads can be taken care by interior structural system or exterior structural system. Generally shear wall core, braced frame and their combination with other frames are interior structural systems where lateral load is borne by centrally located structural elements. While framed tube, braced tube structural system bear lateral loads by the elements provided on periphery of the buildings. It is very much important that the selected structural system must be optimized and should utilize structural elements effectively while satisfying design requirements. In the past decades, the Braced tube structural system is widely adopted and used for the construction of tall steel buildings due to its structural efficiency and aesthetic potential provided by the unique geometric configuration of the system. Compared to closely-spaced vertical columns in framed tube, Braced tube structural system consists of widely spaced column with inclined X- brace members on the exterior surface of building. -
Trabajo Fin De Grado UNIVERSIDAD POLITÉCNICA DE MADRID / ETSAM
Trabajo Fin de Grado UNIVERSIDAD POLITÉCNICA DE MADRID / ETSAM Evolución de los sistemas estructurales en edificios de altura Obras e innovaciones de SOM: El sistema tubular Alumno / Karim Khouyali Tutora / Paula Villanueva Llaurado Aula 8 TFG Coordinador / Luis Javier Sánchez Aparicio Adjunta / Inmaculada Mohíno Sanz Grado en Fundamentos de la Arquitectura Curso 2020-2021 Índice Resumen 2 Abstract 3 1. Metodología y objetivos 4 2. Estado de la Cuestión 6 2.1. Introducción 6 2.2. Aspectos generales de las estructuras verticales 8 2.3. Sistemas estructurales en edificios altos 10 2.4. Skidmore, Owings and Merrill 12 2.5. Fazlur Rahman Khan y el sistema tubular 16 3. Casos de estudio 22 3.1. Torre Willis 22 3.2. One World Trade Center 26 4. Comparativa de datos 32 4.1. Altura ocupada, arquitectónica y hasta la punta 32 4.2. Esbeltez del edificio 34 4.3. Precio de construcción superficie útil/total 35 4.4. Materiales 36 4.5. Ocupación 38 4.6. Resumen Comparativa de datos 43 5. Conclusiones 46 6. Referencias 48 6.1. Bibliografía 48 6.2. Fuente de las imágenes 50 7. Anexo planos 52 7.1. Torre Willis 52 7.2. One World Trade Center 56 1 Resumen Los edificios altos juegan un papel cada vez más importante en la arquitectura contemporánea. Estos, a partir de finales del siglo XIX, han ido evolucionando de edificios altos de oficinas de 40 metros de altura a torres superesbeltas de uso mixto de más de 500 metros. Los sistemas estructurales siempre han sido uno de los factores más importantes para el espectacular desarrollo de los edificios altos. -
Structural Development of Skyscrapers
STRUCTURAL DEVELOPMENT OF SKYSCRAPERS 1ABHISHEK GUPTA, 2S.M. GUPTA 1,2NIT KURUKSHETRA, HARYANA, INDIA E-mail: [email protected], [email protected] Abstract- This paper presents a review on the evolution of the structural system of skyscrapers from earlier to the modern and the effects of this on the society and environment Keywords- Skyscrapper/Tall Buildings, Height Premium, Internal, external and hybrid structural system, Building Loads, Shear Walls, lateral rigidity, Lateral Sway, Floor Vibration I. INTRODUCTION iron. The inventor Henry Bessemer took out a patent on the process in 1855. Tall buildings emerged in the late nineteenth century In 1857, Elisha Otis and the Otis Elevator Company in the United States of America. They constituted a began manufacturing passenger elevators. Invention so-called “American Building Type,” meaning that of Elevator allowed vertical transportation of people most important tall buildings were built in the U.S.A. and goods without stair Today, however, they are a worldwide architectural Chicago is the birthplace of the skyscraper The Home phenomenon. Many tall buildings are built Insurance building (1885) in Chicago, (ten storied worldwide, especially in Asian countries, such as with 42 meter in height) is generally referred as the China, Korea, Japan, and Malaysia. first high rise building (Architect :William Jenney) The Home Insurance Building was built followed by The distribution of tall buildings has changed the Great Chicago Fire, 1871 radically with Asia now having the largest share with • The physical envelope of construction was 38%, and North America’s at 22%(Fig. 1). This data traditional load-bearing system. demonstrates the rapid growth of tall building • Thick masonry external walls creates comfortable construction in Asian while North American indoor thermal environment construction has slowed. -
Burj Khalifa Tower
Burj Khalifa Tower The tallest structure in the world, standing at 2,722 ft (830 meters), just over 1/2 mile high, Burj Khalifa (Khalifa Tower) opened in 2010 as a centerpiece building in a large-scale, mixed-use development called Downtown Dubai. The building originally referred to as Dubai Tower was renamed in honor of the president of the United Arab Emirates, Khalifa bin Zayed Al Nahyan. Burj Khalifa Dubai, United Arab Emirates Architecture Style Modern Skyscraper | Neo-Futurism Glass, Steel, Aluminum & Reinforced Concrete Prominent Architecture Features Y-Shaped Floor Plan Maximizes Window Perimeter Areas for residential and hotel space Buttressed central core and wing design to support the height of the building 27 setbacks in a spiraling pattern Main Structure 430,000 cubic yards reinforced concrete and 61,000 tons rebar Foundation - 59,000 cubic yards concrete and 192 piles 164 ft (50 m) deep Highly compartmentalized, pressurized refuge floors for life safety Facade Aluminum and textured stainless steel spandrel panels with low-E glass Vertical polished stainless steel fins Observation Deck - 148th Floor PROJECT SUMMARY Project Description Burj Kahlifa, the tallest building in the world, has redefined the possibilities in the design, engineering, and construction of mega-tall buildings. Incorporating periodic setbacks at the ends of each wing, the tower tapers in an upward spiraling pattern that decreases is mass as the height of the tower increases. The building’s design included multiple wind tunnel tests and design adjustments to develop optimum performance relative to wind and natural forces. The building serves as a model for the concept of future, compact, livable, urban centers with direct connections to mass transit systems. -
Construction History of the Composite Framed Tube Structural System
Proceedings of the First International Congress on Construction History, Madrid, 20th-24th January 2003, ed. S. Huerta, Madrid: I. Juan de Herrera, SEdHC, ETSAM, A. E. Benvenuto, COAM, F. Dragados, 2003. Construction history of the composite framed tube structural system Richard A. Ellis David P. Billington This paper examines the construction history of tall primary lateral structural system. As a result, the building s designed during the latter portion of the potential applications for composite construction are twentieth century. Fazlur Khan was able to capitalize numerous, especially with the renewed awareness of on the inherent strengths of steel and concrete by fire protection concems in high-rise structures. using them in conjunction with a framed tube system. Study of such innovations allows us to see how This idea involves a novel construction process, they came into being, how individual engineers which takes advantage of the virtues of structural contributed to their success, and how the local steel and reinforced concrete. Early applications of construction constraints stimulated the search for this system in the mid-1960's were in the 35-story such new ideas. Gateway III Building in Chicago, Illinois and the 25 story CDC Building in Houston, Texas. Composite construction is now being used more frequently in the INTRODUCTlON design of high rise buildings. This paper will look closely at the construction history of the 52-story One Born in Dacca, Bangladesh, Fazlur Rahman Khan Shell Square Building in New Orleans, which was received his Bachelor of Engineering degree from the completed in 1971 and still stands as the tallest University of Dacca. -
The-Hows-Whats-And-Wows-Of-Willis
There are enough impressive facts about the When you get back to your school, we hope Willis Tower to make even the most worldly your students will send us photos or write or among us say, “Wow!” So many things at the create artwork about their experiences and Willis Tower can be described by a share them with us (via email or the mailing superlative: biggest, fastest, and longest. But address at the end of this guide). there is more to the building than all these “wows”: 1,450 sky-scraping, cloud-bumping One photo will be selected as the “Photo of feet of glass and steel, 43,000 miles of the Day” and displayed on our Skydeck telephone cable, 25,000 miles of plumbing, monitors for all to see. Artwork and writing 4.56 million square feet of floor space and a will posted on bulletin boards in the view of four states. lunchroom area. We would also love to have you and your students post you Skydeck Behind the “wows” are lots of “hows” and Chicago photos to the Skydeck Chicago pages “whats” for you and your students to on Facebook, Instagram, and Twitter. explore. In this guide you will be introduced to the building—its beginnings as the Sears As you get ready for your trip, please call us Tower and its design, construction and place with any questions at (312) 875-9447. We aim in the pantheon of skyscrapers. Its name to make your visit your best school trip ever. was recently changed to the Willis Tower, proudly reflecting the name of the global insurance broker who makes the Tower its Chicago home. -
Fazlur R. Khan Lecture
FAZLUR R. KHAN LECTURE 1 Life-Cycle and Sustainability of Civil Infrastructure Systems – Strauss, Frangopol & Bergmeister (Eds) © 2013 Taylor & Francis Group, London, ISBN 978-0-415-62126-7 Fazlur Khan’s legacy: Towers of the future M. Sarkisian Skidmore, Owings & Merrill LLP, San Francisco, USA ABSTRACT: Dr. Khan’s contributions to the design of tall buildings have had a profound impact on the pro- fession. Kahn had a unique understanding of forces, materials, behavior, as well as art, literature, and archi- tecture. Long before there was widespread focus on environmental issues, Kahn’s designs promoted structur- al efficiency and minimizing the use of materials resulting in the least carbon emission impact on the environment. Kahn was interested in the performance of structural systems over an expected life; recognizing a building’s life -cycle and issues of abnormal loading demands, he developed concepts to apply to severe wind environments as well as early concepts of seismic isolation of structures. These system ideas have led to the development of other concepts which have yielded buildings much taller than those considered by Kahn. His ideas have inspired others to expand the possibilities in tall building design, life-cycle engineering and the effects of the structures on the environment. However, the offer was subsequently withdrawn and he went on to become an Executive Engineer with 1 INTRODUCTION the Karachi Development Authority. Because he felt that his technical abilities where not fully uti- Inquisitive as a child, Fazlur Rahman Kahn was in- lized, Kahn returned to SOM in 1960 where he spent terested in form and how forms could be made. -
1400 Leon Battista Alberti Donato Bramante Filippo Brunelleschi
1400 Leon Battista Alberti Donato Bramante Filippo Brunelleschi Mauro Codussi Aristotele Fioravanti Juan Guas Leonardo da Vinci Luciano Laurana Annibale Da Bassano Michelangelo Michelozzo Michelozzi Bernardo Rossellino Jacob van Thienen 1500 Antonio Abbondi Galeazzo Alessi Bartolomeo Ammanati Michelangelo Buonarroti Girolamo Cassar Vittorio Cassar Guglielmo dei Grigi Juan de Herrera Francesco Laparelli Philibert de l’Orme Hans Hendrik van Paesschen Andrea Palladio Antonio Sangal- lo the Elder Antonio Sangallo the Younger Michele Sammicheli Raffaello Santi Vincenzo Scamozzi Koca Mimar Sinan Agha Pellegrino Tibaldi Giorgio Vasari 1600 Gian Lorenzo Bernini Francesco Borromini Ustad Ahmad Lahauri Jacob van Campen Pietro da Cortona Tumas Dingli Pietro Paolo Floriani Lorenzo Gafà Guarino Guarini Jules Hardouin-Mansart Inigo Jones Louis Le Vau Baldassarre Longhena Carlo Maderno François Mansart Nicodemus the Younger Carlo Rainaldi John Webb Elizabeth Wilbra- ham Christopher Wren 1700 Robert Adam William Adam Cosmas Damian Asam Egid Quirin Asam James Bloodworth Étienne-Louis Boullée Alexandre Brongniart William Buckland Colen Campbell John Carr of York Richard Cassels William Chambers François de Cuvilliés Christoph Dientzenhofer Kilian Dientzenhofer Laurent Dewez John Douglas Nicolai Eigtved Johann von Erlach Johann Fischer Pierre Fontaine Ange Gabriel John Gwynn Peter Harrison Nicholas Hawksmoor Johann von Hildebrandt James Hoban Thomas Ivory Nicolas-Henri Jardin Thomas Jefferson Richard Jupp Filippo Juvarra William Kent Benjamin Latrob Giacomo